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Abstract. Metamaterials with engineered microstructures exhibit exceptional properties such 

as negative Poisson’s ratio, energy absorption, and bandgap. These materials can prevent 

propagation of elastic waves in certain range of frequency called bandgap. The microstructure 

of these materials affects the overall response of the structures. Microstructures may undergo 

significant rotations and their rotary inertia needs to be considered along with deformation. As 

the metamaterials in the study involve cracks, we develop a finite deformation micropolar 

peridynamics (PD) theory. The proposed PD micropolar theory is validated by comparing the 

results obtained from the boundary element solutions of plate with a hole. The response of 

metamaterials with periodic arrangement of holes and cracks is studied under static and 

dynamic loads and the results are compared with the nonpolar PD theory. 

1 INTRODUCTION 

Metamaterials are materials with artificially engineered microstructures which can achieve 

exceptional material properties, e.g., auxetic behavior, high energy absorption capacity etc. 

Researchers developed various novel unit cell configurations to absorb elastic energy and create 

frequency bandgap. Golub et al. [1] observed that cracks act as reflectors of elastic waves.  Sajal 

and Roy [2] showed the application of metamaterials with cracks for wave isolation. The 

microstructure of these materials affects the overall response of the structures. Microstructures 

may undergo significant rotations. Therefore, it is important to consider their rotary inertia 

along with deformation. Micropolar continuum theory is developed to address this issue that 

considers microrotation independent of displacement degree of freedom (Pietraszkiewicz and 

Eremeyev [3]). It considers the effect of microstructure by defining micro-rotation to each 

material point. However, micropolar theory is not suitable to analyze discontinuities as it 

involves partial differential governing equations. Peridynamics (PD), on the other hand, is a 

nonlocal continuum theory. It has integro-differential governing equations which can handle 

discontinuities in material bodies (Silling [4]). 

We propose a finite deformation micropolar theory in non-ordinary state-based PD (NOSB-
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PD) framework by postulating equations of motion. The classical micropolar material model is 

implemented in NOSB-PD setup using the constitutive correspondence technique developed by 

Silling et al. [5]. The zero-energy modes correction is applied considering the bond associated 

deformation gradient tensor over the intersected horizon of two material points as formulated 

by Chen and Spencer [6]. The solution of the governing equations for quasi-static case is 

obtained using the Newton-Raphson method. The Newmark-beta method is employed together 

with the Newton-Raphson method for dynamics case. The merit of the proposed NOSB-PD 

micropolar theory is demonstrated by showing the difference in response of metamaterials 

obtained from micropolar and nonpolar formulations in NOSB-PD. 

2 FINITE DEFORMATION MICROPOLAR PD THEORY  

Silling [4] proposed the PD theory which is suitable for problems dealing with cracks or 

discontinuities. In PD, body domain is discretized into material points with grid spacing (∆x), 

each representing an infinitesimally small volume. The material points interact over finite 

distance.  For instance, as shown in Figure 1, the material point with position vector x in the 

undeformed configuration (𝐵) interacts with a neighboring point with position vector 𝐱′ through 

bond vector 𝛏 = 𝐱′ − 𝐱. The interaction happens within a finite neighborhood 𝐻𝐱 called horizon 

of x. 𝐻𝐱 is defined as 𝐻𝐱 = {𝐱′: |𝛏| < 𝛿}. Here δ is the radius of horizon and is considered 

3.015∆x for all the simulations. Once the force is applied, the material points x and 𝐱′ displace 

by u and 𝐮′ to deformed positions vectors  𝐲 = 𝐱 + 𝐮 and 𝐲′ = 𝐱′ + 𝐮′ in the current 

configuration (𝐵𝑐).  

NOSB-PD is the most general form of PD theory. In NOSB-PD, direction of the force 

density vector state (T) is not restricted and can be along any direction whereas in other versions 

of PD, the direction of T is restricted to be along the direction of deformed bond.    

 

Figure 1. NOSB-PD: Reference and current configuration. 

Governing equation of motion in NOSB-PD is given by 

𝜌�̈�(𝐱, 𝑡) = ∫ (𝐓[𝐱]⟨𝛏⟩ − 𝐓[𝐱′]⟨−𝛏⟩)𝑑𝑉𝐱′𝐻𝐱
+ 𝐛(𝐱, 𝑡), (1) 
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where 𝜌 is the mass density and 𝐛 is the body force density vector. The notation 𝐓[𝐱]⟨𝛏⟩ 
implies that force density vector (𝐓) is evaluated at material point x and acting on the bond 𝛏. 

𝐓 is expressed as 

𝐓 = 𝑤(|𝛏|)𝐏(𝐅)𝐊−1𝛏 (2) 

Here 𝑤 is the influence function and P is the first Piola-Kirchhoff stress tensor. 𝑤(|𝛏|) =
𝛿2

‖𝛏‖2
 is considered in the present study. The nonlocal deformation gradient tensor (𝐅) is defined 

as [5] 

𝐅 = ∫ (𝐲′ − 𝐲) ⊗ 𝐠𝑑𝑉𝐱′𝐻𝐱
  (3) 

where 𝐠 = 𝑤𝐊−1𝛏 and shape tensor, 𝐊 = ∫ 𝑤(|𝛏|)(𝛏 ⊗ 𝛏)𝑑𝑉𝐱′𝐻𝐱
. A correction is applied to 

F for elimination of zero energy deformation modes by modifying the domain 𝐻𝐱 to 𝐻𝐱 ∩ 𝐻𝐱′ 

and expressed as [5,6] 

𝐅𝛏 = ∫ (𝐲′′ − 𝐲) ⊗ 𝐠𝛏𝛇𝑑𝑉𝐱′′
𝐻𝐱∩𝐻𝐱′

  (4) 

Here 𝐠𝛏𝛇 = 𝑤(|𝛏|)𝐊𝛏
−1𝛇 with 𝛇 = 𝐱′′ − 𝐱. 𝐊𝛏 is defined as 𝐊𝛏 = ∫ 𝑤(|𝛏|)(𝛇 ⊗ 𝛇)𝑑𝑉𝐱′′

𝐻𝐱∩𝐻𝐱′
. 

After the zero-energy correction,𝐓 = 𝑤(|𝛏|)𝐏(𝐅𝛏)𝐊−1𝛏. 

In micropolar continuum, equations of motion are given as [3] 

∇ ⋅ 𝐏 + 𝐛 = 𝜌�̈� (5) 

∇ ⋅ 𝐌 − 𝑎𝑥(𝐅𝐏T − 𝐏𝐅T) + 𝐥 = �̇� (6) 

where M, 𝒍, and H represent the couple stress tensor, body moment density vector, and spin 

angular momentum density pseudovector, respectively. H is given by: 𝐇 = 𝐈𝑝𝒘, where 𝐈𝑝 

denotes the mass moment of inertia density tensor which varies with the internal microstructure 

and 𝐰 is the angular velocity. The notation ( )ax   in Eq. (6) signifies the axial vector of a skew-

symmetric tensor. 

Equations of motion for finite deformation micropolar PD theory are postulated as (Sajal 

and Roy [7]) 

𝜌�̈� = ∫ (𝐓 − 𝐓′)𝑑V′
𝐻𝐱

+ 𝐛  (7) 

�̇� = ∫ (𝐦 − 𝐦′)𝑑𝑉′
𝐻𝐱

− ∫ (𝐲 − 𝐲′) × 𝐓𝑑𝑉′
𝐻𝐱

+ 𝐥  (8) 

Using the constitutive correspondence technique proposed by Silling et al. [5], following 

relation is obtained between PD and classical constitutive equations:  

𝐓 = 𝐏𝐠 (9) 

𝐦 = 𝐌𝐠 (10) 

Extending the constitutive model for a homogeneous, isotropic, centro-symmetric, and 

hyperelastic micropolar material proposed by Nowacki [8], and using nonlocal versions of the 

strain (𝐄) and wryness (�̅�) measures, we obtain: 
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�̅� =
𝜕𝛹

𝜕𝐄
= (�̅� + �̅�)𝐄 + (�̅� − �̅�)𝐄𝑇 + �̅�𝑡𝑟(𝐄)𝐈  (11) 

�̅� =
𝜕𝛹

𝜕�̅�
= (�̅� + �̅�)�̅� + (�̅� − �̅�)�̅�𝑇 + �̅�𝑡𝑟(�̅�)𝐈  (12) 

where �̅� and �̅� are the Lamé parameters. �̅�, �̅�, �̅�, and �̅� are micropolar material parameters 

which can be correlated with measurable properties, e.g., shear modulus (G), coupling number 

(N), Poisson’s ratio (v), polar ratio (𝛷), and the characteristics length for torsion (𝑙𝑡) and 

bending (𝑙𝑏) as   

�̅� = 𝐺, �̅� =
𝐺𝑁2

1−𝑁2
, �̅� =

2𝑣𝐺

1−2𝑣
, �̅� = 𝐺𝑙𝑡

2, �̅� = 𝐺(4𝑙𝑏
2 − 𝑙𝑡

2), �̅� =
2𝐺𝑙𝑡

2(1−𝛷)

𝛷
  (13) 

Here, N, a unitless quantity, signifies the extent of interaction between the displacement and 

rotation fields. Characteristic lengths (𝑙𝑏 and 𝑙𝑡), quantify the effect of microstructure on 

macroscopic behavior. Using the relation 𝐏 = 𝐐�̅� and 𝐌 = 𝐐�̅�, the constitutive equations 

(Eqs. (11) and (12)) can be used in the correspondence relations mentioned in Eqs. (9) and (10). 

Strain and wryness measures are given as (Sajal and Roy [7]) 

𝐄 = 𝐐𝑇𝐅 − 𝐈 (14) 

�̅� = −
1

2
𝐐𝑇(𝛆: (∇𝐐𝐐𝑇)) 

(15) 

where 𝐐 is the rotation tensor.  

 

3 NUMERICAL IMPLEMENTATION 

3.1 Quasi-static formulation  

Assuming the inertial terms to be zero and substituting the force density and couple stress 

density vector states, the governing equations (Eqs. (7) and (8)) can be written for a material 

point as follows: 

∫ (𝐐�̅�𝐠 − 𝐐′�̅�′𝐠′)𝑑𝑉′
𝐻𝐱

+ 𝐛 = 𝟎  (16) 

∫ (𝐐�̅�𝐠 − 𝐐′�̅�′𝐠′)𝑑𝑉′
𝐻𝐱

− ∫ (𝐲 − 𝐲′) × (𝐐�̅�𝐠)𝑑𝑉′
𝐻𝐱

+ 𝐥 = 𝟎  (17) 

Eqs. (16) and (17) can be discretized and written for all the material points in the body. The 

solution for the set of nonlinear algebraic equation is determined using the Newton-Raphson 

method by checking the convergence at every load step. Assume that convergence is established 

in load step 𝑘. At this step, the deformed position vector and rotation tensor fields are 

represented by 𝐲𝑘 and 𝐐𝑘, respectively. The residual vectors can be given as 

𝐑𝑓(𝐲𝑘, 𝐐𝑘) = ∫ (𝐐�̅�𝐠 − 𝐐′�̅�′𝐠′)𝑘𝑑𝑉′
𝐻𝐱

+ 𝐛𝑘 = 𝟎  (18) 
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𝐑𝑚(𝐲𝑘, 𝐐𝑘) = ∫ (𝐐�̅�𝐠 − 𝐐′�̅�′𝐠′)𝑘𝑑𝑉′
𝐻𝐱

− ∫ (𝐲 − 𝐲′)𝑘 × (𝐐�̅�𝐠)𝑘𝑑𝑉′
𝐻𝐱

+ 𝐥𝑘 = 𝟎  (19) 

 We assume a trial solution of 𝐲 and 𝐐 for (k + 1)-th load step as 𝐲𝑘+1,𝑡𝑟𝑖𝑎𝑙 = 𝐲𝑘 + 𝐯𝑘 and 

𝐐𝑘+1,𝑡𝑟𝑖𝑎𝑙 = 𝑒𝑥𝑝( Δ𝚯𝑘,𝑡𝑟𝑖𝑎𝑙)𝐐𝑘, respectively. Here 𝐯𝑘 and Δ𝚯𝑘,𝑡𝑟𝑖𝑎𝑙 are trial incremental 

displacement vector and rotation skew-symmetric tensor, respectively. As 𝐲𝑘+1,𝑡𝑟𝑖𝑎𝑙 and 

𝐐𝑘+1,𝑡𝑟𝑖𝑎𝑙 do not satisfy Eqs. (18) and (19) in general, we need to apply corrections to the trial 

solutions as 

𝐲𝑘+1 = 𝐲𝑘+1,𝑡𝑟𝑖𝑎𝑙 + Δ𝐯 (20) 

𝐐𝑘+1 = 𝑒𝑥𝑝( Δ𝚯)𝐐𝑘+1,𝑡𝑟𝑖𝑎𝑙 (21) 

Here Δ𝐯 and Δ𝚯 represent the incremental displacement and small rotation tensor, 

respectively. Δ𝐯 and Δ𝚯 are determined from the condition that 𝐑𝑓(𝐲𝑘+1, 𝐐𝑘+1) = 𝟎 and 

𝐑𝑚(𝐲𝑘+1, 𝐐𝑘+1) = 𝟎. Expanding them using the Taylor series about the trial solution and 

neglecting the higher order terms leads to 

𝐑𝑓(𝐲𝑘+1, 𝐐𝑘+1) = 𝐑𝑓(𝐲𝑘+1,𝑡𝑟𝑖𝑎𝑙, 𝐐𝑘+1,𝑡𝑟𝑖𝑎𝑙) + Δ𝐑𝑓 = 𝟎 (22) 

𝐑𝑚(𝐲𝑘+1, 𝐐𝑘+1) = 𝐑𝑚(𝒚𝑘+1,𝑡𝑟𝑖𝑎𝑙, 𝐐𝑘+1,𝑡𝑟𝑖𝑎𝑙) + Δ𝐑𝑚 = 𝟎 (23) 

Here change of 𝑹𝒇and 𝑹𝑚 can be calculated as 

Δ𝐑𝑓 = ∫ (Δ𝚯𝐐�̅�𝐠 + 𝐐
∂ �̅�

∂𝐄
𝐐𝑇(∇(Δ𝐯) − Δ𝚯𝐅)𝐠 − Δ𝚯′𝐐′�̅�′𝐠′ − 𝐐′ ∂�̅�′

∂𝐄
𝐐′𝑇(∇(Δ𝐯′) −

𝐻𝐱

Δ𝚯′𝐅′)𝐠′)𝑘𝑑𝑉′ + Δ𝐛𝑘  

(24) 

Δ𝐑𝑚 = ∫ [Δ𝚯𝐐�̅�𝐠 + 𝐐
∂�̅�

∂�̅�
𝐐𝑇∇(Δ𝛉)𝐠 − Δ𝚯′𝐐′�̅�′𝐠′ +

𝐻𝐱

 𝐐′ ∂�̅�′

∂�̅�′ 𝐐′𝑇
∇(Δ𝛉′)𝐠′]

𝑘

𝑑𝑉′   + ∫ [(Δ𝐯 − Δ𝐯′) × 𝐐�̅�𝐠 + (𝐲 − 𝐲′) × (Δ𝚯𝐐�̅�𝐠 +
𝐻𝐱

𝐐
∂ �̅�

∂𝐄
𝐐𝑇(∇(Δ𝐯) − Δ𝚯𝐅)𝐠)]

𝑘

𝑑𝑉′ + Δ𝐥𝑘  

(25) 

3.2 Dynamic formulation  

The numerical solution of the governing micropolar PD equations is determined by 

employing the Newmark-beta method. Convergence at every time step is ensured by employing 

the Newton-Raphson method. Newmark-beta time integration parameters 𝛾 and 𝛽 are chosen 

as 1/2 and 1/6, respectively, which corresponds to the linear acceleration method. The linearized 

governing equations are obtained as follows: 

(
6𝜌

Δ𝑡2 𝐈 +
𝜕𝐑𝑓

𝜕𝐲
|(𝐲𝑖+Δ𝐲𝑖

𝑛,

𝑒𝑥𝑝(Δ𝚯𝑖
𝑛)𝐐𝑖)

) 𝛿Δ𝐲𝑖 +
𝜕𝐑𝑓

𝜕𝜃
|(𝐲𝑖+Δ𝐲𝑖

𝑛,

𝑒𝑥𝑝(Δ𝚯𝑖
𝑛)𝐐𝑖)

𝛿Δ𝛉𝑖 = Δ𝐛𝑖 − (Δ𝐑𝑓)𝑖
𝑛 +

6𝜌

Δ𝑡
�̇�𝑖 +

3𝜌�̈�𝑖 −
6𝜌

Δ𝑡2 Δ𝐲𝑖
𝑛  

(26) 
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(
6𝐼𝑝

Δ𝑡2 +
𝜕𝐑𝑚

𝜕𝛉
|(𝐲𝑖+Δ𝐲𝑖

𝑛,

𝑒𝑥𝑝(Δ𝚯𝑖
𝑛)𝐐𝑖)

) 𝛿Δ𝛉𝑖 +
𝜕𝑅𝑚

𝜕𝐲
|(𝐲𝑖+Δ𝐲𝑖

𝑛,

𝑒𝑥𝑝(Δ𝚯𝑖
𝑛)𝐐𝑖)

⋅ 𝛿Δ𝐲𝑖 = Δ𝐥𝑖 − (Δ𝑅𝑚)𝑖
𝑛 +

6𝐼𝑝

Δ𝑡
�̇�𝑖 +

3𝐼𝑝�̈�𝑖 −
6𝐼𝑝

Δ𝑡2 Δ𝛉𝑖
𝑛  

(27) 

where 𝐑𝑓 = ∫ (𝐓 − 𝐓′)𝑑V′
𝐻𝐱

 and 𝐑𝑚 = ∫ (𝐦 − 𝐦′)𝑑𝑉′
𝐻𝐱

− ∫ (𝐲 − 𝐲′) × 𝐓𝑑𝑉′
𝐻𝐱

+ 𝐰 ×

(𝐈𝑝𝐰). I represent the identity matrix and Δ𝑡 is the time step. Eqs. (26) and (27) can be written 

for all the material points and solved for 𝛿Δ𝐲𝑖 and 𝛿Δ𝛉𝑖 for all particles after applying the 

boundary conditions. Once 𝛿Δ𝐲𝑖 and 𝛿Δ𝛉𝑖 are calculated, 1n

i

+y  and 1n

i

+Q  can be determined 

as follows: 

Δ𝐲𝑖
𝑛+1 = Δ𝐲𝑖

𝑛 + 𝛿Δ𝐲𝑖 (28) 

Δ𝐐𝑖
𝑛+1 = exp( 𝛿Δ𝚯𝑖) exp( Δ𝚯𝑖

𝑛) (29) 

The deformation and rotation of a point can be calculated as 

𝐲𝑖
𝑛+1 = 𝐲𝑖 + Δ𝐲𝑖

𝑛+1 (30) 

𝐐𝑖
𝑛+1 = exp( Δ𝐐𝑖

𝑛+1)𝐐𝑖 (31) 

4 NUMERICAL SIMULATIONS  

4.1 Plate with hole  

Validation of the proposed micropolar PD theory is carried out by analyzing a plate having 

a circular hole of radius (r) of 0.5 mm at the center under tensile loading and comparing the 

stress concentration with solution derived from boundary element method (BEM). The BEM 

solution is based on Eringen's micropolar elasticity theory given by Huang and Liang [9]. Due 

to symmetry in geometry and loading condition, only one quadrant of the plate discretized into 

639677 material points is analyzed as shown in Figure 2a. The material parameters are 

borrowed from Huang and Liang [9]. The specimen is subjected to uniform tensile stress (𝜎0) 

of 1000 N/m2. Stress concentration along the x-axis is determined by computing the ratio of 

stress along the x-axis (𝜎𝑥𝑥) to the applied stress 𝜎0. Variation of the stress concentration along 

the y-axis, as depicted in Figure 2b, shows close agreement between the micropolar PD and 

BEM solution. This demonstrates the effectiveness of the proposed micropolar PD model.  
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(a) 

 

(b) 

 

Figure 2. One quadrant of the plate with a circular hole at center: (a) geometry with boundary conditions, (b) 

stress concentration along the y-axis. 

4.2 Periodic cellular metamaterial 

Two periodic cellular metamaterials with 10×10 circular holes of diameter 8.67 mm and 

made up of styrene-butadiene rubber (SBR) having E = 7780.6 kPa and ν = 0.4516 are considered 

in this section. A displacement controlled compressive load in vertical direction is applied on 

the top edge keeping the bottom edge fixed. Geometrical perturbation is provided to the holes 

along mode 1 deformation pattern to induce instability [2]. Plane strain condition is assumed in 

both nonpolar PD and micropolar PD. Neo-Hookean constitutive model is used for nonpolar 

NOSB-PD formulation to capture moderately large deformation. 

(a)  

 

 (b) 

 

Figure 3. Reference configurations: (a) Configuration 1, (b) Configuration 2. 

First, the effect of the micropolar material parameters on nominal stress vs. nominal strain 

response are examined through Configuration 1 as shown in Figure 3a. The specimen is 101 

mm in height and width with holes positioned at distance of 9.97 mm center-to-center, along 

both horizontal and vertical directions. Center of the nearest hole from the edges of the 

specimen is at 5.64 mm. Each hole is perturbed by 1.44% of its original hole radius. The 

specimen is discretized uniformly into 67921 material points. Five distinct cases with different 

micropolar constants, mentioned in Table 1, are considered. For the two-dimensional analysis, 
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𝛷 = 1 and 𝑙𝑡 = √2𝑙𝑏. It can be noted from the variation of nominal stress with nominal strain 

shown in Figure 4 that the increase or decrease in �̅� and �̅� values directly correspond to increase 

or decrease in the critical load at which buckling occurs, respectively. From the nominal stress 

vs. strain curves of Cases 1 to 3 in which �̅� is same and �̅� is varied, it can be observed that 

increasing the �̅� value decreases the critical load by small amount. Similarly, from the nominal 

stress vs. strain curves of Cases 3 to 5 in which �̅� is same and �̅� is varied, it can be observed 

that the critical load increase significantly with increase in the �̅� value. The change in �̅� value 

considerably influences the critical load in comparison to the �̅�  value. The �̅� and �̅� values can 

be determined by calibrating the response with the experimental results. 

Table 1. Micropolar constants for different cases  

Case/Micropolar constants �̅� �̅� 

Case 1 G/2 G/(14×106) 

Case 2 G/32 G/(14×106) 

Case 3 G/8 G/(14×106) 

Case 4 G/8 G/(21×106) 

Case 5 G/8 G/(7×106) 

 

Figure 4. Variation of nominal stress with nominal strain in Configuration 1 with different micropolar 

parameters. 

In the subsequent simulation, �̅� = G/8 and �̅� = G/(14×106) are considered for SBR material 

for further investigations. The deformation response is further analyzed with the specified 

micropolar constants for both metamaterials, i.e., Configuration 1 and Configuration 2. In 

Configuration 2 of height 98.5 mm and width 104.3 mm, circular holes perturbed by 1.33% of 

original hole radius are positioned at spacing of 10.97 mm and 9.47 mm center-to-center along 

horizontal and vertical directions, respectively. Center of first hole from both top and left side 

are kept at 6.64 mm and 5.53 mm from top and bottom edge distances, respectively, shown in 

Figure 3b. The specimen is discretized uniformly into 85682 material points.  
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Nominal stress vs. nominal strain curves obtained using micropolar PD and nonpolar PD 

models are depicted in Figure 5. The significant difference between micropolar PD and 

nonpolar PD result illustrates the effect of micropolarity on the initiation of local instability. 

The displacement and rotation contours of Configuration 1 are presented in Figs. 6a, 6b, and 

6c. It can be observed that holes transform into mutually orthogonal ovals under critical loading. 

Rotation of the particles is considerably higher near the completely transformed oval near the 

central region of the specimen than the loading and support edges as shown in Figure 6c. In 

Configuration 2, holes transform into inclined oval shaped holes with alternate orientations in 

row as shown in Figs. 6d, 6e, and 6f. This pattern transformation results in clockwise and 

anticlockwise rotations in the alternate layers of holes which is shown in the rotation contour 

furnished in Figure 6f. The presence of large rotation near transformed holes demonstrates the 

need for finite deformation micropolar PD theory. 

(a) 

 

(b) 

 

Figure 5. Comparison of nominal stress vs. nominal strain variation between micropolar PD with nonpolar PD 

solution: (a) Configuration 1, (b) Configuration 2.  

(a)

 

(b)

 

(c)

 
(d)

 

(e)

 

(f)

 

Figure 6. Displacement contour (m) and rotation contour (radian) plots: Configuration 1 at strain 0.05 (a) 

vertical displacement, (b) horizontal displacement, (c) rotation; Configuration 2 at strain 0.15 (d) vertical 

displacement, (e) horizontal displacement, (f) rotation. 
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4.2 Dynamic simulation  

This section presents wave propagation through metamaterials with periodic arrangement of 

cracks and holes and assesses the effect of micropolarity assuming plane strain condition. All 

the specimens are made of SBR material of density 980 kg/m3. The mass moment of inertia 

density of each PD particles is considered 12.25×10-3 kg/m. The left edge of the specimen is 

considered fixed and a compressive force of 200 N is applied on the right edge.  

Configuration 1 comprises of 25 cracks of 6 mm length and placed at spacing of 6 mm along 

vertical and horizontal directions. The cracks are placed such that adjacent cracks are 

orthogonal to each other and the distance of top and right edges of the specimen from the center 

of nearest cracks is 5.61 mm as shown in Figure 7a. The specimen is discretized uniformly into 

43755 PD particles. Configuration 2 comprises of 5×5 elliptical holes of major and minor axes 

length of 5 mm and 3 mm, respectively. The elliptical holes are placed such that the major axis 

of adjacent elliptical holes is orthogonal to each other as shown in Figure 7b. The specimen is 

discretized uniformly into 32488 PD particles. Configuration 3 comprises of 5×5 circular holes 

of diameter 5 mm as shown in Figure 7c. The specimen is discretized into 31724 PD particles. 

In Configurations 2 and 3, holes are placed at a spacing of 6 mm maintaining a distance of 5.61 

mm between the top and right edges from the center of nearest holes.  

(a) 

 

(b) 

 

(c) 

 

Figure 7. Metamaterial specimen: (a) Configuration 1, (b) Configuration 2, (c) Configuration 3. 

Figure 8 presents the time history of horizontal displacement at point O obtained using 

micropolar PD and nonpolar PD. The difference in response obtained from micropolar PD and 

nonpolar PD demonstrates the importance of incorporation of micropolar theory in PD 

formulation. 

Figure 9 furnishes the rotation contour plots of Configuration 1 at 2 ms, 4 ms, and 5 ms. 

From the rotation contours, it can be observed that the solid regions enclosed by the cracks 

experience considerable rotation. The rotation contour plots of Configuration 2 and 

Configuration 3 are shown in Figs. 9d to 9f and Figs. 9g to 9i, respectively, at 1 ms, 2 ms, and 

3 ms. The regions enclosed by the holes undergo a significant rotation. As large localized 

rotation occurs in the regions surrounded by the cracks and holes, and classical theory may 

underestimate the amount of rotation, micropolar PD model is used.  
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(a)

 

(b)

 

(c)

 

Figure 8. Horizontal displacement time history at point O: (a) Configuration 1, (b) Configuration 2, (c) 

Configuration 3. 

(a) 

 

(b) 

 

(c) 

 
(d) 

 

(e) 

 

(f) 

 
(g) 

 

(h) 

 

(i) 

 
Figure 9. Rotation contour (radian): Configuration 1 at (a) 2 ms, (b) 4 ms, (c) 5 ms; Configuration 2 at (d) 1 ms, 

(e) 2 ms, (f) 3 ms; Configuration 3 at (g) 1 ms, (h) 2 ms, (i) 3 ms. 

5 CONCLUSIONS 

We present a micropolar PD theory for large deformation, incorporating an additional 

governing equation of motion. First, the PD model is validated by showing close agreement in 

stress concentration variation with BEM solution. Next, periodic cellular structures consisting 

of holes are examined and the influence of micropolar parameters on the response is 

investigated. It is observed that the micropolar parameters �̅� and �̅� directly influence the slope 
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of normal stress vs. strain curve and the critical load at which buckling occurs. Finally, the wave 

propagation through periodic metamaterial with cracks and holes is examined. A significant 

amount of rotation is observed near the area surrounded by the cracks and holes during the wave 

propagation which demonstrates the applicability of micropolar theory. 
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