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Summary. A major concern in traditional industrial monitoring is the strong environmental
impact, mainly related to inefficiency of classic paradigms. In fact, in many sectors, monitor-
ing systems typically rely on the presence of human operators responsible for the detection of
errors or faults. However, this activity is heavily influenced by many factors like subjectivity
or physical conditions (e.g., fatigue, lighting), making this strategy ineffective in terms of costs
(both environmental and company-wide) and results. For instance, when the process involves
the control of production lots, if the operator identifies any anomalies the whole batch might be
discarded. Sustainability and performance can be achieved by the automation of the monitoring
process. In this regard, we propose an innovative method based on a deep neural network that
can discriminate between correct and faulty items in a production batch. Our model allows to
significantly reduce disposal costs, since it analyzes each item rather than considering the whole
batch, thus preventing the waste of potentially usable resources. Furthermore, the methodology
enables the optimization of the monitoring quality and lightens the responsibilities of the human
operator, who only reviews the model outputs and generates relevant statistics for the company.
We provide a thorough description of the proposed model in the context of the monitoring of
transparent tubes within the production process of a company dealing with plastic consumables.
Preliminary experiments we have performed on a real dataset confirm the effectiveness of the
proposed method.

∗ Corresponding author
† These authors contributed equally to this work.

1 INTRODUCTION

The impact of human activity on environment over the past decades is undeniable [1, 2]:
industrialization is responsible for the deterioration of the environmental conditions due to a
significant increase of the gas emissions, water pollution and usage of toxic materials [3–5]. In
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particular, classic industrial paradigms have a strong impact on the amount of waste of resources
and energy consumption. For instance, industrial process monitoring very often requires the
presence of human operators, whose activity is influenced by several factors like subjectivity,
physical conditions (e.g., stress and/or fatigue), lighting and others. In the case of the control of a
production lot, when the operator detects a fault, the entire lot might be discarded independently
of the actual amount of defective items. This strategy is not effective and has a strong impact on
the environment (the disposal costs are not negligible). Instead, modern monitoring processes
should aim at improving the quality of processes in order to optimize performance, reduce costs
and preserve a sustainable environment, which has been defined as “meeting the needs of the
present without compromising the ability of future generations to meet their own needs.” [6].
There have been several attempts in which mechanisms to increase sustainability in the control
process have been introduced [7–9]. In this respect, the Industry 4.0 paradigm [10] represents an
opportunity to change the way of thinking industrial processes [11–14] through the exploitation
of Artificial Intelligence (AI) [15]. In fact, AI enables to collect a large amount of data and use
advanced techniques in order to increase sustainability, efficiency, flexibility and robustness as
well as reduce costs and waste of materials. In [16] the authors employ the YOLOv4 model [17]
to the disposable gas lighter manufacturing process. They prove that the approach is sustainable
in terms of accuracy and processing time and applicable to a real manufacturing process. In [18]
a deep learning-based computer vision approach is proposed, which tackles the issue of checking
the wear state of products. In particular, the authors provide evidence of performance and
reduced emission of CO2 (i.e., sustainability).

To increase the sustainability and efficiency of process monitoring, we propose an automated
model able to detect faulty items. Specifically, we focus on the monitoring of transparent tubes
within the production process of a company coping with plastic consumables. We used a deep
Convolutional Neural Network (CNN) for the ability to identify the presence or the absence of
an anticoagulant inside the tubes. In particular, we employed the ConvNet3 4 model [19, 20]
with the addition of pooling layers [21] in the convolutional part of the model. As stated by the
authors: “In all cases, pooling helps to make the representation become approximately invariant
to small translations of the input. Invariance to translation means that if we translate the input
by a small amount, the values of most of the pooled outputs do not change.” [21]. The addition
of pooling allows to reduce the consumption of resources like time, memory or energy while
preserving excellent performance, thus enhancing sustainability. The results obtained on a pre-
liminary dataset demonstrate the validity of the approach, with a perfect capability of detecting
faulty tests. Moreover, the proposed model is computationally more efficient than the original
ConvNet3 4 model. This is a feature that turns out to be of critical importance in real-world
scenarios, where minimizing the computational load has considerable effects on sustainability,
environmental concerns, disposal costs, performance and scalability. In particular, the anal-
ysis of consumed resources (i.e., memory, CPU, processing time) reveals how the lightweight
version of the ConvNet3 4 model introduced in this work represents the best solution to guar-
antee sustainability and efficiency both during a post-evaluation phase and in a real acquisition
scenario.

In the next sections we present the methodology we used (Section 2) and the obtained out-
comes (Section 3). Our conclusions are reported in Section 4.
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2 MATERIALS AND METHODS

As we pointed out in Section 1, the aim of this work is to automate the monitoring of trans-
parent tubes, aiming at enhancing sustainability and efficiency of the whole process. Specifically,
we used the ConvNet3 4 model [19, 20] with the addition of pooling layers in the convolutional
part of the network (i.e., there is one pooling layer after each convolutional layer). We refer to it
as the “ConvNet3 4+pool” model. For a detailed description of the original ConvNet3 4 model,
the reader is referred to [20]. Concerning the pooling operation, it is generally applied to each
convolutional layer aiming to reduce the spatial size of the convoluted features and extract the
most relevant one: given an input image I of size m1 ×m2 ×mc (where m1 denotes the height
of the image, m2 indicates the width of the image and mc represents the number of channels of
the image), the output of a generic convolutional layer l (with l > 2) is provided in Eq. 1:

Fl = Conv(Fl−1,K) l = 2, ..., Nconv layers (1)

where K is a kernel of size size n1×n2×nc, Fl−1 denotes the output of previous convolutional
layer (F1 = I), Nconv layers represents the number of convolutional layers and Conv() indicates
the convolution operation (see [20], page 6). The pooling operation is applied to the convolutional
layer Fl as indicated in Eq. 2:

Pl = ϕp(Fl) l = 1, ..., Nconv layers (2)

where ϕp() represents the pooling function (in this work we use the MaxPooling function)

and Pl is the output of pooling layer. The size of Pl is
(m1+2×p−n1)

s × (m2+2×p−n2)
s ×mc, with s

indicating the stride (see [20], Table 1) and p denoting the padding, which is used to add extra
pixels around the boundary in order to increase the size of the output of the pooling layer.

The ConvNet3 4+pool model has to categorize tubes according to the presence or absence
of an anticoagulant inside them. The model receives as inputs images of size 400 × 400 pixels
like those shown in [19], Figure 1. The original dataset contained 402 images, equally split into
the two classes (i.e., present and absent). However, because of the limited size, we created a
larger dataset through data augmentation technique [22, 23]. The usage of a high number of
input data enables to consistently reduce the overfitting issue [22]. The set of transformations
we used are described in Table 1. We employed only those transformations leading to realistic
images. Overall, the dataset used to train the ConvNet3 4+pool model contains 5531 images.
The training set is made of 4433 images (around 80% of the dataset), while the test set is
constituted by 1098 images (around 20% of the dataset).

In order to reduce the risk of discovering a good model only due to lucky initialization,
we repeated the training of the ConvNet3 4+pool model 10 times, each one using a different
network initialization. The parameter settings are shown in Table 2 and are derived from [20].
Concerning the size of the pooling layers, we set it to 3.

3 RESULTS

This section contains a detailed description of the outcomes we achieved. We adopted the
Mann-Whitney U test for statistical analyses.

In order to assess whether our model is suitable for the given problem and avoid overfitting
on the input images, we employ the widely used k-fold cross-validation technique [25–27], with

3



Meriam Zribi, Paolo Pagliuca and Francesca Pitolli

Table 1: Set of transformations used to widen the size of the input data. Regarding the Ran-
domRotation transformation [24], we slightly modified the original rotation in order to ensure
that the amount of rotation corresponds to the value indicated in the parameter angle. With
respect to the RandomAdjustSharpness transformation [24], the parameter sharpness factor
determines how much the sharpness of the image is increased (values higher than 1) or reduced
(values lower than 1). The case sharpness factor = 1 has not been considered, since it corre-
sponds to cloning the input image. The parameter prob has been set to 1 in order to guarantee
the generation of a different image. The parameter size refers to CenterCrop transformation [24]
and is expressed in terms of [Height,Width] (i.e., the output is an image of size Width×Height
pixels), while the parameters padding and fill concern the Pad transformation [24] and are used
respectively to restore the size of the image to 400 × 400 pixels and specify their color. The
parameter fill has been set to 0 in order to avoid the introduction of meaningless data that
might alter the model’s prediction. For further details, see [24].

Transformation Parameters

RandomRotation angle ∈ [1◦, 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8◦, 9◦, 10◦]

RandomAdjustSharpness sharpness factor ∈ [0, 0.5, 1.5, 2], prob = 1.0

CenterCrop + Pad
size ∈ [(390, 390), (380, 380), (360, 360)]

pad ∈ [5, 10, 20], fill = 0

Table 2: Training parameters. We kept the same settings as in [20]. With respect to the pooling
layers, the size has been set to 3.

Parameter Value

# of replications 10

# of epochs 50

batch size 64

learning rate 10−4

weight decay 10−2

pooling size 3
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k = 5. We trained both the ConvNet3 4 and the ConvNet3 4+pool models on the dataset
obtained by applying the transformations described in Table 1 and we obtained a perfect 100%
accuracy in either cases (data not shown). However, we observed remarkable differences in terms
of sustainability and environmental costs. If we analyze the resources used by the two models, it
is evident that the ConvNet3 4+pool is more sustainable (see Table 3): it requires a significant
less amount of time for training, which corresponds to a noticeable efficiency in terms of energy
consumption (i.e., CPU, memory). Furthermore, the size of the model is of almost three orders
of magnitude smaller than that of the ConvNet3 4 model. The latter has potential applications
in real scenarios: using a lightweight model is fundamental when dealing with limited hardware
resources.

Table 3: Required resources: (a) time necessary to train the model in hours and (b) size of the
model in megabytes (MB). Best data are denoted in bold (lower values correspond to better
efficiency).

Model Time Size

ConvNet3 4 6 931.5

ConvNet3 4+pool 1.1 1.1

Table 4: Set of transformations used to create the test set: the parameters used represent tiny
variations of those reported in Table 1.

Transformation Parameters

RandomRotation angle ∈ [0.5◦, 1.5◦, 2.5◦, 3.5◦, 4.5◦]

RandomAdjustSharpness sharpness factor ∈ [2.5, 3], prob = 1.0

CenterCrop + Pad
size = (320, 320)
pad = 40, fill = 0

Aiming to investigate the energy consumption of the different models, we carried out a post-
evaluation phase by using a test set built by means of the transformations shown in Table 4.
This set contains 400 images equally split into the two categories (i.e., “present” and “absent”).
We measured the memory and CPU usage during the evaluation of the ConvNet3 4 and Con-
vNet3 4+pool models, as well as the processing time. Data are illustrated in Fig. 1. As it can
be seen, the latter model uses around 3 times less memory than the former throughout the post-
evaluation phase (Fig. 1, a). Furthermore, the processing time of the ConvNet3 4+pool model
is approximately 10 times lower than that of the ConvNet3 4 model (Fig. 1, c). Concerning
the CPU usage, both models display similar average consumption (49.986% versus 49.919%, see
Fig. 1, b and Table 5). Overall, these outcomes clearly demonstrate that the ConvNet3 4+pool
model enables to consistently reduce the amount of computational required resources, hence
enhancing a higher sustainability.

The outcomes presented so far are limited to the analysis of the ConvNet3 4 model, which
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Figure 1: Resources used by the ConvNet3 4 (top) and the ConvNet3 4+pool (bottom) models.
We collected data by measuring the consumption of resources during the entire post-evaluation
phase. Specifically, we computed the amount of memory (a), CPU (b) and processing time
(c) required by the models to classify the 400 images in the test set. Measures have been
calculated at each time step, which corresponds to the time required by the model to perform
the classification of an input image.

proved successful in similar settings [19, 20], and its lightweight version (ConvNet3 4+pool)
introduced in this work. Nonetheless, one might argue that using simpler networks, consisting
of a smaller number of layers or characterized by fewer parameters, could be more beneficial for
sustainability, since the amount of memory and CPU might be considerably reduced. To this
end, we compared the two aforementioned models with other models we built from scratch:

• ConvNet1 2: it has one convolutional layer and two fully-connected layers;

• ConvNet1 2+pool: it corresponds to the version of ConvNet1 2 model with the addition
of a pooling layer of size 3;

• ConvNet2 3: it consists of two convolutional layer and three fully-connected layers;

• ConvNet2 3+pool: it represents the version of ConvNet2 3 model with the addition of
pooling layers of size 3 in the convolutional part of the model.

The aim of this analysis is to demonstrate that the ConvNet3 4 and ConvNet3 4+pool mod-
els are better in terms of accuracy without any significant impact on the amount of consumed
resources. The obtained results indicate similar performance in terms of sustainability (i.e.,
CPU and memory usage) among all the models exploiting pooling layers (see Table 5), while
the ConvNet3 4 model displays a slightly higher memory and CPU consumption than the Con-
vNet1 2 and ConvNet2 3 models (see Table 5). It was interesting to notice that among the
models with pooling operations, the one that turned out to be the most resource-intensive was
actually the simplest, characterized by fewer layers. Therefore, it’s not necessarily the case that
a simpler model is more sustainable, even though this was observed, for example, among the
models without pooling operations. In addition, we collected data about accuracy of all the
presented models (see Fig. 2). As it can be observed, the ConvNet3 4 and ConvNet3 4+pool
are the only ones achieving a 100% of accuracy (see also Fig. 3) on the images in the test set (see
Table 5). It is worth noting that the addition pooling generates lower performance in terms of
accuracy (see Table 5 and Fig. 2). The result is in line with the considerations reported in [20].
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Table 5: Comparison of the different models during the test phase. We measured the memory
(column Memory) and CPU (column CPU ) consumption. Moreover, we computed the accuracy
of the models on the images belonging to both validation set (column Val Acc) and test set
(column Test Acc). The former data have been achieved by averaging 10 replications of the
training process (data in squared brackets indicate the standard deviation), while the latter
refer to the best model found during training. Bold values identify the best results.

Model Memory (%) CPU (%) Val Acc (%) Test Acc (%)

ConvNet1 2 2.063 [0.033] 49.979 [2.17] 94.936 [14.712] 98.5

ConvNet1 2+pool 1.06 [0.0] 49.982 [8.397] 85.073 [22.805] 95.25

ConvNet2 3 2.128 [0.006] 49.972 [2.346] 100.0 [0.0] 97.25

ConvNet2 3+pool 0.92 [0.0] 49.912 [10.647] 100.0 [0.0] 94.75

ConvNet3 4 2.77 [0.0] 49.986 [1.543] 100.0 [0.0] 100.0

ConvNet3 4+pool 0.92 [0.0] 49.919 [10.585] 100.0 [0.0] 100.0
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Figure 2: Number of images in the test set correctly and wrongly classified by the models
without pooling (top) and with pooling (bottom). The ConvNet3 4 and ConvNet3 4+pool
models obtain an accuracy of 100% (see also Fig. 3), while the other models do not manage to
correctly categorize all the images.
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Figure 3: Confusion matrix indicating the capability of the ConvNet3 4 and ConvNet3 4+pool
models of categorizing the 400 images in the test set. Data in the diagonal mean correct
classifications, while data outside the diagonal indicate wrong classifications. As it can be
seen, both models succeed in correctly classifying all the images.

Finally, we tested the models in a real acquisition scenario. Specifically, to simulate the
industrial monitoring application to which the system will be applied, we utilized a prototype
setup consisting of a Raspberry Pi 4 board with a quad-core processor and 4 GB of RAM,
connected to a power supply with an integrated power meter. The Raspberry Pi was connected
to a USB camera featuring an 5 MP sensor. In the application, the camera is activated, an
image is captured, which is subsequently processed (primarily resizing operations), and finally
fed into the model under examination. This acquisition and classification process is repeated
every 2 seconds. We measured the power consumption (in watts) and the time required to
classify an image (in seconds) for each model (see Table 6, columns Power and Classification
time, respectively). The classification time corresponds to the interval needed by the classifier
to make the prediction, excluding the time required to capture the image. We computed the
correlation between the model size (see Table 6, column Size), the energy consumed during the
process, and the time required for classification. We found a strong positive correlation between
model size and consumption of energy (Spearman test, rho = 0.985611, significant at p < 0.01),
and a perfect correlation between model size and classification time (Spearman test, rho = 1.0,
significant at p < 0.01). This implies that the heavy models require a remarkable higher amount
of resources, which results in a lower sustainability.

Concerning the classification time, Fig. 4 shows the differences between the analyzed mod-
els. With the exception of the ConvNet2 3+pool and ConvNet3 4+pool models, which require
similar times (Mann-Whitney U test, p > 0.05), there are significant differences between the
other networks (Mann-Whitney U test, p < 0.01 for all compared pairs). Overall, our outcomes
reveal how the addition of pooling is undoubtedly beneficial for sustainability. However, the ac-
curacy of such lightweight models is inferior. Therefore, a trade-off between sustainability and
accuracy is desirable in order to cope with both the industrial and environmental requirements.
The proposed ConvNet3 4+pool model represents a good compromise in this context, since it
enhances sustainability with no impact on the final performance.
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Table 6: Comparison of the different models during the test in the real scenario. Best values
are highlighted in bold (the lower, the better).

Model Size (MB) Power (W) Classification time (s)

ConvNet1 2 633.6 3.89 1.7

ConvNet1 2+pool 69.7 3.1 0.27

ConvNet2 3 627.3 3.74 1.33

ConvNet2 3+pool 7.4 2.85 0.18

ConvNet3 4 931.5 4.0 2.86

ConvNet3 4+pool 1.1 2.85 0.15
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Figure 4: Classification time of the different models without (top) and with (bottom) pooling
layers. Boxes represent the inter-quartile range of the data. The red line inside each box marks
the median value. The whiskers extend to the most extreme data points falling within 1.5 times
the inter-quartile range from the box. Data obtained by replicating the acquisition 9 times.
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4 CONCLUSIONS

The undeniable impact of human activity on environment raises pressure on the need of
changing the way of designing and implementing industrial process in order to enhance sustain-
ability and cost-efficiency, while minimizing the waste of materials and the effect of pollution.
In this respect, Industry 4.0 has emerged as a new alternative to classic industrial paradigms,
which have demonstrated their inability to cope with environmental concerns, with a significant
amount of wasted resources and not negligible disposal costs. For instance, process monitor-
ing is often performed by a human operator, whose activity might be influenced by physical
(e.g., fatigue or illness) and/or mental (e.g., stress) and/or external (e.g., lighting) factors. This
might generate errors in the control of production lots. Using advanced tools, like AI, may help
mitigate such issues and improve sustainability.

In this work, we propose a novel framework to automate the monitoring of transparent tubes
inside the production process of a company dealing with plastic consumables. The aim is to
improve efficiency and sustainability, while reducing disposal costs. In particular, we addressed
an extended version of the problem firstly introduced in [19], with a focus on sustainability.
Specifically, we compared the recently introduced ConvNet3 4 model [19,20] with its lightweight
version (named ConvNet3 4+pool) implemented with the addition of pooling layers in the con-
volutional part of the network. We measured the resources required by both models during
training and test. The results we obtained indicate that, despite either models achieve a 100%
accuracy in both phases, the ConvNet3 4+pool model is remarkably superior in terms of sus-
tainability: it enables to save time, memory, and to some extent CPU. These properties turn
out to be paramount when applied to real industrial scenarios. Furthermore, the comparison
with other simpler deep networks reveals how the ConvNet3 4+pool model represents the best
trade-off between sustainability and effectiveness in the considered context.

In the future, we plan to further analyze the environmental impact of such models. For
instance, we are planning to estimate the energy consumption of the presented models using
the energyusage library [28], which allows to calculate also the carbon emissions. Moreover, as
we pointed out in the analyses reported in Section 3, in the considered scenario the addition of
pooling provides a remarkable benefit in terms of sustainability at the cost of a slightly lower
accuracy. Future research should investigate ways to improve the performance of such models
by limiting the amount of utilized resources in order to preserve sustainability. Lastly, we plan
to extend the applicability of the proposed models in other domains, like the preliminary study
we made in the context of lateral-flow tests [29], with a view at making those processes more
sustainable.

REFERENCES

[1] Goudie, A. S. 2018. “Human impact on the natural environment.” John Wiley & Sons.

[2] Wyns, A. 2023. “COP27 establishes loss and damage fund to respond to human cost of
climate change.” The Lancet Planetary Health, 7(1), e21-e22.

[3] Anwar, A., Ahmad, N., and Madni, G. R. 2020. “Industrialization, freight transport and
environmental quality: evidence from belt and road initiative economies.” Environmental
Science and Pollution Research, 27(7), 7053-7070.

10



Meriam Zribi, Paolo Pagliuca and Francesca Pitolli

[4] Opoku, E. E. O., and Boachie, M. K. 2020. “The environmental impact of industrialization
and foreign direct investment.” Energy Policy, 137, 111178.

[5] Yang, B., and Usman, M. 2021. “Do industrialization, economic growth and globalization
processes influence the ecological footprint and healthcare expenditures? Fresh insights
based on the STIRPAT model for countries with the highest healthcare expenditures.”
Sustainable Production and Consumption, 28, 893-910.

[6] Brundtland, G. H., and Khalid, M. 1987. “Our common future.” Oxford University Press,
Oxford, GB.

[7] Chen, X., Despeisse, M., and Johansson, B. 2020. “Environmental sustainability of digital-
ization in manufacturing: A review.” Sustainability, 12(24), 10298.

[8] Daoutidis, P., Zachar, M., and Jogwar, S. S. 2016. “Sustainability and process control: A
survey and perspective.” Journal of Process Control, 44, pp. 184-206.

[9] Mani, M., Lyons, K. W., Rachuri, S., Subrahmanian, E., Ameta, G., Sriram, R. D., and
Feng, S. C. 2008. “Introducing sustainability early into manufacturing process planning.”
In: Proceedings of the International Manufacturing Science and Engineering Conference
(Vol. 48517, pp. 319-326).

[10] Kagermann, H., Lukas, W.-D., and Wahlster, W. 2011. “Industrie 4.0: Mit dem Internet
der Dinge auf dem Weg zur 4. industriellen Revolution.” VDI nachrichten, 13(1), pp. 2-3.

[11] Enyoghasi, C., and Badurdeen, F. 2021. “Industry 4.0 for sustainable manufacturing: Op-
portunities at the product, process, and system levels.” Resources, Conservation and Re-
cycling, 166, 105362.

[12] Jamwal, A., Agrawal, R., and Sharma, M. 2022. “Deep learning for manufacturing sustain-
ability: Models, applications in Industry 4.0 and implications.” International Journal of
Information Management Data Insights, 2(2), 100107.

[13] Kamble, S. S., Gunasekaran, A., and Gawankar, S. A. 2018. “Sustainable Industry 4.0
framework: A systematic literature review identifying the current trends and future per-
spectives.” Process Safety and Environmental Protection, 117, pp. 408-425.
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