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Summary. Turbulent and transitional flows around airfoils near stalling conditions may be
characterized by low-frequency oscillations during which the flow alternates between attached
and detached states, or by stall cells, that induce a spanwise modulation of the flow on the
suction side of the airfoil. In this paper we investigate the onset of such phenomena for the
transitional flow over a NACA 0012 airfoil at the Reynolds number Re = 90000 using global
stability analysis. The transitional nature of the flow is modelled using the linear eddy-viscosity
model developed by Spalart & Allmaras that is coupled here with a correlation-based algebraic
transition model. Steady-state solutions of the aforementioned system reveal a characteristic
inverted-S shape curve with two saddle-node bifurcations. The global stability analysis of these
steady solutions is based on the full linearization of the governing discrete equations, including
the turbulence model, the transition model and the numerical stabilization terms. It reveals
the existence of two unstable modes: a two-dimensional low-frequency (unsteady) mode and a
three-dimensional zero-frequency (steady) mode. The competition between these two modes is
investigated by following their corresponding eigenvalues along the branches of steady solutions.
We have identified the critical angles for each mode and shown that the three-dimensional modes
become unstable prior to the two-dimensional ones, for this particular case.

1 INTRODUCTION

Airfoil stall is commonly described as a sudden drop of lift when increasing the angle of attack
past a critical value. This drop of lift is related to a sudden change of the flow topology, where
the flow alters from an attached to a massively separated state and can lead to detrimental effects
in aeronautical applications. Airfoil stall is associated with many complex physical phenomena
that are commonly observed in experiments such as flow hysteresis, low-frequency oscillations
and/or stall cells. Flow hysteresis was firstly observed in the experiments of [1] and is related
to co-existing solutions of the fluid system for the same angle of attack; In this sense, for the
same angle of attack α one can observe either an attached or a fully detached (stalled) flow state
depending on whether the configuration is reached by increasing or decreasing the angle α. The
low-frequency oscillations phenomenon of stalled airfoils was investigated by [2], who where the
first to confirm that it was due to a natural flow oscillation rather than a structural vibration.
This phenomenon is observed as a high-amplitude oscillation of the unsteady force coefficients
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and manifests a periodic alternation of the flow topology between the attached and the separated
state. The non-dimensional Strouhal number based on the chord c and the freestream velocity
U0 is typically very low (St ∼ 0.02), an order of magnitude smaller than the shedding frequency
St ∼ 0.2. Recently, [3] showed that this phenomenon is linked to the destabilization of a two-
dimensional global mode, for an airfoil in a fully turbulent flow regime at Re ∼ 106 exhibiting
trailing edge stall. Lastly, stall cells are three-dimensional cellular patters that appear on the
suction side of the airfoil near the stalling angle of attack. Identified experimentally since the
seventies by [4] and [5], they result in a time-independent periodic modulation of the separation
line in the spanwise direction. This phenomenon has been shown by [6] to be related to the
destabilization of a three-dimensional stationary global mode on a fully turbulent airfoil at
Re = 350000. The aim of this paper is twofold; Firstly, we study the onset of steady and
unsteady phenomena on an airfoil experiencing static hysteresis in transitional flow conditions,
extending thus the works of [3] and [6] that where in fully turbulent conditions. Secondly,
we examine how the two types of instabilities compete with each other along the branches of
co-existing steady solutions, identifying which instability is the primary one.

2 METHODOLOGY

2.1 Governing equations for the transitional flow

In this paper we investigate the transitional flow around a NACA 0012 airfoil at a Reynolds
number Re = U0c/ν = 90000, where U0 is the free-stream velocity, c is the chord of the airfoil
and ν is the kinematic viscosity. In the following, c and c/U0 are the characteristic length and
time scales that are used to non-dimensionalize all variables. We solve for the incompressible
transitional flow which we model in the framework of the Reynolds-Averaged Navier-Stokes
(RANS). The flow governing equations, in a non-dimensional form, read

∂u

∂t
+ (u ·∇)u = −∇p + ∇ ·

[(
1

Re
+ νt(ν̃)

)
S(u)

]
, ∇ · u = 0, (1)

where ∇ = (∂x, ∂y, ∂z)T , u = (u, v, w)T is the mean velocity field, p the mean pressure field and
S(u) = ∇u + (∇u)T the strain-rate tensor. Here, the Reynolds stresses are modelled through
the effect of the eddy-viscosity field νt ( linear eddy-viscosity model) which appears as additive
viscosity term. The eddy-viscosity νt is a function of the turbulent variable ν̃ which is governed
by the Spalart-Allmaras transport equation

∂ν̃

∂t
+ (u ·∇)ν̃ = γ · cb1S̃ν̃ − cw1fw

(
ν

d

)2

+
1

σ
∇ ·

[(
1

Re
+ ν̃

)
∇ν̃

]
+ cb2∇ν̃ ·∇ν̃,

νt(ν̃) = fv1(ν̃). (2)

For the detailed definition of the functions and constants of the model we refer to [7]. On the
right-hand-side, the intermittency function γ that premultiplies the production term models
the transitional nature of the flow; in the laminar regions, γ = 0 and therefore there is no
production of turbulence. As a result, the levels of νt are negligible compared to the kinematic
viscosity ν and the RANS momentum operator reduces to the classical Navier-Stokes equations.
In the turbulent region, the function saturates to γ = 1, initiating production of turbulence and
increasing the levels of νt. We determine the intermittency function here using the algebraic
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transition model of [8], which calculates γ as

γ = 1 − e(
√
T1−

√
T2) (3)

where the terms T1 and T2 are given by

T1 =
max(Reθ −Recθ, 0)

χ1Recθ
, T2 = max

(
νt
χ2

)
(4)

where χ1 = 0.002 and χ2 = 0.02 are constants of the model and the Reθ number is based on the
vorticity Reynolds number ReΩ which is given by

Reθ = ReΩ/2.193, ReΩ = Ωd2Re (5)

with Ω being the vorticity and d the normal distance to the walls. The first max function
in equation 4 activates γ when Reθ exceeds a critical value Recθ which is empirically given by
correlations as

Recθ = 803.73(Tu∞ − 0.6067)−1.027 (6)

where Tu∞ is the intensity of freestream turbulence which is considered in this study as
Tu∞ = 0.01. To impose laminar inflow condition, [8] suggest the far-field boundary condi-
tion for ν̃ in the Spalart transport equation to be ν̃ = (0.015 − 0.025)ν.

2.2 Newton’s method and continuation method for identifying co-existing solu-
tions

The governing RANS (1), Spalart-Allmaras (2) and transition model (3) equations may be
re-written in the following operator form

M∂q

∂t
= R(q, α) (7)

where q = (u, v, w, p, νt, γ)T is the state vector that gathers all variables of the problem and
R(q, α) is the residual vector of the governing equations. We note that the system of equations
(7) is a function of the angle of incidence α that is a free parameter in our problem. For
a specific angle of incidence α0 we seek for the two-dimensional steady state solution q0 =
(u0, v0, 0, p0, νt0, γ0)

T of the governing equations, i.e. the q0 that satisfies R(q0, α0) = 0. When
fixing the angle α0, we can formally obtain such fixed point solutions in an iterative manner
using the Newton’s method which produces successively better approximations q0

n+1 over the
previous solution q0

n by updating the state vector as

q0
n+1 = q0

n − ηn+1L−1R(q0
n+1, α0) (8)

where ηn+1 ∈ (0.1] is a relaxation factor that aids convergence and L = ∂R
∂q (q0, α0) is the Ja-

cobian operator, i.e. the linearization of the governing equations around the steady-state q0 at
the angle α0. The Jacobian operator L is obtained by the linearization of the full-set of gov-
erning equations; it is therefore composed of a laminar diagonal block which corresponds to the
linearization of the Navier-Stokes operator, a turbulent/transition diagonal block corresponding
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to the linearization of the turbulence and transition models and of the off-diagonal blocks that
couple the laminar and turbulent variables. Near stall though, equation 8 exhibits co-existing
solutions for the same angle of attack α0 due to flow hysteresis. This is manifested in the polar
curve CL−α (where CL is the lift coefficient) as the CL(α) function being non-injective (not 1:1).
The inverse function though α(CL) is indeed injective at high α as there is a unique solution of
α for each CL. In view of this, instead of fixing α0 we can instead fix a target value for the lift
coefficient Ct

L and solve the non-linear equations(
R(q0, α0)

CL(q0, α0) − Ct
L

)
=

(
0
0

)
(9)

where CL(q0, α0) is the lift coefficient and the angle of attack α0 is an unknown. A Newton
method is used to solve this augmented nonlinear system, leading to(

q0
α0

)n+1

=

(
q0
α0

)n

− ηn+1

(
∂R
∂q

∂R
∂α

∂CL
∂q

∂CL
∂α

)−1(
R(q0

n, αn
0 )

CL(q0
n, αn

0 ) − Ct
L

)
. (10)

2.3 Global stability analysis

Following the governing equations 7, in a linear framework we can decompose the state vector
q as

q(x, y, z, t) = q0(x, y, 0) + ϵ q′(x, y, z, t), q′(x, y, z, t) = q̂(x, y)eλteiβz + c.c. (11)

where ϵ ≪ 1, q′(x, y, z, t) is the linear perturbation and q0(x, y, 0) is the two-dimensional steady
state solution of the governing equations (R(q0, α0) = 0). Here the three dimensional perturba-
tion fields q′ have been decomposed in a normal form, where q̂(x, y) is a complex mode associated
to the eigenvalue λ = σ+ iω and the transverse wavenumber β in the z direction. The temporal
evolution of three-dimensional perturbations characterized by the wavelength λz = 2π/β is then
given by the growth rate σ and frequency ω. By injecting the decomposition into the governing
equations 7 we arrive to the following generalized eigenvalue problem

λMq̂ = Lβ q̂ (12)

where Lβ = ∂R
∂q (q0, α0, β) is the Jacobian operator around the steady-state q0 which is a function

of the transverse wavenumber β. The solution q0 is globally unstable in the asymptotic time
limit if (at least) one eigenvalue λ of Lβ has a positive growth rate (σ > 0).

2.4 Numerical methods

The governing equations are discretized using continuous finite elements on an unstructured
mesh. A typical mesh consists of approximately 350000 triangular elements and may be highly
anisotropic near the airfoil. The anisotropy of the mesh is controlled and adapted to the Hessian
of the velocity and eddy-viscosity fields but also to sensitivity fields related to the global modes,
in order to ensure converged stability results. Due to the convection-dominated flow, the classical
Galerkin formulation here is stabilized using the Streamline Upwind Petrov–Galerkin method [9].
The assembly, factorization and the inversion of all linear operators for the linear and nonlinear
problems is fully parallel using the PETSc interface in FreeFEM. To determine the leading
eigenvalues in eigenvalue problems, we rely on a shift-and invert strategy and the Krylov–Schur
subspace method using the SLEPc interface implemented in FreeFEM.
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Figure 1: Steady-state solutions of the transitional flow around the airfoil at Reynolds number Re =
90000 near stalling angles of attack. (a) Evolution of the lift coefficient CL as a function of the angle of
attack α in the high angle of attack range 8.5◦ ≤ α ≤ 11◦ . The branch of globally unstable solutions
are shown using a dashed line. (b-g) Streamwise velocity components ū corresponding to their associated
steady-state solutions marked with filled circles on (a). A black line shows the dividing streamline of the
separated flow.

3 RESULTS

3.1 Steady solutions around stall and static hysteresis

Steady-state solutions of the transitional flow configuration have been obtained by fixed
point solutions of eq. 7 for different angles of attack. In this paper we will focus on solutions at
high angles of attack, corresponding to stalling regimes. As mentioned in §2.2, a continuation
method is employed to allow us to move along the space of CL and obtain branches of co-
existing solutions for the same angle of attack α. Figure 1(a) shows the evolution of the lift
coefficient CL as a function of the angle of attack α, in the range 8◦ ≤ α ≤ 11◦. In the
pre-stalling regime (α ≤ 10◦), the lift coefficient grows linearly with respect to the angle of
attack. Moving close to the stall regime though (α ≥ 10◦) we observe a sudden drop of the lift
coefficient, where co-existing steady-state solutions for the same angle of attack exist, forming a
characteristic S-shaped curve. Three branches of steady solutions can be identified, a high-CL

branch (9◦ ≤ α ≤ 10.25◦) before stall, a low-lift branch (α ≥ 10.25◦) after stall and a mid-CL

branch connecting the two. As it will be discussed on §3.2, solutions on the mid-CL branch
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(a) (b)

(c) (d)

Figure 2: Steady-state high-CL solution at Re = 90000 for α = 10.4◦ and CL = 0.805, corresponding to
the solution of figure 1(c). (a,c) Streamwise velocity ū and (b,d) mean eddy-viscosity Re · ν̄t normalized
by the kinematic viscosity ν = 1/Re. A solid line corresponds to the dividing streamline of the separated
flow, delimiting the LSB at the leading edge and the TSB at the trailing edge. A dashed line corresponds
to the isoline γ = 1 of the intermittency function γ, marking the transition to turbulence.

are globally unstable to two-dimensional perturbations and are therefore plotted using dashed
lines on figure 1. Such co-existing solutions around stall were first identified on a turbulent
NACA0012 airfoil by [10] and later by [3] on a OA209 airfoil exhibiting trailing edge stall and
are related to the static hysteresis phenomenon. In this work, the convergence of the mid-CL

branch was possible due to the use of the continuation method in §2.2, since a marching on the
angle of attack α would drop us from the high-CL branch directly to the low-CL branch. The
topology of the associated steady solutions is shown on figures 1(b-g), displaying the streamwise
velocity ū for the corresponding angles of attack marked with filled circles on figure 1(a). On
these contour fields, solid black lines show the dividing streamline of the recirculating flow,
delimiting attached from separated regions. At the pre-stall regime (α ⪅ 10◦) at the angle
α = 10◦ (figure 1(b)), the flow is mostly attached on the suction side of the airfoil. Moving
closer to the stalling regime, flow separation starts to develop at the leading and trailing edge
of the airfoil; Specifically, we focus in figure 2 on the steady solution for the angle of attack
α = 10.4◦ that is corresponding to the solution of figure 1(c). We notice in 2(a) that the
laminar boundary layer separates at the chord-wise position xc ∼ 0.02 near the leading edge
and reattaches at xc ∼ 0.25 in a turbulent manner forming a laminar separation bubble (LSB),
delimited by the dividing streamline of the separated shear layer. To further comment on the
nature of separation and reattachment, on figure 2(b) we show contours of the eddy-viscosity
field νt/ν normalized by the kinematic viscosity ν. A dashed line corresponds to the isoline of
γ = 1, marking the transition to turbulence where production of νt is activated. We see that
production does not start before xc ∼ 0.04 and that the levels of νt/ν are negligible near the
leading edge, meaning that boundary layer that separates is laminar. In the separated shear
layer, production of turbulence is activated and levels of νt/ν rise, reattaching the boundary layer
and forming an LSB. Similar to our analysis, a LSB is also captured on this airfoil configuration
at the same Reynolds number by the LES simulations of [11]. Near the trailing edge (figures
2(c,d)), the turbulent boundary layer separates at xc ∼ 0.65 and reattaches at the edge of
the airfoil, forming a turbulent separation bubble (TSB). Moving further along the branches of
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Figure 3: Stability analysis results of the high-CL solution at α = 10.4◦ and CL = 0.805. (a) Eigen-
spectrum of leading eigenvalues around ω = 0. Stable eigenvalues are depicted with open circles. The
low-frequency (ω = 0.16) unstable eigenvalues are depicted with filled blue circles. (b) real part of stream-
wise velocity ℜ(û) and of (c) cross-stream velocity ℜ(v̂) components of the unstable global mode. The
mode has been normalized such that < û, û >= 1.

steady solutions on figures 1(c-e), the reattachment point of the LSB and the detachment point
of the TSB move closer together until they merge, forming a large recirculation region on figure
1(d) and going towards a massively separated state on figure 1(g). This separation scenario is
associated with a combined leading-edge trailing-edge stall mechanism ([12]).

3.2 Global stability to two-dimensional perturbations

After obtaining fixed point solutions in §3.1 of the airfoil at stalling angles of attack, we
proceed by studying their stability to two-dimensional perturbations. We therefore follow the
stability formulation introduced in §2.3 by setting the spanwise wavenumber to β = 0. Figure
3 shows the global stability results of the high-CL fixed point at α = 10.4◦ and CL = 0.805,
corresponding to the solution of figure 2. On figure 3(a) we show the spectrum in the σ − ω
plane of the leading eigenvalues where stable eigenvalues (σ < 0) are depicted with open circles
while unstable ones (σ ≥ 0) with filled circles. We notice two complex conjugate eigenvalues of
low-frequency (ω = 0.16) to be marginally unstable. The Strouhal number associated to this
frequency based on the projected frontal area is St = fcsin(α)/U0 ≈ 0.021. This loss of stability
through the destabilization of a pair of complex conjugate eigenvalues is attributed to a Hopf
bifurcation. The shape of the associated eigenfuction is shown on figures 3(b) and (c), showing
the real part of streamwise ℜ(û) and (c) cross-stream ℜ(v̂) velocity of the unstable global mode
q̂. Here the mode has been normalized to unit kinetic energy, i.e. such that < û, û >= 1, where
< a, b >=

∫
a∗ · bdΩ corresponds to the Hermitian inner product. The structure of the mode is

elongated along the streamwise direction and is clearly linked to the LSB at the leading edge,
initiating at the laminar separation point and reaching its maximum value above the bubble.
The cross-stream component is also located at the LSB and alternates in sign around the dividing
streamline. This mode is similar to the stall mode found by [3] that in their study originated
from the TSB at the trailing edge and is linked to the low-frequency oscillations phenomenon,
driving the system towards a large-period limit cycle. In the comparable LES of [11] a low-
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Figure 4: Bifurcations of the stall (low-frequency) eigenvalue along the steady flow solutions. (a) Lift
CL versus the angle of attack α with the stable and unstable branches shown by solid and dashed curves,
respectively. (b) Schematic representation of the low-frequency eigenvalue in the σ versus ω plane showing
the different stability regimes and bifurcations. Numbers indicate the different regimes while letters the
bifurcation points (H for Hopf, SN for saddle-node and E for exceptional).

frequency oscillation of the flow is observed with a Strouhal number StLES = 0.024, consistent
with the present linear stability prediction (St = 0.021). We move now along the branches
of steady solutions shown and track the path of the eigenvalues to identify critical bifurcation
points. On figure 4(a) we show again the lift CL versus angle of attack α curve where letters
denote the critical bifurcation points and numbers the different stability regimes. The position
of the low-frequency eigenvalues is shown schematically on figures 4(b-h) for the different points.
Starting from regime ”1” where the flow is globally stable we move to the unstable regime ”2”
through a Hopf bifurcation (marked with ”H”) as described before. As we move further on the
unstable branch, the complex conjugate eigenvalues increase in σ but also move closer together
(decrease in ω) until they merge into a singular point; at this point the two eigenvalues and
eigenvectors coalesce. This point is usually called an exceptional point (marked with ”E”),
common in non-Hermitian operators [13]. Following the exceptional point, the two eigenvalues
separate again and one moves to the left (decreasing in σ) and one to the right (increasing in
σ). This state of two unstable stationary (ω = 0) eigenvalues is marked as ”3” in the figure.
As we further follow the branch, the left eigenvalue reaches and crosses the imaginary axis,
becoming stable (σ < 0). At the critical point where λ = 0 (figure 4(g)) we have a saddle-node
bifurcation (marked ”SN”), characterized by two fixed points colliding and annihilating each
other. The saddle-node point coincides exactly with the turning point (∂CL/∂α = 0) of the
CL(α) function. Note that converging the saddle-node point is non-trivial since the Jacobian
matrix is not invertible (L has a zero eigenvalue) and convergence here was achieved by inverting
the augmented Jacobian (equation 10). After the ”SN” bifurcation, we move to the stability
regime ”4” where one eigenvalue is stable and one unstable. The same exact bifurcation paths
occur in reverse order at the lower branch of the curve; a saddle-node bifurcation at the turning
point, followed by an exceptional point and then a Hopf bifurcation back to a fully stable system.
Interestingly, the same bifurcation scenario was obtained by [3] on a fully-turbulent airfoil flow
exhibiting trailing-edge stall. This shows that the low-frequency phenomena in stalling airfoils
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Figure 5: Continuation of the low-frequency eigenvalue to three-dimensions for the high-CL solution at
α = 10.25◦ and CL = 0.81. (a) Evolution of the growth rate σL of the most unstable eigenvalues as a
function of the transverse wavenumber β. (b-g) Schematic representation of the leading eigenvalues in
the complex plain σ versus ω showing the different stability regimes (numbers) and critical bifurcation
points (E for exceptional and P for pitchfork) that are indicated on (a).

seem to be independent of the flow conditions (turbulent/transitional) or type of stall mechanism
(leading-edge, trailing-edge or combined leading/trailing edge).

3.3 Global stability to three-dimensional perturbations

We now extend the analysis to three-dimensional perturbations by following again the sta-
bility formulation introduced in §2.3 but for non-zero spanwise wavenumbers β. We start our
analysis here with the high-CL solution at α = 10.25◦ and CL = 0.81. This state is just before
the Hopf bifurcation (which occurs for CL = 0.805) and corresponds to the stability regime
marked ”1” in figure 4 where the flow is globally stable and the leading eigenvalues are close to
criticality. We depart from the two-dimensions (β = 0) be increasing the wavenumber β in the
range 0 ≤ β ≤ 2.5 and track the complex eigenmodes. Figure 5(a) shows the growth rate σL of
the aforementioned leading eigenvalue as a function of β. Numbers indicate again the different
stability regimes while letters the critical points. Figures 5(b-g) represent schematically the
position of the leading eigenvalues in the complex plain for the different regimes. Starting from
the globally stable region ”1”, increasing β results in the conjugate eigenvalues decreasing in σ
and ω, moving closer together until they coalesce to a singular point for β = 0.5. This point is
an exceptional point, marked with ”E”, similar to the one found in §3.2. By further increasing
β, the steady now (ω = 0) eigenvalues repel each other, one decreasing and one increasing in σ
until for β = 0.75 now reaches and crosses the imaginary axis (figure 5(f)), becoming globally
unstable. This loss of stability is related to a pitchfork bifurcation, marked with ”P” in the
figure, which breaks the symmetry of the flow in the third dimension. We notice that by further
increasing β the growth rate of the unstable mode saturates at β = 1.25 and then decreases
again, crossing the imaginary axis to a globally stable state. The wavenumber at maximum am-
plification corresponds to a very large transverse wavelength λz = 2π/β ∼ 5, i.e. a wavelength
of 5 times the chord c.
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(a) (b)

(c) (d)

Figure 6: Spatial structure of the steady (ω = 0) global mode for the wavenumber β = 1.25. (a,c)
Planar and (b,d) three-dimensional views of the (a,b) streamwise velocity u′ and (c,d) spanwise velocity
w′. Isosurfaces correspond to (b) u′ = ±1 and (d) w′ = ±2. The mode has been normalized such that
< û, û >= 1. The spatial extent of the domain in the transverse direction is Lz = λz where λz = 2π/β.

The associated structure of the three-dimensional mode q̂ is shown on figure 6 for the
wavenumber of maximum amplification β = 1.25, using planar views (a,c) and isosurfaces (b,d)
of the (a,b) streamwise velocity perturbation (u′ = 1

2(ûeiβz + c.c.) = ±1) and (c,d) transverse
velocity perturbation (w′ = 1

2(ŵeiβz + c.c.) = ±2). The mode has been normalized such that
< û, û >= 1 while the wing here has an extent of Lz = λz = 2π/β in the spanwise direction.
The shape reveals elongated structures of streamwise velocity û that originate at the LSB and
decay as we move downstream. The transverse component ŵ is very strong and connects the
LSB at the leading edge and the TSB at the trailing edge, alternating in sign between the two.
This mode bears similarities with the three-dimensional mode found by [6] on a fully turbulent
NACA4412 airfoil at Re = 350000 that is linked to the formation of stall cells, which periodi-
cally modulate the separated flow in the spanwise direction. The wavelength here though λz ∼ 5
is much higher than the wavelengths of stall cells commonly found in literature (λz ∼ 1), not
excluding the possibility of this being linked to a phenomenon that is rarely observed due to its
extremely large wavelength. Furthermore, since the three-dimensional mode is a continuation
of the low-frequency mode for β ̸= 0 it suggests that these two instabilities might be linked.

We have therefore identified that this steady solution, which is globally stable to two-
dimensional perturbations, gets unstable to a three-dimensional mode; thus the three-dimensional
instability precedes the two-dimensional one. It is of interest to further analyze this and iden-
tify how these modes compete along the hysteresis curve. On figure 7(a) we show again the
lift-coefficient CL versus the angle of attack α where globally stable and unstable solutions are
shown with solid and dashed lines respectively. The bifurcation path of the unsteady mode is
shown on figure 7(b), reporting the growth rate σ of the eigenvalues for the different values of
CL. Here, only the critical Hopf points are highlighted with ”H”. For the steady mode, since the
β of maximum amplification is β = 1.25 we expect that the critical pitchfork bifurcation occurs
for that value. We therefore follow on figure 7(c) the growth rate σ of the three-dimensional sta-
tionary mode at β = 1.25 along the branches of solutions. The bifurcation path of the unsteady
mode is also shown in gray for comparison. The steady mode destabilizes first and is more
amplified than the unsteady one, increasing its growth rate until it reaches a maximal value
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(a) (b) (c)

Figure 7: Competition between two-dimensional unsteady and three-dimensional steady modes. (a) Lift
coefficient CL versus the angle of attack α. Solid and dashed lines distinguish between globally stable
and unstable solutions. (b) Growth rate σ of the unsteady two-dimensional (β = 0) mode and (c) of the
three-dimensional steady mode for β = 1.25 versus CL. The critical bifurcation points (P for pitchfork
and H for Hopf) are indicated on the figures. On (c) the path of the unsteady mode is also shown using
a gray line for comparison.

at the center of the inverted-S curve. After that point, the growth rate decreases again until
the mode stabilizes at the lower branch. In both the upper and lower branches, the pitchfork
bifurcation precedes the Hopf, showing that the primary instability is the three-dimensional.

4 CONCLUSIONS

In this paper we performed global stability analyses of transitional flows around a NACA0012
airfoil at Re = 90000 and several angles of attack near stalling conditions. We modelled the
transitional flow using a RANS framework, coupled with a Spalart-Allmaras turbulence model
and an algebraic transition model. A continuation method allowed us to obtain unstable solu-
tions near the stalling angle that form a characteristic inverted-S shape in the CL − α plane,
related to the hysteresis phenomenon. Global stability of these solutions revealed the existence
of a two-dimensional unsteady mode related to the low-frequency oscillations phenomenon and
of a three-dimensional steady mode with a very large transverse wavelength. By following the
different modes along the inverted-S curve we have identified that the three-dimensional mode
becomes unstable prior to the two-dimensional one in the present case. The flow becoming pri-
marily three-dimensional suggests that low-frequency unsteadiness could occur as a secondary
instability of the saturated three-dimensional state. Stability analysis of these three-dimensional
states is a natural step for further exploring this scenario.
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