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Abstract. Accurate modeling of water infiltration and solute transport in unsaturated soils
is critical for various applications. These include optimizing irrigation practices to con-
serve water and minimize environmental impact, as well as predicting the fate of contam-
inants in soil and groundwater. This study explores the application of the vanilla physics-
informed neural network (PINN) approach for modeling the coupled system of water flow
and solute transport in unsaturated soils. We compare the performance of PINN with the
Galerkin finite element method (FEM) to evaluate their effectiveness. Various techniques
are implemented to improve the PINN solver, including adaptive activation functions. Nu-
merical tests were carried out to evaluate the efficiency of the PINN solver in comparison
to the FEM. The findings reveal that PINN can achieve accuracy comparable to FEM,
albeit at a significantly higher computational cost during training, while maintaining fast
inference times.
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1 INTRODUCTION

Soil moisture and solute dynamics are fundamental to hydrological modeling, influ-
encing a wide range of environmental and engineering challenges. Precise knowledge of
water flow and solute behavior in soils is essential to tackle diverse environmental prob-
lems. Understanding these dynamics is critical for developing efficient irrigation systems
[1], which ultimately leads to improved agricultural product quality. Modeling water flow
and solute transport in unsaturated soils traditionally relies on a coupled system of the
Richards equation [16] for water flow, and advection-dispersion equations [17] to describe
solute movement. This approach necessitates solving a complex system of partial differ-
ential equations (PDEs). The highly nonlinear nature of the Richards equation, coupled
with the intricate nature of realistic boundary conditions, renders analytical solutions for
the coupled water flow and solute transport model highly challenging to obtain. Con-
sequently, numerical methods provide a powerful alternative approach to solving these
PDEs. While various numerical methods exist for solving the Richards equation alone
[18], their application to the coupled model of water flow and solute transport remains
less explored [19, 23]. Standard numerical solvers often face challenges due to their
computational demands, particularly during mesh generation within the domain. Addi-
tionally, these methods require adherence to strict time step and mesh size limitations to
ensure accurate solutions. Furthermore, they typically assume precise knowledge of ini-
tial/boundary conditions and soil properties, which can be unrealistic in practical scenarios
where uncertainty and incomplete information about these conditions are common.

Data-driven approaches offer an alternative surrogate to standard numerical methods.
A recent method, introduced as physics-informed neural networks (PINNs), aims to en-
hance efficiency and alleviate the requirement for extensive training data [20]. In the PINN
approach, a deep learning solver is trained to solve a desired PDE while adhering to the
underlying physical laws encoded within it. This methodology has demonstrated signif-
icant advancements in solving various engineering problems (e.g., [21]). Other variants
of PINNs have been proposed to enhance the approach’s efficiency in tackling complex
PDEs with discontinuous and sharp solutions [22].

PINN solvers have emerged as powerful tools for simulating water flow and solute
transport, consistently achieving impressive results. For instance, Depina et al. [2] em-
ployed PINNs to estimate unknown soil parameters, while Bandai et al. [3] developed
a PINN framework to estimate key soil properties such as the water retention curve, hy-
draulic conductivity function, and surface water flux. Furthermore, Haruzi et al. [15]
addressed the coupled model to predict pressure head and pore water electrical conductiv-
ity with unknown initial conditions.

A critical gap persists in the literature concerning coupled models for water flow and
solute transport, particularly in scenarios where no data are available. Building upon prior
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comparisons between the FEM and PINNs for various PDEs [14], this study specifically
concentrates on a comparative analysis of their efficacy, with a focus on accuracy and effi-
ciency, in solving the forward problem of the highly nonlinear Richards equation coupled
with the advection-dispersion equation. We integrate the adaptive activation function [4]
to enhance the training of the PINN solver. Two numerical tests, namely, 1D and 2D tests,
are conducted to provide a detailed comparison of the two approaches.

2 THE PHYSICAL MODELS

2.1 Water flow

Modeling water flow in unsaturated soils is typically described using the Richards equa-
tion [16], which is represented by the following equation:

∂θ

∂t
+∇ · q = 0,

q = −K∇(Ψ + z),
(1)

where Ψ is the pressure head, z is the vertical dimension, q is the water flux, K = Kskr
is the unsaturated hydraulic conductivity, Ks is the saturated hydraulic conductivity, kr is
the water relative permeability, and θ is the volumetric water content.

To solve the Richards equation, it is essential to provide explicit functions for K and
θ as functions of Ψ. In this paper, we employed the Mualem-van Genuchten model [5]
expressed by the following equations:

θ =

{
θr + (θs − θr)

(
1 + (αv|Ψ|)nv

)−mv

, if Ψ ≤ 0θs, if Ψ > 0 (2a)

K =


Ks

[
1− (αv|Ψ|)nv−1

(
1 + (αv|Ψ|)nv

)−mv
]2

(
1 + (αv|Ψ|)nv

)mv/2
, if Ψ ≤ 0

Ks, if Ψ > 0

(2b)

mv = 1− 1

nv

; nv > 1, (2c)

where θs and θr represent the saturated and residual volumetric water contents, respec-
tively; nv, mv and αv are the van Genuchten empirical parameters.
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2.2 Solute transport

To account for solute transport alongside water flow, the equilibrium advection-dispersion
equation is typically coupled with the Richards equation, resulting in the following gov-
erning model [17]:

∂θc

∂t
= ∇ · (θD∇c− cq) , (3)

where c represents the concentration of the solute in the liquid phase, D represents the
dispersion tensor, θ and q represent the water content and water flux, respectively. The
components of the dispersion tensor are computed as follows [17]:

θDij = (DT∥q∥+ θDwτ) δij + (DL −DT )
qiqj

∥q∥
. (4)

Here, Dw denotes the molecular diffusion constant, while DL and DT represent the longi-
tudinal and transversal dispersivities, respectively. The symbol δij denotes the Kronecker
symbol, while τ represents the tortuosity factor in the liquid phase. The Euclidean norm
of q is denoted by ∥q∥, where qi and qj represent the components of the water flux in
the corresponding spatial directions. The tortuosity factor is determined using the formula

[17]: τ =
θ7/3

θ2s
.

3 METHODS

3.1 Finite element method: FEM

Several finite element methods are available in the literature for solving the coupled
model of water flow and solute transport (e.g., [19]). In this study, we adopt the Galerkin
FEM [13] for both the Richards equation and the solute transport model.

The coupled model of water flow and solute transport is studied within the time-space
domain I×Ω, where I = [0, T ], T is the final time of simulation, and Ω ⊂ Rd, d = 1, 2, 3,
is a connected bounded open domain representing the soil and having a smooth boundary
∂Ω. To numerically solve the problem, we discretize the time interval I into smaller
sub-intervals. Each sub-interval has a uniform time step of size ∆t > 0. We denote
the corresponding discrete time points as tn = n∆t, where n is an integer index. We
are looking for two sequences (Ψn)Nn=0 and (cn)Nn=0 such that the following time-discrete
system holds: 

θn+1 − θn

∆t
= ∇ ·

[
Kn+1∇(Ψn+1 + z)

]
,

(θc)n+1 − (θc)n

∆t
= ∇ ·

(
θn+1Dn+1∇cn+1 − cn+1qn+1

)
.

(5)
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We derived the system (5) using the backward-Euler time-stepping scheme, which is first-
order accurate. Subsequently, the spatial domain Ω is discretized into small elements Ωe,
which collectively form a mesh denoted by Th. The mesh size h characterizes the scale
of this partition and is defined as h = maxTh δ(Ω

e), where δ(Ωe) is the diameter of the
element Ωe. The Galerkin finite element space Vh is defined as follows:

Vh =
{
vh ∈ H1(Ω) ; vh↾Ωe ∈ P1(Ω

e), ∀Ωe ∈ Th

}
,

where H1(Ω) is the Sobolev space of functions with first-order weak derivatives in L2(Ω),
and P1(Ω

e) represents the space of linear polynomials on element Ωe.
We project the system (5) onto Vh, which leads to the following weak formulations:
⟨θ

n+1
h − θnh
∆t

, vh⟩+ ⟨ Kn+1
h ∇(Ψn+1

h + z),∇vh⟩ = 0, ∀vh ∈ Vh,

⟨(θhch)
n+1 − (θhch)

n

∆t
, wh⟩+ ⟨θn+1

h Dn+1
h ∇cn+1

h − cn+1
h qn+1

h ,∇wh⟩ = 0, ∀wh ∈ Vh,

(6)
where ⟨. , .⟩ denotes the standard inner product of the functional space L2(Ω). For the sake
of notation simplicity, we neglect the boundary term that arises from Green’s formula in
the system (6).

The first equation in system (6) is nonlinear due to the dependence of θh and Kh on the
primary variable Ψh. To handle this, we employ a linearization technique known as the
modified Picard scheme [13]:

⟨
θn+1,m
h + Cn+1,m

h

(
Ψn+1,m+1

h −Ψn+1,m
h

)
− θnh

∆t
, vh⟩+ ⟨ Kn+1,m

h ∇(Ψn+1,m+1
h + z),∇vh⟩ = 0, ∀vh ∈ Vh,

(7)

where Ch =
dθh
dΨh

is the specific water capacity, and the subscript m stands for the Picard

iteration. At each time step n, we verify the following inequality before progressing to the
subsequent time level: ∥∥(Ψn+1,m+1

h −Ψn+1,m
h

)∥∥
L2(Ω)

< 10−6, (8)

where ∥.∥L2(Ω) denotes the L2 norm.
We implemented the FEM for the water flow and solute transport model described

above using the FreeFEM++ software [6]. To mitigate the problem of oscillatory solutions
in the Richards equation, we implemented a mass lumping technique [13] using the row-
sum method. The resulting linear systems were solved using UMFPACK [12].

In the 1D numerical test, the following settings were used: ∆t = 10−2 day and ∆z =
10−2 m. For the 2D numerical test, the time step was ∆t = 10−2day, and the computa-
tional domain was discretized into a 25× 25 grid.
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3.2 Physics-Informed Neural Networks: PINNs

In this study, we utilize the vanilla PINN [20] to address the coupled model of water
flow and solute transport in unsaturated soils. We approximate the solutions of the PDEs
given by equations (1)-(3), Ψ(t, x) and c(t, x), using a feed-forward neural network (FNN).
The outputs of the FNN are represented as Ψ̂(t, x,Θ) and ĉ(t, x,Θ), where Θ denotes
the trainable parameters of the neural network, and the inputs consist of the time-space
coordinates (t, x). We gather data comprising collocation points distributed throughout
the time-space domain I × Ω. These data points are classified into residual collocation
points (tr, xr) ∈ (0, T ] × Ω, initial collocation points (0, xic) ∈ {0} × Ω, and boundary
collocation points (tb, xb) ∈ (0, T ] × ∂Ω. Subsequently, the following residual functions
can be derived using automatic differentiation techniques [11]:

f̂R(t
r, xr) =

∂θ̂

∂t
−∇ ·

[
K̂∇(Ψ̂ + z)

]
,

f̂C(t
r, xr) =

∂θ̂ĉ

∂t
−∇ ·

(
θ̂D̂∇ĉ− ĉq̂

)
.

(9)

The hat notation denotes predictions made by the FNN. The training of the PINN solver
involves minimizing the following loss function:

J(Θ) = αrJr(Θ) + αbJb(Θ) + αicJic(Θ), (10)

where

Jr(Θ) =
1

Nr

Nr∑
i=1

(
f̂R(t

r
i , x

r
i )
)2

+
(
f̂C(t

r
i , x

r
i )
)2

, (11a)

Jic(Θ) =
1

Nic

Nic∑
i=1

(
Ψ(0, xic

i )− Ψ̂(0, xic
i )

)2

+

(
c(0, xic

i )− ĉ(0, xic
i )

)2

. (11b)

Here, Jr, Jb, and Jic represent the residual, boundary, and initial condition losses, respec-
tively. Further, Nr and Nic denote the total number of residuals and initial collocation
points. The term Jb accounts for the disparities between the predicted value of the FNN
and the true boundary value. Its formulation depends on the specific type of boundary
condition utilized.

In both the 1D and 2D numerical tests, we utilized a total of 10,000 residual collocation
points and 2,000 initial/boundary collocation points. The FNN architecture consists of 5
hidden layers, each containing 50 neurons. The output function − exp(x) is applied to
the neuron corresponding to the predicted pressure head to enforce its negativity, while
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the identity function is employed for the neuron representing solute concentration. The
activation function employed in the FNN is the hyperbolic tangent with an adaptive acti-
vation technique [4], with the learning parameter initialized to 0.05 and the scale factor
set to 20. The weights of the FNN parameters were initialized using the Xavier random
initialization method [10], while the bias parameters b were set to zero initially. A two-
step training technique was implemented, employing two optimizers sequentially, starting
with Adam [7] and followed by L-BFGS-B [9]. We employed the Adam optimizer with
exponential decay of the learning rate for optimization. The initial learning rate was con-
figured to 10−3, with a decay rate of 0.9, and the decay step was set to 1000. Additionally,
the maximum number of iterations was limited to 20000. Other parameters were left at
their default values. The parameters of the L-BFGS-B optimizer were set as follows: ftol
= 10−10, gtol = 10−8, maxcor = 50, maxls = 50, maxiter = 50,000, and maxfun = 50,000,
while the remaining parameters were kept at their default values. To improve training,
a mini-batching technique was applied for the Adam optimizer, whereas a full-batch ap-
proach was employed for the L-BFGS-B optimizer. The implementation of the PINN
solver was performed using the TensorFlow library [8]. Figure 1 presents a conceptual
illustration of the PINN solver for modeling water flow and solute transport in unsaturated
soils.

FNN Constitutive relations Constraints

Van Genuchten model
Darcy Law
Dispersion Tensor

Automatic Differentiation

Loss
function

Training

Adam optimizerL-BFGS-B optimizer

Initial and boundary losses

Figure 1: Diagram illustrating the PINN solver for the coupled water flow and solute transport model.

4 NUMERICAL EXPERIMENTS

In this section, we present two numerical experiments to compare the performance of
PINN and FEM for solving the coupled model of water flow and solute transport. The first
experiment involves a one-dimensional soil column test, while the second numerical test
is conducted on a 2D soil with different boundary conditions.

For both numerical experiments, we used the following loamy soil parameters: Ks =
0.2496m/day, αv = 3.6m−1, θs = 0.43, θr = 0.078, nv = 1.56. For the one-dimensional
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experiment, the initial and boundary conditions are outlined as follows: For (t, z) ∈
(0, 1] × [−1, 0], Ψ(0, z) = −1m, q(t, 0) = −0.05m/day,

∂Ψ

∂z
(t,−1) = 0, c(0, z) =

0mmol/m3, c0 = 50mmol/m3,
∂c

∂z
(t,−1) = 0, where c0 indicates the concentration

of the applied solute at the soil surface. The following solute parameters were used:
DL = 0.1 m, Dw = 0.0 m2/day.

For the two-dimensional experiment, the initial and boundary conditions are outlined
as follows: For (t, x, z) ∈ (0, 1] × [−1, 0] × [−1, 1], Ψ(0, x, z) = −1.3m, Ψ(t, x, 0) =

−0.2m,
∂Ψ

∂z
(t, x, 0) = 0, c(0, x, z) = 0.1 g/m3, c(t, x, 0) = 1 g/m3,

∂c

∂z
(t, x,−1) = 0.

Additionally, a no-flux boundary condition was enforced along the lateral sides of the
domain. The following solute parameters were used: DL = 0.5 m, DT = 0.1 m, Dw =
0.0 m2/day.

To provide a benchmark for comparison with the PINN solution described in 3.2, and
FEM with the settings outlined in 3.1, we computed a reference solution using FEM. For
the 1D numerical test, the reference solution was obtained with ∆tref = 10−5 day and
∆zref = 10−4 m. In the 2D numerical test, the reference time step used was ∆tref =
10−4 day, and the computational domain was discretized into a 100× 100 grid.

The obtained results are depicted in Figure 2, and a summary of accuracy and compu-
tational cost is illustrated in Table 1. Both FEM and PINN demonstrate good accuracy
for pressure head and solute concentrations, with errors lower than 1% for both numeri-
cal tests. However, PINN exhibits significantly faster prediction times compared to FEM.
Therefore, combining these two techniques could show promise for advancing subsurface
modeling, particularly in terms of fast and accurate predictive capabilities.

Table 1: The obtained results for both PINN and FEM in solving the one- and two-dimensional infiltration-
solute model.

1D numerical test
CPU of training

(seconds)
CPU of

prediction
(seconds)

relative L2-error
for Ψ

relative L2-error
for c

Total
loss

FEM - 5.29 1.9e-3 2.2e-3 -
PINN 619.45 0.544 2.19e-3 3.42e-3 6.05e-3

2D numerical test
FEM - 58.75 1.5e-3 1.09e-3 -
PINN 1572.6 0.55 5.9e-3 3.06e-3 1.86e-05
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Figure 2: 2D numerical test- Snapshots of the obtained results from PINN and cross-sections at x = 0 of
the pressure head and solute concentration obtained using PINN and FEM solvers.
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5 CONCLUSION

This study highlights the accuracy and effectiveness of utilizing a vanilla physics-
informed neural network (PINN) approach to solve the coupled model of water flow and
solute transport. It compares the efficacy of this approach with the Galerkin finite element
method (FEM). PINN is enhanced with techniques such as adaptive activation functions to
better address the high nonlinearity inherent in the Richards equation. The results indicate
that PINN can attain accuracy levels similar to FEM, despite requiring notably more com-
putational resources during training. However, PINN maintains quick inference times,
suggesting its potential as a viable alternative for modeling water-solute systems, albeit
with a trade-off in computational cost.
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