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Abstract. Multi-physics scientific codes, like those used in weather prediction and space-
craft simulation, often involve the coupling of many subdomain models. The resulting models
are generally expensive to run. These costs, along with the model’s complexity, make down-
stream tasks like model calibration and uncertainty quantification especially difficult. In this
work, we simplify structure in multi-physics models by learning an undirected graphical model
corresponding to the system state variables, where the edges in the learned graph represent con-
ditional dependence between variables. Depending on the application of interest, the resulting
graph may (1) reveal the probabilistic structure of the joint distribution; (2) identify the most
important coupling variables (those that must be shared between subdomain models), and those
which may be safely neglected; (3) identify candidate variables for first-pass verification tasks;
or (4) decouple parts of a model, while maintaining accuracy in the model predictions. We il-
lustrate these possibilities through two multi-physics numerical models, the Multiple Prediction
Across Scales-Atmosphere (MPAS-A) code base and a fire detection satellite model.

1 INTRODUCTION

Probabilistic graphical models (PGMs) are simple but powerful objects to organize and sim-
plify relationships among random variables. Fundamental to many fields such as statistical
physics, machine learning, and natural language processing, they have more recently been lever-
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aged in computational science and engineering applications. Notably, [1] laid a PGM founda-
tion to accelerate inference and prediction for large-scale digital twins. Along this trend, we
introduce PGMs to identify and exploit sparse structure in coupled, multidisciplinary systems.

Coupled computation regularly occurs in realistic engineering applications. An aerospace
system model may integrate structural designs, fluid mechanics, thermal processes, etc. Cli-
mate models couple land, sea, ice, soil, precipitation, and many other domains. Such coupling
may entail expensive feedback (iterative solutions), heavy communication overhead, or delicate
consistency of scenario parameters across domains [2]. Moreover, inputs, coupling variables,
and quantities of interest (QoIs) are often characterized as random variables (due to several
possible sources of uncertainty) leading to even higher computational expense if the coupling
needs to iteratively solve for many random inputs. Thus, a goal of great interest is to identify
and exploit simplified or decoupled model structure.

In this paper, we leverage theory and techniques from the field of PGMs to simplify model
structure, perform efficient code verification tasks, and learn possible decouplings. First we
associate random system state variables with nodes of the graph. Given data from either obser-
vations of the true physical system, or a high-fidelity model, we then show how to identify the
graph edges and their weights. A necessary coupling of the model corresponds to a strong edge
of the graph. If the resulting graph is sparse, we thus learn how to safely decouple these com-
plex systems, while still maintaining reliability in the model’s predictive performance. Even if
subdomain models cannot be decoupled, information about the probabilistic structure may help
users select the most effective variables for tasks like first-pass verification.

In many cases, inherent spatial- or time-dependence of a system naturally induces a PGM.
For example, consider a standard hidden Markov model of the daily average temperature in
Boulder, Colorado and the corresponding observations. Here, we assume the temperature
evolves as a Markov process and the measurement errors are independent. This readily im-
plies an undirected graph, in this case a tree, (see Ch. 15 in [3]), a model structure which is
especially beneficial for other tasks such as filtering, smoothing, and prediction. But in the case
of coupling between outputs or internal variables of a multi-physics model, there may be no
time or spatial element (nor any other obvious physical structure) which naturally leads to a
sparse graph. Instead, the graph must be either assumed by a domain expert or learned from
available data. This data could come from runs of a high-fidelity model or from the physical
system itself. Learning a sparse graph in the context of multi-physics computational models is
the goal of this paper.
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2 SOME THEORY

We consider a general nonlinear system to be given by the coupled set of M equations

F1(x1, . . . , xM ; z1) = 0

...

FM(x1, . . . , xM ; zM) = 0,

(1)

where x = {xi}Mi=1 are the state variables (which includes coupling and output/QoI variables)
and z = {zi}Mi=1 are random inputs. Given a distribution ρ0 for z, there exists a distribution for
the states that solve (1), whose density we denote by π.

An undirected graphical model (UGM) G = (V,E) consists of a set of vertices V and
undirected edges E. In a probabilistic UGM, each node corresponds to a random variable, and
the edges visually represent conditional dependencies between them. More specifically, the lack
of an edge between nodes i and j means that variablesXi andXj are conditionally independent,
as in

(i, j) /∈ E ⇐⇒ Xi ⊥⊥ Xj|XX , (2)

whereX may refer to all variables exceptXi andXj , a neighborhood ofXi orXj , or a separator
set between nodes i and j. These three conditioning sets correspond to the pairwise (P ), local
(L), and global (G) Markov properties, respectively. In general, (G) =⇒ (L) =⇒ (P ),
but if the joint distribution is positive everywhere, then the three Markov properties are in fact
equivalent, i.e., (P ) =⇒ (G). See [4, 3] for more details about undirected (and directed)
graphical models.

2.1 Linear Gaussian models

For a multivariate normal distribution, the graph is revealed by inspection of the inverse
covariance matrix, or precision. That is, for Gaussian UGMs with joint density π and covariance
Σπ, we have

(i, j) /∈ E ⇐⇒ (Σπ)−1ij = 0. (3)

This brings us to our first lemma, which connects graphical models to multi-physics systems
when the coupling variables are Gaussian and the model is linear.

Lemma 2.1 (Linear Gaussian models.). Let the model be affine, such that the equations in (1)
can be written in matrix form as

Ax−Bz − c = 0, (4)
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where A,B ∈ RM×M , A−1 exists, c ∈ RM×1, and z ∼ N (µρ0 ,Σρ0). Then

Σ−1π = AT (BΣρ0B
T )−1A.

Proof. For this system with invertible A, the outputs are a linear function of the inputs z:
x = A−1(Bz+c). In particular, if the inputs follow a Gaussian distribution ρ0 = N (µρ0 ,Σρ0),
the outputs are also Gaussian with the distribution

π = N (µπ,Σπ) = N (A−1(Bµρ0 + c),A−1BΣρ0B
TA−T ). (5)

Inverting the covariance above, the precision matrix is Σ−1π = AT (BΣρ0B
T )−1A.

One goal of our work is to use the sparsity of this matrix Σ−1π to accelerate downstream tasks,
such as decoupling, inference and prediction, and code coverage and verification tasks.

Example 2.1. Let M = 5, assume that Σρ0 = I , and suppose the model is given by

x1 = b11z1 + c1

x2 = −a21x1 + b22z2 + c2

x3 = b33z3 + c3

x4 = −a43x3 + b44z4 + c4

x5 = −a53x3 − a54x4 + b55z5 + c5

and thus A =


1

a21 1

1

a43 1

a53 a54 1

 .

Note B is a diagonal matrix (i.e., each random input only appears in one subdomain model)
and A is a (lower-triangular) block matrix, which together imply that the first two outputs, x1
and x2 can be decoupled from x3, x4, and x5. The precision matrix is Σ−1π = ATDA where
dii = b2ii. Of note, Σ−1π follows the same block structure as A.

The point is that if we did not know the model, but only had access to data of model output,
we could numerically compute Σ−1π to learn the model sparsity. The case study of Section 3.1
will do exactly that.

2.2 Nonlinear or non-Gaussian models

Coupled, nonlinear models often admit non-Gaussian randomness, but learning non-Gaussian
graphs is significantly more difficult than Gaussian graphs. In general, we cannot rely on the
precision matrix anymore (although for certain non-Gaussian distributions, the precision ma-
trix may still be a good indicator of the graph; see, for example, [5]). Instead, we compute
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another measure of conditional independence: For a continuous distribution with differentiable
log-density π(x), where π is positive over Rd, then, as shown in [6],

(i, j) /∈ E ⇐⇒ ∂i∂j log π(x) = 0 ∀x ∈ Rd. (6)

In words, there is no edge between Xi and Xj if the ij-th mixed partial derivative of the log
density is 0 everywhere. Following [7], the conditional independence score is defined as the
matrix Ω, where Ωij ≡ Eπ

[
(∂i∂j log π(x))2

]
. This leads to our second lemma, which connects

UGMs to multi-physics systems for non-Gaussian distributions.

Lemma 2.2 (Non-Gaussian distributions, following [7]). Let the complete model be nonlinear,
or the inputs z be non-Gaussian, such that x follows a non-Gaussian distribution. In this case,
the sparsity of the multi-physics model is given by the zeroes of Ω.

Proof. A sufficient condition to eliminate edge (i, j) from the graph is that Ωij = 0.

Note that for Gaussian π, the result reduces to that in equation (3): π(x) ∝ exp
(
−1

2
xTΣ−1π x

)
so that ∂i∂j log ρ(x) = −(Σ−1π )ij .

Example 2.2 (Rosenbrock function). Let M = 3, µ, a, b, c be constants, and let the model be
defined as:

x1 = ε1, ε1 ∼ N (µ, 1/(2a))

x2 = ε2, ε2 ∼ N (x21, 1/(2b))

x3 = ε3, ε3 ∼ N (x22, 1/(2c)).

In this case, π(x) ∝ e−f(x) [8], where the Rosenbrock function f(x) : R3 7→ R is

f(x) = a(x1 − µ)2 + b(x2 − x1)2 + c(x3 − x2)2.

Taking mixed partial derivatives of log π yields Ω13 = Ω31 = 0, i.e., X1 ⊥⊥ X3|X2.

3 NUMERICAL EXAMPLES

The numerical examples include a large-scale community climate model and a fire-detection
satellite model. The climate model outputs satisfy an approximate Gaussian distribution, and
the sparsity of the empirical precision matrix accelerates code verification and testing, but does
not reveal obvious decoupling. On the other hand, the satellite outputs demonstrate some non-
Gaussian behavior, and the conditional independence score Ω implies strong decoupling across
subdomains.
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3.1 MPAS-A: A case study in code verification

For our first numerical example we consider outputs from a global atmospheric model, the
Model Across Prediction Scales-Atmosphere (MPAS-A) [9]. While MPAS-A focuses solely on
atmospheric processes of the climate, there is still substantial variety in the physics represented,
ranging from evaporation to radiation mechanisms. We collect outputs from model runs with
a quasi-uniform mesh that has 120 km resolution, 55 vertical levels and a total of of 40,962
cells. In its standard form, the MPAS-A model is deterministic. However, substantial stochastic
variability exists due to the chaotic behavior of atmospheric systems.

We generate an ensemble of 430 model runs to represent the variability by applying ma-
chine level perturbations to the initial air temperature field and then running the model for 216
minutes (approximately 3.5 hours) of simulated time. Finally, each variable output is spatially
averaged to a single value, following [10]. Including the default model outputs and excluding
any constant or integer values results in 43 output variables. Due to an extremely high corre-
lation between two of the remaining variables (> 0.9999), we omit one of them resulting in a
final variable count of 42.

Due to the central limit theorem, the spatial averaging across all cells yields approximately
Gaussian outputs. We verify this in three ways including (1) visual inspection of the marginal
and 2D variable distributions across the ensemble of outputs; (2) inspection of QQ-Plots for
all variables; and (3) application of the Shapiro-Wilk test for normality [11] with a cutoff of
p = 0.05. All approaches indicated that, after spatial averaging, outputs of MPAS-A were
approximately normal, such that the theory of section 2.1, specifically (3) suffices.

After standardizing the data, we calculate the covariance and precision matrices using Graph-
ical Lasso, or GLASSO, an algorithm which uses an l1 regularization penalty to enforce sparsity
in the computed precision matrix [12]. The strength of the l1 regularization term is scaled by
the regularization parameter α, which is selected using k-fold cross validation, with k = 5. The
cross validation results in α = 0.047. The computed covariance and precision matrices can
be seen in Figs. 1a and 1b, respectively. While approximately 38% of entries in the precision
matrix are non-zero, most of these are small (as seen in Fig. 1c). This indicates that many of
the edges in fact reflect weak conditional dependence; depending on the application, it may be
beneficial to threshold the precision matrix even more aggressively.
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(a) (b) (c)

Figure 1: MPAS-A results: (a) Covariance matrix, computed using cross-validated GLASSO; (b)
The corresponding precision matrix. Approximately 38% of entries are non-zero; (c) Distribu-
tion of non-zero entries in the computed precision matrix for MPAS-A. Most non-zero entries
are quite small, indicating weak conditional dependence.

From the precision matrix, Fig. 2 represents the probabilistic graph visually (with nodes
and edges). The resulting graph is fully connected. Therefore we conclude this model is not
suitable for decoupling. However, we can still take advantage of the structure of the graph.
For instance, when refactoring code in atmospheric models (that is, making mathematically
equivalent modifications), it is difficult to verify that errors have not been introduced. This is
because even mathematically equivalent changes can result in substantially different outputs due
to chaotic variability [13]. While more sophisticated methods of model verification certainly
exist [10], a common initial check calculates the average or maximum difference between an
accepted version of the model and a modified one, likely just for a few variables.

But if only a few variables are to be initially inspected, it would be helpful to know which
ones are most likely to reflect unwanted changes in the code (i.e., the “canary” variables). Given
the UGM above, we quantify highly interconnected variables with an approach known as Cur-
rent Flow Betweenness Centrality (CFBC) [14]. Broadly, Betweenness Centrality calculates
how likely a given node is to lie on the shortest path between two random nodes in the graph.
CFBC interprets the edge weight as the capacity of current to flow between nodes, a fitting anal-
ogy for information flowing between conditionally dependent nodes in the graph. In Fig. 3a,
we see the large variance in this CFBC measure, indicating some variables may be much better
candidates for model verification tasks than others. Finally, Table 3b shows the top 3 variables,
by betweenness score, along with their scientific descriptions.
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Figure 2: MPAS-A undirected probabilistic graphical model. Edge widths indicate magnitude
of precision matrix entries. While this graph is fully connected, indicating that decoupling of
model equations is unsuitable, substantial apparent structure enables more efficient approaches
to tasks like code verification.

(a)

Variable Betweenness Score Description

skintemp 0.122212 Ground or water surface temperature
rainc 0.136409 Accumulated convective precipitation

precipw 0.186419 Precipitable water

(b)

Figure 3: (a) Distribution of CFBC betweenness scores for MPAS-A variables; (b) Top MPAS-
A variables by betweenness score. These “canary” variables may be good candidates for initial
verification of model outputs due to their centrality in the PGM.
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3.2 Fire-detection satellite model: A case study of decoupling

The second application is a multidisciplinary model of an orbiting satellite which can detect
and monitor forest fires in near real-time. The model comprises three major subdomains (orbit
analysis, attitude control, and power analysis), contains both feedforward and feedback cou-
plings, and outputs three QoIs (total torque, total power, and area of solar array). Subdomains
refer to particular groupings of the coupled equations. Fig. 4 summarizes the fully coupled
version, as described in [15]. That work used likelihood-based parameter estimation for the
coupling variables without needing a fully coupled system analysis, while [16] developed adap-
tive surrogates to lesson the computational burden of a fixed-point iteration solver.

Orbit analysis Power analysis

Attitude control

Altitude (H) Other sources of power (Pother)

Orbit period (∆torbit)
Satellite velocity (v)

Maximum slewing angle (θslew)

Power: Attitude
control system

(PACS)
Moment of inertia:

Maximum and minimum
(Imax, Imin)

Altitude (H)
Average solar flux (Fs)
Reflectance factor (q)
Drag coefficient (Cd)

Total torque (τtot)

Total power (Ptot)
Area of solar array (Asa)

Orbit period (∆torbit)
Eclipse period (∆teclipse)

Figure 4: Schematic of the fully coupled fire detection satellite model. Red, magenta, and blue
colors correspond to outputs of orbit, attitude, and power subdomains, respectively. The QoIs
are bolded in the lower right corner.

To find the UGM of the satellite model, we assume data from a fully coupled model. We
do not assume normality of the joint distribution a priori; i.e., the conditional independence
score Ω is computed with the algorithm SING (Sparsity Identification in Non-Gaussian distribu-
tions) [17, 7], available through the software TRANSPORTMAPS [18].

Fig. 5 shows the adjacency matrix of the graph corresponding to the computed Ω for different
values of β, a parameter that determines the richness of the transport map representation of the
underlying distribution π. In particular, setting β = 1 restricts the map to be linear, which is
appropriate when the data is multivariate normal. With β > 1, the transport map can describe
non-Gaussian behavior. (More details about transport map representations and thresholding of
the SING algorithm can be found in [7].) In this example, both β = 1 and 2 return disconnected
components corresponding to the subdomains of the model, although the β = 1 graph is missing
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an edge. Further testing showed convergence to the β = 2 graph, and we consider this result as
the final UGM. Importantly, this graph implies that the model can be fully decoupled, as seen
in Fig. 6.
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Figure 5: Learned adjacency matrices of the satellite model for (a) β = 1 (equivalent to assum-
ing normality of the joint distribution; and (b) β = 2 (allowing for non-Gaussianity).

x1

x2

x3

x4

x7

x8

x9

x10x5

x6

Orbit analysis Power analysis

Attitude control

Figure 6: Fully decoupled satellite model, from computed conditional independence score Ω.

The identified model in Fig. 6 is consistent with the previous work in [19], which identi-
fied a fully decoupled model by comparing QoI distributions from candidate decoupled models
with those of the fully coupled model. The procedure in [19] requires (1) distributions of the
QoIs from the fully coupled model and all candidate models; and (2) computing the Kullback-
Leibler divergence (or another metric on probability distributions) for all candidate decoupled
models compared to the fully coupled model. In contrast, our approach only requires model
outputs from the high-fidelity model and then computes the matrix of conditional independence
scores Ω, which reveals the disconnected model components. In particular, QoIs can be reliably
computed as outputs of a single subdomain, without even needing to run the others.
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4 CONCLUSION

The complexity and computational cost of modern multi-physics codes is well known. It is
apparent in the size of their code-bases and the possibly thousands of core-hours required to run
them. In this work, we have shown that methods from the field of probabilistic graphical models
can identify substantial structure in multi-physics models solely from output data. This structure
can in turn identify important diagnostic variables for use in verification and correctness tasks
and even possible model decouplings, thereby greatly reducing the complexity of these models.

Future work will continue to address the real-world utility of UGMs for computational mod-
els, for example, through realistic analysis of model errors (i.e., what is the root source of an
error when code output changes?). Another intriguing avenue is to learn an UGM from experi-
ments, rather than high-fidelity models, to design sparse multi-physics models from scratch.
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