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Summary. This study compares two prominent multifidelity modelling approaches based on
Gaussian Process Regression (GPR): linear co-kriging method and a non-linear autoregressive
GP model. These methods are applied to a periodic hill flow case, to understand how varia-
tions in the hill geometry affect flow characteristics, particularly the height of the separation
bubble. High- and low-fidelity turbulent flow data was obtained from Direct Numerical Simu-
lations (DNS) and Reynolds-Averaged Navier-Stokes (RANS), respectively. The capabilities of
the MFM methods were also evaluated for an uncertainty propagation problem and sensitivity
analysis. The comparison of the two MFM approaches reveals that the non-linear method per-
formed better than the linear model, but at a significantly higher computational cost. Moreover,
both models provide similar satisfactory accuracy for the uncertainty propagation and global
sensitivity analysis.

1 INTRODUCTION

The challenges engineers face often involve navigating complex design spaces, where an ex-
haustive exploration of all possibilities can be impractical due to time and cost constraints. The
quest for optimal computational models has given rise to the innovative paradigm of applying
machine learning and data science approaches to computational modelling problems to improve
their cost effectiveness. Among them, multifidelity modelling (MFM) is a promising approach
that aims to combine data of differing levels of fidelity to enhance the predictive accuracy while
minimising overall computational cost [9, [I5]. This study compares two prominent MFM ap-
proaches based on Gaussian Process Regression (GPR) [I7]. The first method is the linear
co-kriging model by Forrester et al. [5] based on Ref. [9], and the other method is a non-linear
autoregressive Gaussian process (NARGP) model by Perdikaris et al. [I6]. The methods will
be applied to the turbulent flow over periodic hills [22] [I8] with the overarching objective of
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Figure 1: Variation of the geometry of the periodic hill problem due to the uncertain parameters
a and ~y [18].

studying how the flow is affected by changes in the geometry of the periodic hills due to two
uncertain parameters, and to expand on previous studies of applying MFM to turbulent flow
problems such as those by Mole et al. [13], Ahlfeld et al. [I], and de Baar et al. [3]. The surro-
gate of the quantities of interest (Qols) is constructed in the space of design parameters using
the co-kriging and NARGP models. Then using Polynomial Chaos Expansion (PCE) [25], the
propagated uncertainty in the Qols can be quantified. The Qol for this problem is considered
to be the height of the separation bubble at some x/h which can vary greatly depending on
the geometry of the hill. Moreover, the periodic hill case was chosen as a way to highlight the
differences between low- (LF) and high-fidelity (HF) turbulent flow data. HF data are generated
using Direct Numerical Simulation (DNS). Such methods give the most accurate data of turbu-
lence, but at a very high computational cost, especially at higher Reynolds numbers. Therefore,
lower-fidelity methods such as Reynolds-Averaged Navier-Stokes (RANS) [23], relying on a sta-
tistical interpretation of turbulence, are often used as a way to compute complex flow problems
at a reasonable computational cost. Unfortunately, such methods come with a low accuracy
especially for separated flows that MFM methods aim to improve.

The paper is structured as follows. First, the problem setup is described. Then, the theory of
the GPR, co-kriging, and NARGP models are briefly explained. Next, we discuss the results of
single-fidelity GPR to create a "ground-truth" for the comparison study. Finally, we present and
discuss the results from the MFM models and how they compare to each other and the ground
truth.

2 PROBLEM DESCRIPTION

To highlight the effectiveness of the MFM in an outer-loop problem, we have considered a
turbulent flow with separation over periodic hills. This canonical case is considered here with ge-
ometrical uncertainties due to two parameters o and «y. These uncertain parameters are assumed
to be independent with uniform distributions: « ~ 1[0.448,1.552] and v ~ U[0.356, 1.644] [18].
The length of the lower wall varies as L, /h = 3.858c + 5.1427, where h is the height of the hill.

The Qol for this problem is taken to be the height of the separation bubble at z/h = 2.5,
which can vary greatly depending on the geometry of the hill and the approach to simulation of
turbulence. The HF data can be chosen from the 9 DNS at the Reynolds number of Re = 5600
created by Xiao et al. [24]. The LF data consisted of 25 samples created using a k—w SST turbu-
lence model [12] by Rezaeiravesh et al. [18] at the same Reynolds number. Efficient multifidelity
solutions aim to use as few HF samples as possible. Therefore, two different sampling schemes
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Figure 2: The two sampling schemes visualised [18]: LF samples - x, total available HF samples
(for constructing the ground truth) - O, and selected HF samples - O. The latter is combined
with the LF samples for multifidelity modelling. The sampling schemes are hereafter referred to
as (left) the 25-4 and (right) 25-5 datasets.

combining 25 RANS simulations with 4 and 5 HF samples were considered to highlight the effect
of HF samples on the overall accuracy of the multifidelity prediction. Figure [2| schematically
shows the sampling schemes.

3 METHODS
3.1 Gaussian process regression (GPR)

GPR is a non-parametric probabilistic approach in machine learning used for predicting com-
plex functions. This approach has the advantage of providing confidence intervals for its pre-
dictions, therefore, it is suitable for uncertainty quantification (UQ). A Gaussian process (GP)
is "a collection of random variables, any finite number of which have a joint Gaussian distri-
bution" [I7]. Let x be the inputs or design/uncertain parameters and y represent the noisy
observations. Adopting a noise-additive model, we have

y:f(x)+€7 (1)

where € ~ N'(0,02). A GP surrogate f(x) is defined by its mean function m(x) and the covariance
function k(x,x’):

f(@) ~ GP(m(x), k(x,x')), (2)

where,
m(x) = E[f(x)], (3)
k(x,x") = E[(f(x) — m(x))(f(x") —m(x))]. (4)

The mean and covariance functions in the prior GP (2)) contain a set of hyperparameters 6 which
should be learned from a set of training data D = {(x,y®)}?_. The inference of § can be
based on deterministic and Bayesian approaches [I7]. In the present study, we use the maximum
likelihood estimator,

Orie = arg max L(0) (5)
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in which, for an independent and identically distributed (iid) Gaussian noise, the likelihood
function is defined as,

n @) _ (D g))2
L(0) = HP(Q‘) = H \/%a exp ( g géz :9)) ) : (6)
=1 i=1 n n

The optimization in Eq. was performed using the L-BFGS (gradient-based) method [11] in
GPy [7] library. The resulting posterior of f(x) is also a GP with the following mean and variance

evaluated at test samples X* = {x*(i) n

E[f*] = K* (K +021)7'Y, (7)

V[f) =K"= K (K + o2I) ' K* (8)

where, Y is the vector of training output values, K* = k(X,X*) is the kernel covariance ma-
trix of size n x n*, and k(-,-) is the kernel covariance function. Similarly, K = k(X,X) and
K™ = k(X*,X*) represent the covariance function between the training-test and training-
training samples, respectively.

3.2 Co-kriging MFM

In geostatistical science, the GPR that is used for interpolation of single-variate functions is
called kriging, after Danie G. Krige [10]. Co-kriging, is an extension of Kriging for prediction of
multifidelity and multi-output (multivariate) functions. In the context of MFM, each output can
be attributed to a specific fidelity level. Without loss of generality, an overview to the formulation
of the co-kriging MFM for two fidelities is presented here. The LF and HF parameter samples
are denoted by X and Xy with the corresponding output values Y and Yy, respectively.
Naturally, we deal with cases where ng < ny. The samples of parameters and their output
values can be concatenated:

X = |:XZ:| - [X(L)v ”X(L L) X( )’ ’xg{H)]T’ )
YL(XL) 1 n 1 .
Y = [YH(XH)} = YLy, Y ), Y (), Y (T (10)

Following the autoregressive model of Kennedy & O’Hagan [9]:
cov{Y i (x), YL (x)| Y (x)} =0, vx#x (11)

The local features of the LF and HF models can be represented by GPs fr(:) and fg(-), re-
spectively. Using the autoregressive model of [9], Forrester et al. [5] proposed the co-kriging
formulation as,

fu(x) = pfr(x) + fp(x), (12)

where the HF GP is approximated by the LF GP multiplied by a scaling factor p plus a GP fp(+)
that represents the model discrepancy. As a generalization of single-variate GPR, the covariance
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matrix for co-kriging should describe all covariances between LF and HF data. Using the training
data, this matrix is written as,

- O'%k:L(XL,XL) PU%kL(XLaXH)

_ , 13
poikr(Xg,Xp) pPoikr(Xu, Xg)+ ophkp(Xg, Xu) (13)

where k7 and kp are the kernel covariance functions for the GPs associated with the low-fidelity
and model discrepancy, respectively. Any choice for these kernels contains hyperparameters that
together with the scaling factors o7, op, and p must be inferred. To this end, MLE can be used
as detailed in [5]. With the hyperparameters estimated, the co-kriging prediction of the HF GP
at a test sample x* is given by:

G (x*) = m(x*) + L C7HY — 1m(x")), (14)

p63 kL (X, x*)

~2 £\ 1 A ol o 15
p20'%]{?L(XH,X)+O'%kD(XH,X) ( )

C =
where m(x*) = 17C1Y /17C~!1 and the notation 1 designates a matrix of ones, whilst the
notation kr,(Xp,x*) denotes a column vector of correlations of the form k7 between the data

X g and the new point x*. In the present study, the implementation of the co-kriging model in
Emukit library [14] that relies on GPy [7] has been used.

3.3 Non-linear (NARGP) MFM

As suggested by Eq. , the linear co-kriging MFM is accurate only when the LF and HF
data have a strong linear correlation. Therefore, the use of this model for RANS and DNS data
has been found challenging, see e.g. [1, 22]. A method put forth by Perdikaris et al. [16], uses a
probabilistic framework based on GPR and non-linear autoregressive methods that are capable
of learning complex non-linear structures as well as safeguarding against LF models that may
provide wrong trends. The concept of non-linear autoregressive GPR, (NARGP) is based on the
work of Kennedy and O’Hagan [9], and largely similar to the linear co-kriging model. To mitigate
the shortcoming of using the scaling multiplier p in the co-kriging model, the non-linear model
defines the connection between the LF and HF models through

fr(%) = 2(fL(x)) + 0u(x), (16)

where dg7(x) is the model discrepancy and zy is an unknown function that maps the outputs
of the LF model to those of the HF model. This unknown function has its own GP surrogate,
creating a deep GP [2] in Eq. . However, such a generality comes at a significant cost, as the
intractability of deep GP algorithms involves variational approximations in the training proce-
dure, leading to far more complex implementation and computational costs than standard GPR.
One way to improve a completely separate GP prior while maintaining analytical tractability
and favourable algorithmic complexity is to replace the GP prior fr, with the posterior GP of the
previous inference level f;(x). Then, it is possible to summarise the multifidelity prediction as
the additive structure of Eq. whilst maintaining the independence assumption [§] between
the GPs z;, and dy:

fu(x) = gu(x, f1(x)), (17)
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where gy ~ GP(ful0, kr((x, f;(x)), (X, ff(x));0m)) and O denotes the hyperparameters of
the HF covariance kernel function k. With the independence assumption, dz is replaced by
gH, leading to an equivalent Markov property that the lower-fidelity posterior zz(f;(x)) is not
able to learn anything more about fz(x) from the model output zz(f}(x")), for x # x'. To
introduce a more structured approach to the prior, the covariance kernel of gy can be decomposed
as [16]:

kr, =k, (%, %5 0m, - ku, (f1(x), f1("); 0n,) + kn, (%, %5 0p,) (18)

Here kg, kn,, kng are valid covariance functions such as Exponentiated-Quadratic [6] or Matern [4]
with associated hyperparameters 0p,,0n,,0n;. The hyperparameters in the NARGP model are
estimated like conventional GPs but via an MLE recursive scheme [8]. However, unlike co-kriging,
the non-linear method needs to learn 2d+ 3 hyperparameters for every input dimension d instead
of d + 3 due to the additional covariance kernel within gg.

The first level of the non-linear model corresponds to the standard GP model using standard
mean and covariance functions. However, on subsequent recursive levels, when the posterior
distribution is no longer Gaussian, a prediction must be made given a test sample (X*, f7 (X*)).
Consequently, for problems where the prediction needs to be made on uncertain inputs, the
uncertainty is propagated along each recursive step. Thus, the posterior distribution is given
by [16]:

p(fr(X%) = p(fa(X", fL(XNIL, X5 Y, Xp)
= /p(fH(X*,fE(X*))IYH,XH,X*)p(f}f(X*))dX*- (19)

To estimate the posterior p(fj;(X*)), the integrals are computed using a Monte Carlo method,
and from there associated mean and covariance of the posterior are obtained.

4 RESULTS AND DISCUSSION

In this section, first, the single-fidelity model is applied to the LF and HF data. Then, the
co-kriging and NARGP results will be analysed and compared against each other and the ground
truth using the two sampling schemes represented in Figure[3] Furthermore, using different single-
and multifidelity models, uncertainty propagation and global sensitivity analysis are conducted.

4.1 Single-fidelity GPR predictions

A ground truth is established using single-fidelity GPR on all 9 HF data samples shown in
Figure [ to create a baseline to compare the MFM models to. Additionally, a single-fidelity GPR
is created using only LF data (25 samples) as a way to showcase the significant improving impact
of MFM. The single-fidelity GPR was created using GPy [7] library with a Matern 5/2 covariance
kernel [6]. The optimization of the hyperparameters was performed using the L-BFGS gradient
descent algorithm [11]. Figure |3|shows how the Qol, that is the height of the separation bubble
in the periodic hill flow at x/h = 2.5, varies with o and «y in the single-fidelity cases.

As expected, there is a significant difference between the LF and HF predictions due to the
disparity in the RANS and DNS data. The prediction of the LF model does not follow the
trends established by the ground truth due to the inaccuracy of the RANS k — w SST model in
capturing the flow separation. To ensure that learning of hyperparameters using an MLE [§] has
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Figure 3: Comparison of the response surface of the mean Qol predicted by single-fidelity GPR
with (left) only LF data and (right) all DNS samples (ground truth). Parameters x1 and x2
correspond « and 7, respectively.

been done accurately, the GPR isolines were confirmed by the results of non-intrusive polynomial
chaos expansion (PCE) [|25].

4.2 Multifidelity GPR. predictions

Two multifidelity models were created using 25 LF(RANS) samples with 4 and 5 HF(DNS)
samples to highlight the variation between sampling schemes on the accuracy of the predictions.
The models used identical covariance kernel functions to have an unbiased comparison for the
sampling schemes. A product of the Matern 5/2 [6] and Exponentiated-Quadratic [4] kernels was
adopted to most accurately capture the correlation between the LF and HF data. The optimal
kernel hyperparameters were achieved through applying the L-BFGS method [II] to associated
MLE. Figure [4] shows the response surfaces of the mean Qol predicted by the co-kriging and
NARGP models. Neither of the models could accurately create the isolines of the ground truth,
although the NARGP showed better accuracy. The latter is not surprising, recalling that the
co-kriging model relies mainly only on the linear scaling factor to account for for all correlations.
Since there are significant systematic differences between RANS and DNS data, finding a scalar
correlation between the two sample sets proves to be challenging. Nevertheless, the results
showcased a viable prediction when using co-kriging for turbulent-flow problems and the effect
of sampling when using tis method. The NARGP model, in contrast, relies on a function over
the parameter space to capture the correlation between the two fidelities. This feature leads to
more accurate predictions, particularly when using the 25-5 dataset. Even for the 25-4 dataset,
the isolines of the mean predictions by the NARGP model are more similar to the ground truth
compared to predictions by the co-kriging model.

The response surfaces provide a pointwise picture of the variation of the mean predictions
over the parameter space. Alternatively, the predictions of the Ools by different models can be
represented by probability density functions (PDF). Figure [5 shows the joint PDF between the
predictions of the co-kriging and NARGP models and the ground-truth. Moreover, Figure [f]
provides a comparison between the PDFs for predictions by various single- and multifidelity
models. In Figure 5] the use of the 25-5 dataset improves the predictions of the NARGP model
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Figure 4: Response surface of the mean predicted Qol in the av — =y space using (top) co-kriging
and (bottom) NARGP models with the (left) 25-4 and (right) 25-5 datasets.

by aligning the JPDF more with the reference median line. Surprisingly, adding an additional HF
data sample for the co-kriging model is less effective and even deteriorating. There are two likely
possibilities for this observation. The first is that the additional HF sample was misinterpreted by
the model and an incorrect correlation was inferred that propagated throughout the predictions
and skewed the JPDF. Conversely, the other reason would be a poor hyperparameter optimisation
caused by gradient descent algorithms struggling to find the global maximum of the likelihood
estimator. However, this issue is universal for all models in the present study, although its impact
could be different. As suggested in Ref. [I§], the solution is to adopt Bayesian approaches which
can be pursued in future studies. According to Figure [6] the PDFs of the predicted Qol by
single-fidelity GPRs using only LF and HF data are completely different. The goal of MFM is to
combine the LF and HF data in such a way that the resulting PDF becomes close to the ground
truth PDF that is bimodal. Clearly, this is achieved only by using the NARGP model with the
25-5 dataset, although some deviations persist. The deterioration of the PDF of the co-kriging
model with the 25-5 dataset is also visible in this plot.

Sometimes in a UQ forward problem, we are only interested in specific stochastic moments
of the Qol with respect to the uncertain parameters, rather than the full PDFs. Here, for
the given training samples, we adopt the non-intrusive generalised polynomial chaos expansion
(gPCE) [25] to estimate the stochastic mean and variance of the Qol. Assuming « and v are
random variables with uniform distribution over their specified range, Lagrange polynomial basis
functions are used in gPCE. As a complement to the UQ forward problem, a global sensitivity
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Figure 5: Joint PDFs between the mean Qol predicted by the multifidelity models and the
ground truth values: (top) co-kriging and (bottom) NARGP models trained by the (left) 25-5
and (right) 25-4 datasets.

analysis has also be done. The stochastic moments and Sobol sensitivity indices [21] estimated
by single- and multifidelity models using UQit [20] are summarised in Table [l Comparatively,
it is the single-fidelity model with LF data that has the most inaccurate estimations, especially
for the standard deviation of the Qol and Sobol indices. The overall differences between the
estimations by the single-fidelity GPR with HF data and multifidelity models is relatively small.
However, the NARGP with the 25-5 dataset has the closest estimations to the ground truth,
especially for the Sobol indices. A cautious conclusion, similar to [I9] 18] is that the choice of
the MFM and its LF-HF training data may have a small impact on the stochastic moments
and Sobol indices of the Qol. If this holds, then the choice of the MFM strategy can be based
on the overall computational cost and complexity. In the test case considered in the present
study, the co-kriging model required, on average, 20 seconds on a single processor for training
and prediction. For the same setup, the NARGP model was found to be nearly 300 times slower,
showing the additional accuracy comes at a considerable computational cost.
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Figure 6: PDFs of the mean Qol predicted by the single-fidelity GPR and multifidelity models
compared to the ground truth: (top) co-kriging and (bottom) NARGP models trained by the
(left) 25-5 and (right) 25-4 datasets.

5 CONCLUSIONS

The linear co-kriging multifidelity model by Forrester et al. [5] and the non-linear autore-
gressive Gaussian process (NARGP) method by Perdikaris et al. [16] have been applied to the
periodic hill flow problem [22] [I§]. The aim was to quantify the impact of the variation of the
hills geometry controlled by two uncertain parameters on the flow quantities. The Qol was par-
ticularly chosen to be the height of the separation bubble at a specific location. To compare
the performance of different single- and multifidelity surrogates, the response surfaces, prob-
ability density functions (PDFs), stochastic moments and Sobol sensitivity indices of the Qol
were studied. Two training datasets combining 25 RANS simulations with 4 and 5 DNS data
samples were utilized. Compared to single fidelity Gaussian process regression (GPR), both
multifidelity models showed improved predictions especially for the 25-5 dataset. However, the
NARGP model outperformed the co-kriging model for accurate prediction of response surfaces
and PDFs. This highlights the crucial role of constructing a functional rather than a scalar for
the correlations between the two fidelities. Nevertheless, the increased accuracy of the NARGP
comes at a significant computational cost, as this model was found to be 300 times slower to
train and predict compared to the co-kriging model. Similar to Ref. [19], where the co-kriging
model was compared to a hierarchical Bayesian model, the impact of the multifidelity model on
the stochastic moments and Sobol indices was found to be smaller than the pointwise indicators
such as response surface and PDFs. As brought up by Ref. [I8], a main concern about the
performance of multifidelity modelling strategies relying on GPR is the use of point estimators

10
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Table 1: Stochastic moments and total Sobol indices of the Qol with respect to o and ~ for
various models and datasets.

Stochastic Moments Total Sobol Indices of Qol

Model E[Qol] S[QolI] a y
Reference 0.48495 0.05151 0.99405 0.12084
LF 0.49813  0.02386  0.99620 0.03300
The 25-4 dataset
Single-Fidelity HF  0.50635  0.05485  0.99969 0.19564
NARGP 0.49356  0.05822  0.99890 0.16264
co-kriging 0.49130  0.05663  0.99891 0.14851
The 25-5 dataset
Single-fidelity HF  0.48643  0.05542  0.99982 0.17560
NARGP 0.48129  0.05637  0.99898 0.15060
co-kriging 0.47849  0.05935  0.99916 0.16910

for learning the hyperparameters. An extension of the present study will be based on adopting
Bayesian methods for such purpose to remove any potential bias in the interpretation of the
models performance.
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