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SUMMARY

The experimental and numerical analysis of spheres falling into viscous flows is considered. The physical
model is built using a set of silicone and glass spheres falling into oil and water. The rigid-body trajectory of
the sphere and the free surface evolution are obtained from videos. The numerical results are obtained using
two different finite element codes. The first code uses a fractional step approach with adaptive meshes and
time-step sizes whereas the second code uses a monolithic fully coupled fixed-mesh technique. The results
exhibit a good comparison between both numerical techniques and with the experiments. Copyright © 2011
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many engineering applications require the computation of flow problems that include the motion
of fluid–solid and fluid–fluid interfaces. Examples are sediment flows commonly found in mining
applications, fluidized beds to transport sand, gravel or even food, and polymer and melt applica-
tions. In all of these cases, the accurate description of the interfaces, which may exhibit considerable
motion and/or topology change, presents major numerical challenges.

The modeling of the interaction of fluid flow with rigid or flexible solid structures can be
performed using different approaches: arbitrary Lagrangian–Eulerian (ALE) strategies [1–7],
deforming-spatial-domain/stabilized space–time (DSD/SST) formulations [8–10] where the fully
discretized equations are solved with either iterative or direct coupling methods, particle FEM
(PFEM) [11], immersed boundary (IB) techniques [12, 13], and moving Lagrangian interface tech-
niques (MLIT) [14]. Focusing on the description of interfaces, we applied basically two method-
ologies. In the moving mesh techniques, like ALE and DSD/SST, the mesh moves to follow the
interface, providing the fine mesh resolution needed near the fluid–solid interface [15–18]. Nev-
ertheless, in the computation of very complex and unsteady fluid–fluid interfaces, the remeshing
required in such techniques can be a very time-consuming task. To avoid this inconvenience,
researchers have developed fixed-mesh techniques to describe complex moving interfaces with the
understanding that the accuracy near the interface will be limited by the mesh resolution where the
interface happens to be located at a given instant [13, 19–22].
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When a flow problem involves both fluid–solid and fluid–fluid interfaces, it is possible to define
a mixed method, so that each type of interface is handled with the technique most appropriate
for that type of interface. In the mixed interface-tracking/interface-capturing technique (MITICT),
fluid–solid interfaces are accurately tracked with a moving mesh method (interface-tracking tech-
nique), and fluid–fluid interfaces, if they are too complex and unsteady to track, are treated with
a fixed-mesh (interface-capturing) technique. Different MITICT type formulations can be found in
the literature [16, 22–25].

Two numerical formulations are used for the present analysis, which considers the problem of a
sphere falling into a liquid-filled tube, where the upper part of the tube is occupied by air and the
lower part by a liquid (Figure 1). The sphere first falls through the air, then it impacts the liquid
surface, and then it falls through the liquid. At the same time, experiments were conducted to verify
the results obtained from the different numerical techniques.

The first, a 3D code that has been in continuous development for over a decade, implements the
techniques presented and tested in previous studies [2, 12, 16, 20, 26–33]. Both moving body-fitted
mesh options, as well as fixed-mesh options such as embedded surfaces [18, 33] and immersed
bodies [12], can and have been used.

The second, a monolithic fully coupled code, implements the techniques recently presented and
tested [22]. The fluid–solid interface motion is described with the moving Lagrangian interface tech-
nique (MLIT) [14] and the fluid–fluid interfaces with the edge-tracked interface locator technique
(ETILT) [23, 34]. Both techniques are fixed-mesh FEMs. In this context, the equation of motion
for a rigid particle is recovered by using a high-viscosity value in the solid region. Although it is
a monolithic fully coupled 3D Navier–Stokes code, an axisymmetric model is used because of the
low Reynolds number present in the experiments. We note that the physical tests do not exhibit 3D
effects. In addition, the axisymmetric assumption reduces the computational time.

Numerical predictions and experiments of settling spheres have also been reported in other works
(e.g., [14, 35]) using other materials. Nevertheless, the interface evolution is not reported. In partic-
ular, an exhaustive analysis of wall distance effects, boundary conditions, time-step size, terminal
settling velocity, and mesh resolution needed near the fluid–solid interface has been presented in
[14]. Other contributions related to this subject are the simulations of multiple spheres falling in a
liquid-filled tube [36–39] and the experimental study of the hydrodynamics of spherical projectiles
impacting on a free surface using high-speed imaging techniques [40].

The main objective of the present work is to report the results of experiments and their numerical
simulation by using the codes previously referred to. In spite of the inherent experimental limitations
of the physical model, the observation of the phenomena and the measurements help to evaluate and
to validate the numerical predictions. Additionally, an effort is made to compare computational
solutions using different formulations.

Figure 1. (a–d) Problem description and experimental setup.
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The remainder of the paper is organized as follows: Section 2 describes the experimental setup,
as well as an error analysis of the results obtained. Section 3 describes the numerical procedures
employed. This is followed in Section 4 by an error analysis for the numerical procedures that
is intended to identify the grid and time-step requirements. Section 5 compares the experimental
and numerical results obtained. Finally, some conclusions are drawn in Section 6, together with a
suggestion for further investigations.

2. EXPERIMENTAL SETUP

An experimental campaign was conducted in order to validate numerical results. Figure 1 shows the
experimental setup considered. A sphere falls down a tube that is partially filled with a liquid. Three
different regimes may be identified in the gravity-driven sphere motion: first, a basically friction-
free particle acceleration, then a deceleration under viscous and free surface effects after particle
impingement on the liquid surface, and finally a viscous, steady-state deceleration until contact with
the bottom wall occurs or, for those instances when the density of the sphere is smaller than the
density of the liquid, a gradual flotation towards the final semi-submerged position. The motion of
the sphere was recorded with a high-velocity video camera that had a frame rate of 30 frames per
second. These frames were then post-processed in order to obtain the motion of the sphere and the
free surface in time.

The tube has a diameter of D D 80 mm and a length of H D 250 mm, and it is filled with liquid
up to hf D 150 mm. The particular cases considered here are spheres of silicone and glass of equal
diameter d D 15 mm. The silicone and glass densities are 962 and 3594 kg/m3, respectively. The
chosen liquids are oil and water with densities of 911 and 1000 kg/m3, respectively. With these two
fluids different settling, velocities are expected. Three cases are studied in detail here: silicone–oil,
glass–oil, and silicone–water. In order to achieve repeatability, we carried out several tests, on the
order of ten, for each case.

Figure 2 illustrates the processing of the frames obtained for the silicone sphere falling into oil
case. The same methodology was used for the glass–oil and silicone–water cases. The experimental

Figure 2. Silicone sphere falling into oil: post-processing of experimental frames.
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measurements of the time evolution of the position (taken as the distance from its initial position)
of the sphere are plotted in Figure 3 for the cases of silicone–oil, glass–oil, and silicone–water. In
Figure 3, the different regimes expected can easily be identified. Nevertheless, the data captured
during the gravity-driven friction-free particle acceleration are not enough to confirm the gravity
law, that is, the error in time does not enable us to determine such a regime. In spite of this, the
viscous motion is well captured. For the silicone–water case, the number of frames per second
was not enough to track the freesurface. Moreover, the silicone–water experiments exhibit incipient
3D effects, for example, small horizontal displacements when the sphere reaches its lower vertical
position. To illustrate such aspect, we plotted a set of shots for the silicone–water case in Figure 4.

Although there are clear limitations in the accuracy of the measurements, the experimental data
help in the validation of the numerical results.

Let us consider the errors induced by the present experimental setup. Given that the frame rate and
the release of the spheres could not be synchronized, the exact release time may have a maximum
error of order 0.043 s. As the sphere travels approximately 8 cm before touching the liquid, this
takes of the order of 0.127 s. The arrival time could therefore be in error by approximately ˙25%.
The initial position of the sphere also showed a variation of ˙5 mm, that is, ˙6.25% of the release
height. Given that the arrival times and velocities are proportional to the square root of the release
height, the errors in the quantities are approximately half of the error of the initial position, that is,
in the order of ˙3.1%.

The errors in the free surface height were estimated to be of the order of ˙5 mm. During the
viscous settling phase of the spheres inside the liquids, some experiments exhibited small air bub-
bles that attached themselves to the spheres upon entry. These air bubbles became clearly visible
after they separated from the sphere upon impact on the bottom of the tube. Having an air bubble

-0.05

0

0.05

0.1

0.15

0.2

0.25

0  0.5 1 1.5 2

P
os

iti
on

 (
m

)

P
os

iti
on

 (
m

)

P
os

iti
on

 (
m

)

Time (s)

Experimental

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5

Time (s)

Experimental

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.5 1 1.5 2

Time (s)

Experimental

a) b)

c)

Figure 3. Sphere falling into a liquid, history of the sphere position: (a) sphere of silicone into oil, (b) sphere
of glass into oil, and (c) sphere of silicone into water.
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t=0.0s t≈0.2s t≈0.23s t≈0.3s

t≈0.37s t≈0.5s t≈0.77s t≈1.17s

t≈1.5s t≈1.67s t≈1.83s

t≈2.07s t≈2.40s

t≈1.9s

Figure 4. Silicone sphere falling into water.

attached to the sphere will decrease the final velocity due to an apparent reduction of density. This
aspect was apparent in the glass–oil case as shown in Figure 5. The error in final velocity estimated
for some of the cases was of the order of˙10%.
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t≈0.2s t≈0.3s t≈0.34s

t≈0.44s t≈0.57s t≈0.87s

Figure 5. Bubble formation in the case of a glass sphere falling into oil.

In summary, even though this is a seemingly very simple set of experiments, the error margins
are of the order of 3–5%. It is therefore pointless to attempt to drive the numerical errors below
this range.

3. GOVERNING EQUATIONS

The Navier–Stokes equations of unsteady incompressible flows are written as

�vt C �vrvCrp Dr��C �g, (1)

r � vD 0, (2)

where �, v, p, �, �, and g are the density, velocity, pressure, dynamic viscosity, strain-rate tensor,
and gravity vector. This system of equations is complemented with a set of initial and boundary
conditions. To describe the interface motion, we have to consider an additional equation. The two
approaches considered in this work are described in Section 4.

4. DISCRETIZED FORMULATIONS

4.1. Body-fitted technique

This numerical formulation, which has been in development for over a decade, is based on the
following criteria:

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:1496–1521
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- spatial discretization using unstructured grids (in order to allow for arbitrary geometries and
adaptive refinement);

- spatial approximation of unknowns with simple finite elements (in order to have a simple
input/output and code structure);

- temporal approximation using implicit integration of viscous terms and pressure (the interesting
scales are the ones associated with advection);

- temporal approximation using explicit integration of advective terms;
- low-storage, iterative solvers for the resulting systems of equations (in order to solve large 3D

problems); and
- steady results that are independent from the time step chosen (in order to have confidence in

convergence studies).

4.1.1. Temporal discretization. For the applications considered here, the important physical phe-
nomena propagate with the advective time scales. We will therefore assume that the advective terms
require an explicit time integration. Diffusive phenomena typically occur at a much faster rate and
can/should therefore be integrated implicitly. Given that the pressure establishes itself immediately
through the pressure-Poisson equation, an implicit integration of pressure is also required. The
hyperbolic character of the advection operator and the elliptic character of the pressure-Poisson
equation have led to a number of so-called projection schemes. The key idea is to predict first a
velocity field from the current flow variables without taking the divergence constraint into account.
In a second step, the divergence constraint is enforced by solving a pressure-Poisson equation. The
velocity increment can therefore be separated into an advective-diffusive and pressure increment:

vnC1 D vnC�va C�vp D v�C�vp . (3)

For an explicit (forward Euler) integration of the advective terms, with implicit integration of the
viscous terms, one complete time step is given by the following:

- Advective-diffusive prediction: vn! v�

h �
�t
� �r�r

i �
v� � vn

�
C vna � rvnCrpn Dr�rvnC �g I (4)

- Pressure correction: pn! pnC1

r � vnC1 D 0 I (5)

�
vnC1 � v�

�t
Cr.pnC1 � pn/D 0 I (6)

which results in

r �
1

�
r.pnC1 � pn/D

r � v�

�t
I (7)

- Velocity correction: v�! vnC1

vnC1 D v� �
�t

�
r.pnC1 � pn/ . (8)

At steady state, v� D vn D vnC1, and the residuals of the pressure correction vanish, imply-
ing that the result does not depend on the time step �t . � denotes the implicitness factor for the
viscous terms (� D 1: first order, fully implicit; � D 0.5: second order, Crank–Nicholson). One
can replace the one-step explicit advective-diffusive predictor by a multistage Runge–Kutta scheme
[31], allowing for higher accuracy in the advection-dominated regions and larger time steps with-
out a noticeable increment in CPU cost. Projection schemes of this kind (explicit advection with

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:1496–1521
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a variety of schemes, implicit diffusion, pressure-Poisson equation for either the pressure or pres-
sure increments) have been widely used in conjunction with spatial discretizations based on finite
differences [41–44], finite volumes [45], and finite elements [2, 17, 18, 26, 27, 31, 46–51].

One complete time step is then comprised of the following substeps:

- predict velocity (advective-diffusive predictor, Equation (4);
- extrapolate the pressure (imposition of boundary conditions);
- update the pressure (Equation (7));
- correct the velocity field (Equation (8));
- if running as volume of fluid (VOF) or level set (LS) (Section 4.1.3):

- extrapolate the velocity field and
- update the scalar interface indicator.

4.1.2. Spatial discretization. As stated before, we desire a spatial discretization with unstructured
grids in order to

- approximate arbitrary domains and
- perform adaptive refinement [73] in a straightforward manner, that is, without changes to the

solver.

Given that for tetrahedral grids solvers based on edge data structures incur a much lower indirect
addressing and CPU overhead than those based on element data structures [12], only these were
considered. The advection operator is stabilized using edge-based upwinding [17]. The velocities
required for the upwind operator are extrapolated using gradients computed at the nodes and then
limited using the van Albada limiter [12].

4.1.3. Volume of fluid extensions. The extension of a solver for the incompressible Navier–Stokes
equations to handle free surface flows via the VOF or LS techniques requires a series of extensions,
which are the subject of the present section.

For the VOF or LS formulations, the liquid–air interface is described by a scalar equation of
the form:

ˆt C va � rˆD 0 . (9)

For the classic VOF technique, ˆ represents the total density of the material in a cell/element
or control volume [52–56]. For pseudo-concentration techniques, ˆ represents the percentage of
liquid in a cell/element or control volume. For the LS approach, ˆ represents the signed dis-
tance to the interface [57, 58]. Combinations of these approaches were also proposed [59]. The
same scheme is used for the transport equation that describes the propagation of the VOF fraction,
pseudo-concentration, or distance to the free surface given by Equation (9).

Before going on, we remark that both the VOF and LS approaches are implemented in the code.
Experience indicates that both work well. For VOF, the profiles can be sharp fronts that propagate
through the domain. This places a higher demand on the quality of the advection schemes used to
integrate Equation (9). The divergence operator is stabilized using a fourth-order pressure damping
[12]. In particular, it is important to have a monotonicity preserving scheme for ˆ. The profiles
advected for LS are smoother and do not place such demands on advection schemes. On the other
hand, for LS, it is important to balance the cost and accuracy loss of reinitializations vis-à-vis prop-
agation. Given that the advection solvers used are all monotonicity preserving, and that the VOF
option is less CPU demanding than LS, only the VOF technique is considered in the following.

The pressure and velocities in the air region are extrapolated in a consistent way in order to obtain
proper values in the air region close to the free surface [20].

Experience indicates that the amount of liquid mass (as measured by the region where the VOF
indicator is larger than a cut-off value) does not remain constant for typical runs. The reasons for
this loss or gain of mass are manifold: loss of steepness in the interface region, inexact divergence
of the velocity field, boundary velocities, and so on. This lack of exact conservation of liquid mass
has been reported repeatedly in the literature [57–62]. The recourse taken here is the classic one:
add/remove mass in the interface region in order to obtain an exact conservation of mass [20].

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:1496–1521
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Given that the air region is not treated/updated, any CPU spent on it may be considered as wasted.
Most of the flow solver work is spent in loops over the edges (upwind solvers, limiters, gradients,
etc.). As the edges have to be grouped in order to avoid memory contention/allow vectorization
when forming right-hand sides [63, 64], this opens a natural way of avoiding unnecessary work:
form relatively small edge groups that still allow for efficient vectorization and deactivate groups
instead of individual edges [12]. In this way, the basic loops over edges do not require any changes.
The if test whether an edge group is active or deactive is placed outside the inner loops over edges,
leaving them unaffected. On scalar processors, edges groups as small as eight are used. Further-
more, if points and edges are grouped together in such a way that proximity in memory mirrors
spatial proximity, most of the edges in air will not incur any CPU penalty.

4.1.4. Treatment of moving bodies. Moving bodies may be treated in a variety of ways.
The first one considers a body-fitted mesh that is moved according to the body motion. This

requires a consistent update of geometrical quantities (mass, shape-functions, etc.) in order to sat-
isfy the discrete geometric conservation law [65] algorithms to move the mesh that minimizes the
number of distorted elements [3] and automatic remeshing during the run [63]. We consider this
approach to be the most accurate and have always used it as the starting point to compute the cases
shown in the succeeding paragraphs. This approach is used here.

The second approach considers a mesh that covers the whole domain. The (surfaces of the) bodies
are embedded in this mesh and move through it [12, 18, 33]. This requires the recalculation of all
edges cut by the embedded surfaces [18], a consistent update of boundary conditions, geometrical
quantities (mass, shape-functions, etc.), and the deactive region inside the bodies, as well as the
proper calculation of forces on the embedded surfaces.

The third approach also considers a mesh that covers the whole domain. However, in this case,
bodies are immersed in this mesh and move through it [12]. When one applies proper kinematic or
kinetic boundary conditions at the points covered by the immersed body, the fluid is updated as if a
hard surface was present. Note that unlike the previous two approaches, in this case, the flowfield is
also updated inside the moving bodies. This approach requires the recalculation of all points covered
by the immersed bodies and a consistent update of boundary conditions and forces transmitted to
the bodies.

4.2. Mixed interface-tracking/interface-capturing technique

The main features of this numerical approach are as follows:

- Monolithic fully coupled solution for the Navier–Stokes problem, system of Equations (1)
and (2) [66, 67].

- Mixing interface capturing and tracking techniques to describe interfaces: the free surface and
the rigid-body contour (see [22] and references therein).

- Fixed-mesh technique tested in structured and unstructured grids.
- Local mass conservation algorithms were developed.
- Sub-elemental integrations are applied to capture property discontinuities.
- Fully implicit time integration.

4.2.1. Basic elements of the solver. The Navier–Stokes equations are solved over the entire spatial
domain where we have one solid and two fluids. The interfaces between the different regions are
determined during the computation. The motion of those interfaces and assignment (i.e., distribu-
tion) of the material properties in different regions of the domain are coupled with the solution of
Equations (1) and (2). The Navier–Stokes equations are discretized with the FEM and the gener-
alized streamline operator technique [66, 67]. The stabilized nature of the technique allows the use
of equal-order interpolation functions for velocity and pressure. In the context of flow analysis with
moving interfaces, all the element-level matrices and vectors are computed by taking into account
the discontinuities in the material properties. The time integration is performed using a standard
backward Euler scheme.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:1496–1521
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4.2.2. Interface update. In the numerical model based on the MITICT [19,23], we handle the fluid–
solid interfaces with the MLIT [68,69] and the fluid–fluid interfaces with the ETILT [21,23,34]. The
MLIT was shown to be robust in preserving the interface geometry, with the numerical results also
showing independence from the element and time-step sizes [68, 69]. These features are important
in the accurate representation of the fluid–solid interface because, despite the large displacements
of the interface points, we need to preserve the interface geometry. The MLIT performs very well in
that respect. The ETILT, on the other hand, is capable of representing the fluid–fluid interfaces in a
robust fashion, even when those interfaces undergo large distortions. We mix the MLIT and ETILT
as follows:

(a) The MLIT has priority in the motion of the fluid–solid interface and the distribution of the
material properties. We assume a rigid-body motion for the solid. The volume occupied by
the rigid body and its shape do not change. The material properties are distributed in the
solid and fluid (including fluids 1 and 2) regions according to the boundaries defined by the
fluid–solid and fluid–fluid interfaces.

(b) The ETILT needs to recognize the fluid–solid interface described by the MLIT In the fluid,
the property distribution is governed by the ETILT, but the body is immersed in either fluid 1
or 2 or both. As the fluid–fluid interface is updated after moving the fluid–solid interface, it
is necessary to avoid overlap between the solid and new fluid distribution and, in addition, to
preserve the volume in chunks of fluids 1 and 2.

The main aspects of these techniques are briefly described below, together with some details on
how the MLIT and ETILT are coupled.

Fluid–solid interface
The fluid–solid interface is defined by a collection of points that serve as markers. The motion of
that material front is described by updating the markers positions according to a simple Lagrangian
scheme:

xtC�t D xt C vtC��t�t . (10)

where �t is the time step, � is the time integration parameter (usually set to 1.0), xt is the known
vector of markers positions at time t , xtC�t is the updated position at time tC�t , and vtC��t is the
velocity of the markers. To avoid loss of mass during the interface evolution, we combined a global
mass correction algorithm with the solution of Equation (10). Material properties are assigned at
integration-point level, depending on what side of the interface the integration point belongs to. To
capture the discontinuity in material properties, we subdivided the elements crossed by the interface
to have higher-resolution integration. The integration strategy adopted in this work consists in sub-
dividing the element parent domain by taking uniform length subintervals in each space direction
(in practice, three partitions in each direction are used). No regularization is needed in this field.
Details and numerical evaluations of the MLIT can be found elsewhere [68, 69].

Fluid–fluid interface
To identify the interface between the two fluids, we used a Heaviside function H . In the discrete
space, an indicator along the edges of the elements crossed by the interface can be used to define the
interface position. In the ETILT, ˆhe D H.ˆh.xf //, where ˆhe is the edge-based representation
of the interface, xf is the interface position, and ˆh is the nodal representation of ˆ. Any value of
´ within the interval [0,1] could be considered provided that all the steps involved in the ETILT be
consistently performed with such a value [21, 34]. Here, the choice ´ D 0.5 is adopted to mark the
interface. In this context,ˆ is computed by using a constrained least-squares projection [19,21,72]:

Z
‰h.ˆht �ˆ

he
t /C

nieX
kD1

�pen‰
h.xx/.ˆht .xk/� 0.5/D 0 (11)

where ‰h is the test function, nie is the number of element edges crossed by the interface, xx is the
coordinate of the interface location along the kth edge, and �pen is a penalty parameter. After this

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:1496–1521
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projection, the ˆh at time t C�t , that is, ˆhtC�t , is computed using a discrete formulation of the
advection equation (Equation (9)) on the basis of the streamline upwind/Petrov–Galerkin formula-
tion [70, 71]. ˆhe

tC�t is obtained from ˆhtC�t by using a combination of a least-squares projection
and corrections to enforce volume conservation for chunks of fluids 1 and 2. At each time step, a
property P is interpolated as follows:

P h DˆheP1C .1�ˆ
he
t /P2 . (12)

As in the MLIT, the elements crossed by the interface are integrated with higher-resolution inte-
gration to capture the discontinuity in material properties, and no regularization is needed in the P
field. Details and numerical evaluation of the ETILT can be found elsewhere [21, 34]. We note that
for the present study, ˆhe

tC�t must additionally identify the rigid zone, that is, the fluid–solid inter-
face. This means that the condition .ˆhtC�t�0.5/ needs to be strongly satisfied for points belonging
to that interface. To this end, the edges crossed by the Lagrangian fluid–solid interface are added to
the summation in Equation (11). Moreover, as the rigid-body motion has priority and the compu-
tation via the MLIT ensures the volume preservation in the solid, the ETILT corrections in ˆhe

tC�t
to enforce volume conservation are not used along the fluid–solid interface. This strategy handles
the overlap in the zone of action of the two methods when the rigid body is simultaneously in touch
with fluids 1 and 2.

5. ESTIMATION OF NUMERICAL ERRORS

In order to estimate the element size distribution in space required to obtain a sufficiently accurate
result, we carried out a whole series of mesh convergence studies. The cases considered followed
the two regimes expected to be critical for the flow: settling velocity regime and splashdown regime.
As the first of the flow clode employed is 3D, a 30ı section of the tube was computed. The geometry,
together with the boundary conditions, may be seen from Figure 6.

For the settling regime, an incoming velocity of v D 0.001 m/s was considered, whereas for the
splashdown regime, the velocity was set to v D 1.000 m/s. This yields Reynolds numbers of the
order of Re1 D 0.1952 and Re2 D 195.2, respectively. As the motion of the sphere is determined by
the resulting forces, the vertical force Fy was considered as the convergence criterion. In order to
ascertain the quality of the pure dynamic pressure and viscous forces, we imposed no gravity field on
the flow. Both isotropic and non-isotropic (so-called RANS) grids were considered. A zoom of the
region near the sphere in the plane ´D 0 showing the different types of grids is plotted in Figure 7.

30deg

0.08

0.25

0.125

D=0.015

Figure 6. Geometry and boundary conditions for error estimation (dimensions in m).
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a) b)

c)

Figure 7. Meshes adopted in the present work, for body-fitted technique: (a) isotropic and (b) non-isotropic
mesh in the vicinity of the sphere; for MITICT (c) zoom of the non-uniform regular fixed quadrilateral mesh.

The results for the isotropic and non-isotropic meshed with hiso D 0.375 � 10�3 and Re2 D 195.2
are shown in Figure 8. The countour lines are the same, and 60 contours were used. Any discrep-
ancy between the results is therefore of the order of 1–2%. Tables I and II summarize the results
obtained. Here, hiso denotes the (uniformly small) isotropic element size near the sphere; hmin, the
smallest edge length in the mesh; nlayr, the number of semi-structured layers of elements near
the boundary; and nelem, the total number of elements in the domain.

The equivalent drag coefficients obtained are cd1 D 154.0 and cd2 D 0.8326. For a free-standing
sphere, the experimental values may be approximated by the following formula:

cd D
24

Re

�
1C 0.15 Re0.687

�
. (13)

This yields cd1exp D 128.9 and cd2exp D 0.8138, respectively. These do not differ significantly
from the results obtained here, but one has to bear in mind that the boundaries of the tube, where
no-slip condition is also imposed, are rather close. Convergence studies conducted by the authors
showed that even quadrupling the tube diameter and doubling the tube length still had an effect on
the forces obtained.

One can see that for an accuracy comparable with that of the experimental observations, an
isotropic mesh with proper wake resolution and a minimum element size of hD 0.375�10�3 m close
to the sphere should be sufficient. The next question that arose was how to quantify the numerical
error in the buoyancy forces. After all, the final settling velocity will depend crucially on whether
buoyancy and gravity/mass balance out properly. In order to ascertain this error, we assumed that
the sphere had the same density as the liquid. The total resulting force acting on the sphere in a field
with gravity should then be the same as the force obtained without gravity. Here, after a frustrat-
ing series of tests, it was seen that it is crucially important to set the mass of the sphere to be that
obtained from the displaced fluid volume. Because of the finite resolution of the sphere surface with

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:1496–1521
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Figure 8. Results for isotropic and non-isotropic grids.

Table I. ReD 0.1952 (settling regime).

103 hiso 103 hmin nlayr nelem Fy Error (%)

0.750 0.7500 0 27,272 1.003 �2.90
0.375 0.3750 0 205,077 1.008 �2.42
0.187 0.1870 0 1,622,456 1.013 �1.94
0.375 0.0410 9 220,957 1.030 �0.29
0.750 0.0085 18 38,702 1.036 0.29
0.375 0.0066 18 245,507 1.033 0.00

Table II. ReD 195.2 (splashdown regime).

103 hiso 103 hmin nlayr nelem 103 Fy Error (%)

0.750 0.7500 0 27,272 5.161 �7.59
0.375 0.3750 0 205,077 5.212 �6.68
0.187 0.1870 0 1,622,456 5.353 �4.15
0.375 0.0410 9 220,957 5.451 �2.40
0.750 0.0085 18 38,702 5.576 �0.16
0.375 0.0066 18 245,507 5.585 0.00

triangles, this is not the same as the exact volume of the sphere. For the grids used here, the errors
have been compiled in Table III. The reduction in error in not uniform, as expected, because of the
surface representation used. Note that although the error in volume is small, in the settling regime,
the other forces are small too, so any error here can lead to very large errors in the final velocity.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:1496–1521
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Table III. Error in volume.

103 hiso 107 � Error (%)

0.750 1.464696 �0.54
0.375 1.469463 �0.21
0.187 1.470650 �0.13
0.000 1.472621 0.00

6. COMPARISON RUNS

After making sure that the numerical errors would be in the range of the experiments, a series of
runs was performed. As it was mentioned in Section 2, at least for spheres falling into oil, the
video images obtained showed no sign of 3D effects (e.g., sphere rotation), so this possibility was
discarded in the numerical simulations, and, consequently, an axisymmetric model is used in the
numerical analysis. To build such a model, we obtained the body-fitted computations in a 3D spatial
model (as it is shown in Figure 6) by using tetrahedral elements but mimic axisymmetric conditions
by accordingly imposing the boundary conditions. Hence, 3D effects cannot be reproduced in such
a model. The MITICT calculations are performed in a plane 2D axisymmetric model where four
noded isoparametric elements are used. The mesh size and time step used in the MITICT analysis
are fixed as h D 0.635 mm and �t D 5 � 10�4 s considering these values as characteristics values
obtained from the analysis reported in the previous section.

6.1. Silicone sphere falling into oil

The parameters for the first case were as follows:

- diameter of sphere: d D 0.015 m;
- density of sphere: �s D 962 kg/m3;
- diameter of tube: d D 0.080 m;
- length of tube: H D 0.25 m;
- density of liquid (oil): �s D 911 kg/m3;
- viscosity of liquid (oil): �l D 0.07 kg/m/s;
- fall distance for sphere: LD 0.08 m.

A few images obtained using body fitted have been compiled in Figure 9 where the pressure and
velocity modulus contours are plotted at times t D 0.1, 0.15, 0.2, 0.25, and 1.0 s. Figure 10 shows
the same pressure and velocity modulus contours computed by MITICT at the same instants (note
that the contours in the air phase are only present in Figure 10 as the body-fitted solution does not
solve the air phase whereas MITICT does). An overall good agreement between both formulations
can be observed. The comparison of the computed position history with the experimental measure-
ments is shown in Figure 11. The numerical predictions using different approaches and mesh sizes
are in good correlation between them and with the experiments. Particularly, the different regions
of the motion are clearly captured: gravity-driven motion, impingement with the free surface and
viscous-driven motion in oil.

Note that at first glance, the comparison of velocities in Figure 12 is very satisfactory. How-
ever, a zoom into the time interval 0.5 < T < 1.75 reveals that there is a systematic discrepancy of
approximately 10% with the experiment in this ‘creeping flow’ region. The terminal settling veloc-
ity for a free-standing sphere under the same conditions is vs D 0.0515 m/s, which corresponds to a
Reynolds number of Res D 10.1. The numerical results are clearly in this range. Figure 13 shows the
experimental data of the air–oil free surface evolution (average value taken from the experiments)
from the sphere impingement up to the rest of the surface together with the free surface height com-
puted using both techniques. The numerical solutions satisfactorily matches the time evolution of
the wave. The amplitude is particularly well captured by the body-fitted formulation, which could
be expected because of the mesh refinement in the free surface region to solve Equation (9).

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:1496–1521
DOI: 10.1002/fld



1510 M. CRUCHAGA, R. LÖHNER AND D. CELENTANO

a) b)

d) e)

c)

Figure 9. Silicone sphere falling into oil, body-fitted solutions: pressure (50 contours from 0 to 1340 Pa)
and velocity modulus (50 contours from 0 to 0.2 m/s) at times (a) 0.10, (b) 0.15, (c) 0.20, (d) 0.25, and

(e) 1.00 s.

6.2. Glass sphere falling into oil

The parameters for the second case were as follows:

- diameter of sphere: d D 0.015 m;
- density of sphere: �s D 3594 kg/m3;
- diameter of tube: d D 0.080 m;
- length of tube: H D 0.25 m;
- density of liquid (oil): �s D 911 kg/m3;
- viscosity of liquid (oil): �l D 0.07 kg/m/s;
- fall distance for sphere: LD 0.08 m.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:1496–1521
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a) b)

d) e)

c)

Figure 10. Silicone sphere falling into oil, MITICT solutions: pressure (50 contours from 0 to 1340 Pa) and
velocity modulus (50 contours from 0 to 0.2 m/s) at times (a) 0.10, (b) 0.15, (c) 0.20, (d) 0.25, and (e) 1.00 s.

A few images obtained using body fitted have been compiled in Figure 14 where pressure and
velocity modulus contours are plotted at times t D 0.1, 0.15, 0.2, 0.25, and 0.35 s. Figure 15 shows
the same pressure and velocity modulus contours computed by MITICT at the same instants.

Pressure and velocity modulus countours present similar trends to those reported in Figures 9 and
10. The comparison of the sphere motion with experiments is shown in Figure 16. In spite of the
experimental error in time, a good qualitative description of the position history is obtained. The
numerical responses are in good agreement between them. The predicted body velocity is presented
in Figure 17. The terminal settling velocity for a free-standing sphere under the same conditions is
vs D 0.8047 m/s, which corresponds to a Reynolds number of Res D 157. As before, the numerical
results are clearly in this range. The oscillations are due to the collapse of the air bubble above the

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:1496–1521
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Figure 11. Silicone sphere falling into oil: comparison of position history.
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Figure 12. Silicone sphere falling into oil: comparison of velocity history.
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Figure 13. Silicone sphere falling into oil: comparison of free surface history.

sphere. This collapse produces considerable pressures, which are reflected in the velocities. Once
this overpressure dissipates, the velocity returns to the expected smooth, viscous behavior. The free
surface motion cannot be described quantitatively from the experiments because of the error in time.
Nevertheless, its computed evolution is plotted in Figure 18.
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a) b)

d) e)

c)

Figure 14. Glass sphere falling into oil, body-fitted solutions: pressure (50 contours from 0 to 1340 Pa) and
velocity modulus (50 contours from 0 to 0.2 m/s) at times (a) 0.10, (b) 0.15, (c) 0.20, (d) 0.25, and (e) 0.35 s.

6.3. Silicone sphere falling into water

The parameters for this third case were as follows:

- diameter of sphere: d D 0.015 m;
- density of sphere: �s D 962 kg/m3;
- diameter of tube: d D 0.080 m;
- length of tube: H D 0.25 m;
- density of liquid (water): �s D 1000 kg/m3;
- viscosity of liquid (water): �l D 0.07 kg/m/s;
- fall distance for sphere: LD 0.08 m.

A few images obtained using body fitted have been compiled in Figure 19 where the pressure and
velocity modulus contours are plotted at times t D 0.10, 0.15, 0.20, 0.25, 0.50, 0.75, 1.00, 1.50, and
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a) b)

d) e)

c)

Figure 15. Glass sphere falling into oil, MITICT solutions: pressure (50 contours from 0 to 1340 Pa) and
velocity modulus (50 contours from 0 to 0.2 m/s) at times (a) 0.10, (b) 0.15, (c) 0.20, (d) 0.25, and (e) 0.35 s.

2.00 s. Figure 20 shows the same pressure and velocity modulus contours computed by MITICT at
the same instants.

As mentioned already, the experimental error in time do not allow a quantitative comparison with
them. The numerical responses are presented in Figures 21 and 22 for position and velocity histories
of the sphere, respectively. In this case, major quantitative differences are obtained for the numerical
responses. The numerical discrepancies can be attributed to the more complex flow pattern present
in this case, that is, the sphere moves initially downwards but around t D 1 s, it starts going up.
We believe that viscosity effects around the sphere walls may play a relevant role in this case. It is
seen that in this case, this localized phenomenon is not properly captured by the simulations where,
in particular, the MITICT solution exhibits the largest numerical–experimental difference denoting
also high diffusive effects (due to the high viscosity adopted in the numerical computation of this
case). The analysis of this boundary layer is a subject of future research.
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Figure 16. Glass sphere falling into oil: comparison of position history.
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Figure 17. Glass sphere falling into oil: comparison of velocity history.
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Figure 18. Glass sphere falling into oil: comparison of free surface history.

7. CONCLUSIONS AND OUTLOOK

The experimental and numerical analysis of spheres falling into viscous flows was considered. The
physical model was built using a set of spheres of silicone and glass falling into oil and water.
The rigid-body trajectory of the spheres and the free surface evolution were obtained from videos.
The experimental error was estimated, and a whole series of experimental runs was conducted to
obtain reliable measurements. Two different codes were used to obtain the numerical results. The
first uses a fractional step approach with adaptive meshes and time-step sizes, whereas the second
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a) b) c)

d) e) f)

g) h) i)

Figure 19. Silicone sphere falling into water, body-fitted solutions: pressure (50 contours from 0 to 1340 Pa)
and velocity modulus (50 contours from 0 to 0.2 m/s) at times (a) 0.10, (b) 0.15, (c) 0.20, (d) 0.25, (e) 0.50,

(f) 0.75, (g) 1.00, (h) 1.50, and (i) 2.00 s.
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a) b) c)

d) e) f)

g) h) i)

Figure 20. Silicone sphere falling into water, MITICT solutions: pressure (50 contours from 0 to 1340 Pa)
and velocity modulus (50 contours from 0 to 0.2 m/s) at times (a) 0.10, (b) 0.15, (c) 0.20, (d) 0.25, (e) 0.50,

(f) 0.75, (g) 1.00, (h) 1.50, and (i) 2.00 s.
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Figure 21. Silicone sphere falling into water: comparison of position history.
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Figure 22. Silicone sphere falling into water: comparison of velocity history.

uses a monolithic fully coupled fixed-mesh technique. A convergence study was carried out to ascer-
tain the numerical errors. The grids used were such that the error was of the same order of magnitude
as the error estimated for the experiments. Three cases were considered in detail: a silicone sphere
falling into oil, a glass sphere falling into oil, and a silicone sphere falling into water. The results
obtained exhibit a good comparison between both numerical techniques and with the experiments
particularly those related to low Reynolds number, that is, silicone–oil case. As expected, the body-
fitted technique, which matches the body shape at any time of the analyses, reasonably adjusts the
body motion for all cases. In spite of the poor representation of the boundary layer around the rigid
body, the MITICT results show a satisfactory numerical response. Mesh sizes refinement near the
rigid body when using such technique as well as the bubble effects and 3D behaviors need to be
explored in future works.
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