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ABSTRACT  

In the past, soil-layer delineation methods can usually only take a single type of input data, e.g., soil-type data at boreholes. 

However, this does not fit in the geotechnical engineering practice where multiple types of data are usually available 

during site investigation (e.g., borehole data and cone penetration test data are both available). This paper adopts a novel 

data-driven method for soil-layer delineation that accommodates multiple types of site investigation data. The basic idea 

is to include liquid limit (LL), plasticity index (PI), and fines content (FC) into the soil parameters of analysis. According 

to the Unified Soil Classification System (USCS), the information of (LL, PI, FC) can be used to determine whether the 

soil is sand, silt, or clay. As a result, the conditional random field simulation results for (LL, PI, FC) can be used to 

delineate sand, silt, and clay layers. If extra soil parameters (such as cone penetration test results) are incorporated, the 

novel method can accommodate multiple types of site investigation data. A real example of the Fucino Basin in Italy is 

adopted to demonstrate the application of the novel data-driven soil-delineation method. 
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1. Introduction 

In geotechnical engineering, there are two main tasks 

in site characterization. One is to delineate soil layers 

based on site-specific data. The other is to determine the 

spatial variation of soil parameters based on the data 

within each delineated soil layer. The first task can be 

achieved by soil-layer delineation methods. In the past, 

various soil-layer delineation methods have been 

proposed, such as the coupled Markov chain (CMC) 

methods (e.g., Qi et al. 2016; Li et al. 2019; Varkey et al. 

2023a), Markov random field (MRF) methods (e.g., Li et 

al. 2016a; Zhao et al. 2021; Wei and Wang 2022), 

methods based on a training image (e.g., Caers and Zhang 

2004; Hu and Chugunova 2008; Shi and Wang 2021a,b), 

CPT-based SBT methods (CPT stands for cone 

penetration test, and SBT stands for soil behavior type) 

(e.g., Li et al. 2016b; Wang et al. 2020; Varkey et al. 

2023b), etc. 

A common feature of the aforementioned soil-layer 

delineation methods is that they only take a single type of 

input data. For example, the CMC, MRF, and training-

image methods only take the soil-type data at boreholes 

as input. Figure 1 shows the locations and soil-type data 

of the boreholes at a site in Perth city, Australia. The site 

in Figure 1 was analyzed by Qi et al. (2016) using the 

CMC method (Elfeki and Dekking 2001). The CMC 

method takes the soil-type data at the boreholes as the 

input to simulate the soil types at unexplored locations 

using the Markov chain theory. The task of soil-layer 

delineation is done once the soil types at unexplored 

locations are simulated (e.g., Figure 2). In contrast, the 

CPT-based SBT methods only take the CPT data as input 

to simulate conditional random fields of CPT parameters 

at unexplored locations. The SBTs at unexplored 

locations can be determined based on the simulated CPT 

parameters according to the Robertson’s SBT chart 

(Robertson 2009). The task of soil-layer delineation is 

done once the SBTs at unexplored locations are 

simulated. 

 
(a) Borehole locations 

 
(b) Soil-type data at boreholes 

Figure 1. Soil-type data of the boreholes at a site in Perth city, 

Australia (source: Qi et al. 2016). 
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Figure 2. Realization of soil types at unexplored locations 

using the CMC method (source: Qi et al. 2016). 

 

However, a routine geotechnical site investigation 

program usually consists of multiple types of site-

specific data, e.g., borehole data such as soil type, 

Atterberg limits, water content, fines content, SPT N 

value, undrained shear strength, preconsolidation stress, 

etc. and CPT data such as cone tip resistance, sleeve 

friction, CPT pore water pressure, etc. The CMC, MRF, 

and training-image methods can only take the soil-type 

data at boreholes as input, whereas the CPT-based SBT 

methods only take the CPT data as input. The limitation 

of these soil-layer delineation methods is evident. It is not 

clear how to conduct soil-layer delineation using multiple 

types of site-specific data (e.g., take both borehole soil-

type and CPT data as inputs) with these methods. It is 

also not clear how to incorporate other soil parameters 

(such as SPT N value) that may be correlated to the soil 

type into the analysis. There is a need to develop a new 

soil-type delineation method that can take multiple types 

of site-specific data to fit in the geotechnical engineering 

practice. 

Recently, Kamyab Farahbakhsh and Ching (2024) 

developed a new soil-layer delineation method that can 

take multiple types of site-specific data. This method 

adopts the HBM-MUSIC-3X method (Ching et al. 2022) 

previously developed by the second author as the main 

analysis engine. The HBM-MUSIC-3X method has the 

following features: 

• It can model the cross-correlation between the 

multivariate soil parameters in site investigation 

(e.g., Atterberg limits, water content, SPT N value, 

CPT parameters, etc.). If there are sufficient 

pairwise site-specific data, the cross-correlation 

parameters (such as the covariance matrix) can be 

estimated by the site-specific data. 

• It can model the spatial-correlation (or auto-

correlation) of the soil parameters. If there are 

sufficient CPTs, the auto-correlation parameters 

such as the scale of fluctuation can be estimated 

by the CPT data). 

• In the case that there are insufficient pairwise site-

specific data (which is usually the case), it can 

learn the cross-correlation behaviors from 

(generic) sites in a soil database using the 

hierarchical Bayesian model (HBM) (Ching et al. 

2021). The HBM learning outcome can be 

transferred to the target site to reduce the 

uncertainty in the cross-correlation. 

If the cross-correlation and auto-correlation parameters 

of the target site are known (or estimated), the HBM-

MUSIC-3X method can further simulate the conditional 

random fields of the soil parameters by conditioning on 

the site-specific borehole and CPT data. 

The basic idea proposed by Kamyab Farahbakhsh and 

Ching (2024) of implementing HBM-MUSIC-3X to soil-

layer delineation is simple. If liquid limit (LL), plasticity 

index (PI), and fines content (FC) are considered in 

HBM-MUSIC-3X, it can therefore simulate the 

conditional random fields of (LL, PI, FC) by conditioning 

on the site-specific borehole and CPT data. Because the 

USCS main soil type (e.g., sand, silt, and clay) can be 

determined based on (LL, PI, FC), the conditional 

random fields of (LL, PI, FC) can be converted to the 

conditional soil-type field. The task of soil-layer 

delineation is done once the conditional soil-type field at 

unexplored locations is simulated. Moreover, if extra soil 

parameters (e.g., Ic and SPT N; Ic is the CPT SBT index 

proposed by Robertson 2009) are included in the analysis, 

the HBM-MUSIC-3X method can consider the cross-

correlation among (LL, PI, FC, Ic, SPT N). By doing so, 

the new method can take multiple types of site-specific 

data into the analysis and fuse all available information 

to simulate the conditional random fields of (LL, PI, FC). 

This circumvents the main limitation of the past soil-

layer delineation methods that they can only take a single 

type of input data. Moreover, the new method can 

simulate the conditional random fields of (Ic, SPT N) as 

well, so the second task of site characterization (simulate 

the spatial variation of soil parameters) is also achieved 

in the meantime. 

There are two technical gaps in the new method that 

cannot be addressed by the original HBM-MUSIC-3X 

method. First, the ground is categorized into sand, silt, 

and clay. Each soil type has its own cross-correlation 

parameters, so some clustering analysis is needed in the 

new method. Kamyab Farahbakhsh and Ching (2024) 

developed a clustered-HBM-MUSIC-3X method to fill 

this gap. Second, the original HBM-MUSIC-3X method 

does not model the soil-layer transition behavior (e.g., the 

transition probability matrix in the CMC method). Some 

probabilistic soil-layer transition model is needed in the 

new method. Kamyab Farahbakhsh and Ching (2024) 

adopted the Markov random field (MRF) model to fill 

this gap. These technical details are not presented in the 

current paper. Interested readers are referred to Kamyab 

Farahbakhsh and Ching (2024) for these details. The 

main purpose of the current paper is to present the 

analysis results for the real case study of the Fucino Basin 

in Italy (Abruzzo, L’AQ). 

2. Real case study 

In the real case study, the investigated area is the 

Fucino Basin, located in Abruzzo Region, central Italy. It 

is a tectonic basin filled with hundreds of meters of soft 

lacustrine deposits. For further geological details refer to 

Boncio et al. (2018). Over an investigation region of 

roughly 8000 m  8000 m (see Figure 3), 165 boreholes 

and 15 cone penetration tests (CPTs) are conducted. At 

each borehole, only quantitative soil-type data (gravel, 

sand, silt, and clay) are available at certain depths. Figure 

4 shows the soil-type data at the boreholes. At each CPT, 

the SBT index (Ic) data are available. The boreholes and 



 

CPTs are sparse: only a small fraction of the total area of 

8000 m  8000 m is investigated. Given the sparse data, 

the soil types at unexplored locations are highly uncertain. 

With the significant uncertainty in soil types, it is 

challenging to assess the liquefaction risk of the Fùcino 

Basin because the liquefaction potential of soil is closely 

related to its soil type. The main purpose of the case study 

is to simulate the soil types of unexplored locations based 

on the sparse regional investigation data. To simplify the 

illustration, only the simulation of the soil types along the 

A-A section in Figure 3 is demonstrated in the current 

paper. Figure 5 shows a zoom-in plot around the A-A 

section. There are three CPTs nearby the A-A section. 

Their Ic profiles are shown in Figure 6. Because the site 

investigation includes boreholes and CPTs, we consider 

the following four soil parameters: (LL, PI, FC, Ic). Note 

that (LL, PI, FC) are necessary for our soil-layer 

delineation method. To consider the CPT data in the 

investigated region, the parameter Ic is also included. 

 

 
Figure 3. Plan view of the investigated region in the Fucino 

Basin, Italy. 

 

 
Figure 4. The soil-type data at the boreholes. 

3. Soil database and HBM 

For this particular case study, there is insufficient 

pairwise data to estimate the site-specific cross-

correlation among the four soil parameters (LL, PI, FC, 

Ic). This is because (a) (LL, PI, FC) data are not available 

at boreholes (only soil-type data are available); (b) there 

are very limited nearby CPT-borehole pairs. As a result, 

the uncertainty in the cross-correlation is significant. To 

reduce this uncertainty, the HBM is adopted to learn the 

cross-correlation behaviors of generic sites in a soil 

database of (LL, PI, FC, Ic). Figure 7a and Figure 8a show 

the database of (LL, PI, FC, Ic) from 188 generic sites 

compiled by Kamyab Farahbakhsh and Ching (2023), 

where Figure 7a shows the database in the (LL, PI) space, 

and Figure 8a shows the database in the (FC, Ic) space. 

Data points from different sites are shown as different 

colors. The HBM can learn the cross-correlation 

behaviors of the 188 generic sites. To illustrate the HBM 

learning outcome, Figure 7b and Figure 8b show the 

cross-correlation behaviors of the “hypothetical sites” 

generated by the trained HBM. For instance, each 

(skewed) ellipse in Figure 7b represents the cross-

correlation of (LL, PI) of a hypothetical site. These cross-

correlation behaviors are transferred to the target site 

(Fucino Basin) through the trained HBM and serve as the 

“prior (cross-correlation) model” for the target site. 

 

 
Figure 5. The zoom-in plot for the A-A section. 

 

 
Figure 6. Ic profiles of the CPTs nearby the A-A section. 

 

 
Figure 7. (a) (LL, PI) data; (b) cross-correlations of the 

hypothetical sites generated by the trained HBM. 



 

 
Figure 8. (a) (FC, Ic) data; (b) cross-correlations of the 

hypothetical sites generated by the trained HBM. 

4. Analysis results 

The simulation of soil types at unexplored locations 

of the Fucino Basin is demonstrated in this section. This 

is done by first updating the prior model into the posterior 

model by Bayesian analysis based on the HBM-MUSIC-

3X method (Section 4.1) and then followed by simulating 

the conditional random fields (LL, PI, FC) at unexplored 

locations (Section 4.2). Then, the simulated (LL, PI, FC) 

are converted to the soil type (sand, silt, clay) based on 

the USCS criteria. 

4.1. Bayesian analysis based on HBM-MUSIC-

3X method 

The Bayesian analysis of the HBM-MUSIC-3X 

method requires the knowledge of the following three 

items: 

• (Item #1: prior cross-correlation model) There are 

insufficient pairwise site-specific data at the target 

site (Fucino Basin) to estimate these parameters. 

The cross-correlation parameters learned from the 

soil database are transferred to the target site using 

the HBM to serve as the prior cross-correlation 

model. 

• (Item #2: auto-correlation model) The Whittle-

Matérn (WM) auto-correlation model (Guttorp 

and Gneiting 2006; Liu et al. 2017; Ching and 

Phoon 2018) is adopted to model the spatial 

correlation. There are two kinds of auto-

correlation parameters for the WM model: the 

scale of fluctuation () and smoothness (). The 

vertical scale of fluctuation (z) and vertical 

smoothness (z) are identified from the CPT Ic 

profiles: z  0.32 m and z  1.35. However, it is 

not feasible to identify the horizontal scale of 

fluctuation (h) and horizontal smoothness (h) 

because the horizontal spacings among the CPTs 

are large. Instead, their values are assumed to be 

h  50 m and h  1.35 for the purpose of 

demonstration. 

• (Item #3: site-specific data) The site-specific data 

include the soil-type data at the boreholes (i.e., 

Figure 4) and the Ic data at all CPTs. Note that for 

this particular case study, (LL, PI, FC) 

information is not available at the boreholes. Only 

the soil-type data (sand, silt, clay, etc.) are 

available. 

In the essence of HBM-MUSIC-3X, the HBM trained 

by the soil database (item #1, e,g,, Figures 7 and 8) serves 

as the “prior cross-correlation model” of the Fucino 

Basin site. The likelihood function specifies the cross-

correlation and spatial-correlation (item #2) in the site-

specific data. The prior cross-correlation model is then 

updated by the site-specific data (item #3) into the 

“posterior cross-correlation model” of the Fucino Basin 

site through the Bayesian analysis. There is no analytical 

solution for this Bayesian analysis. The Gibbs sampler 

(GS) algorithm (Geman and Geman 1984; Gilk et al. 

1996) is adopted to solve the Bayesian problem 

numerically by drawing samples from the posterior 

model. During the GS algorithm, a “truncation sampling” 

method is used to deal with the situation that only soil-

type data are available at boreholes but (LL, PI, FC) are 

not: the (LL, PI, FC) samples are drawn from a truncated 

distribution, i.e., the probability density of (LL, PI, FC) 

inconsistent with the observed soil type is set to zero. 

Figure 9 illustrates the behaviors of the posterior 

cross-correlation model. Figure 9a (posterior FC-Ic) can 

be compared with Figure 8b (prior FC-Ic), whereas 

Figure 9b (posterior LL-PI) can be compared with Figure 

7b (prior LL-PI). As mentioned earlier, a clustered-

HBM-MUSIC-3X method is adopted in this study, so the 

LL-PI & FC-Ic behaviors for the sand, silt, and clay 

clusters are separately shown in Figure 9. 

 

 
Figure 9. (a) posterior FC-Ic behaviors; (b) posterior LL-PI 

behaviors. 

4.2. Conditional random field simulation results 

of soil types at unexplored locations 

With the posterior cross-correlation, auto-correlation 

model, and the site-specific data, the conditional random 

fields of (LL, PI, FC, Ic) can be simulated at unexplored 

locations. The conditional random field simulation 

results over two unexplored locations are demonstrated 

in this section: 

• (Case 1) The AA-section in Figure 3. Its Y 

coordinate is fixed at Y = 3600 m, whereas its X 

coordinate ranges from 1500 to 3500 m, and its z 

coordinate ranges from 0 to 20 m. 

• (Case 2) The horizontal plane with z = 6 m. Its (X, 

Y) coordinate cover the full range: its X 

coordinate ranges from 0 to 8000 m, and its Y 

coordinate ranges from 0 to 8000 m. 

Figure 10 shows one realization of the conditional 

random fields for Case 1. The (LL, PI, FC) results in 

Figures 10a, b, c can be converted into one realization of 

the USCS results shown in Figure 11a. One hundred 

realizations are simulated, and Figure 11b shows the 

most probable USCS result over the AA section. Note 

that CPT#11 is close to the AA section (see Figure 5; the 



 

distance from CPT#11 to the AA section is about 22 m). 

For comparison, Figure 12 shows the most probable soil-

type profile and the sample medians and 95% confidence 

intervals of (LL, PI, FC, Ic) calculated based on the 100 

realizations at the location closest to CPT#11. 

Consistency between the simulated (LL, PI, FC, Ic) and 

the Ic profile of CPT#11 is evident. Figure 13 shows the 

one realization of the conditional random field for Case 

2. Again, one hundred realizations are simulated. One 

realization of the USCS results shown in Figure 14a, 

whereas Figure 14b shows the most probable USCS 

result. 

 

 
Figure 10. One realization of the conditional random fields for 

Case 1: (a) LL; (b) PI; (c) FC; (d) Ic. 

 

 
Figure 11. (a) One realization of USCS results for Case 1; (b) 

most probable USCS result. 

 
Figure 12. Conditional random field results (median & 95% 

confidence interval) at the location closest to CPT#11: (a) 

probability profile of USCS; (b) LL; (c) PI; (d) FC; (e) Ic. 

5. Conclusion 

In this paper, a real example of the Fucino Basin in 

Italy is adopted to demonstrate the application of a novel 

data-driven soil-delineation method. The method can 

handle multiple types of inputs, including soil-type data 

at boreholes and other soil parameters such as CPT 

results. The method can also take advantage of a soil 

database to reduce uncertainty in cross-correlation. The 

technical details for this novel method can be found 

elsewhere (Kamyab Farahbakhsh and Ching 2024). The 

purpose of the current paper is to demonstrate the 

analysis results of the real example. 

 

 
Figure 13. One realization of the conditional random fields for 

Case 2: (a) LL; (b) PI; (c) FC; (d) Ic. 

 

 
Figure 14. (a) One realization of USCS results for Case 2; (b) 

most probable USCS result. 
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