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Abstract

We present an efficient and reliable approach for the numerical modelling ot failure
with nonlocal damage models. The two major numerical challenges — the strongly
nonlinear, highly localized and parameter-dependent structural response of quasi-
brittle materials, and the interaction between non-adjacent finite elements associ-
ated to nonlocality — are addressed in detail. Efficiency is achieved with a suitable
combination of load-stepping control technique and nonlinear solver for equilibrium
equations. Reliability of the numerical results is ensured by an h-adaptive strategy
hased on error estimation. We use a residual-type error estimator for nonlinear FE
analysis based on local computations, which, at the same time, accounts for the
nonlocality of the damage model. The proposed approach is illustrated by means
of three application examples: the three-point bending test, the single-edge notched
beam test and the Brazilian test. In addition, we present a new nonlocal damage
model based on nonlocal displacements. Its good qualitative behaviour and atfrac-
tive numerical properties are discussed and illustrated by means of a uniaxial tension
test.
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1 Introduction

Damage models are nowadays a common choice in the numerical modelling
of failure of quasi-brittle materials [1]. To avoid the pathological mesh depen-
dence exhibited by local damage models, one may use either gradient damage
models or nonlocal damage models. These two related strategies regularize
the problem and ensure mesh objectivity. In gradient damage models, strain
derivatives are incorporated into the constitutive equation [2]. In nonlocal
damage models [3,4,5], strain (or, rather, a strain-related state variable) is
smoothed by means of an integral average in the vicinity — associated to a
characteristic length — of each point. The latter approach is considered in this

paper.

Another clear trend in computational mechanics is the quest for reliable com-
putations. The quality of the results must be guaranteed in an quantifiable,
objective manner. This has led to adaptive finite element analysis based on
error estimation.

The price to pay for reliable results is a large number of degrees of freedom,
especlally in nonlinear solid mechanics. This means that one needs computa-
tionally efficient numerical methods.

Of course, efficiency and reliability is a general concern in all the fields of
computational mechanics. However, when modelling quasi-brittle failure with
nonlocal damage models, we face some specific challenges:

(1) Due to brittleness, the structural response is strongly nonlinear, very
localized and highly dependent (at the quantitative and even qualitative
level) on the value of the material parameters.

(2) Due to nonlocality, there is interaction between non-adjacent finite el-
ements. This poses several difficulties. The consistent tangent stiffness
matrix, for instance (needed for quadratic convergence in Newton itera-
tions), cannot be assembled from elementary contributions solely.

(3) Many error estimators are based on local (element-wise) computations.
This fact must be conciliated with the nonlocal nature of the damage
model: adaptivity typically leads to element sizes smaller than character-
istic length.

1.1 Objectives

In this context, the main goal of this paper is to present an efficient and
reliable approach for the numerical modelling of failure with nonlocal damage
models. The key ingredients are:



(1) A residual-type error estimator based on element-wise computations which,
at the same time, accounts for the nonlocality of the constitutive model
6].

(2) An h-adaptive strategy driven by the error estimator which yields nu-
merical results with the desired accuracy. The FE discretization errors
are kept under control and, thus, the physical significance of the compu-
tations is guaranteed [7,6].

(3) Advanced arc-length control techniques, adapted to the highly localized
failure patterns.

(4) A flexible approach to achieve quadratic convergence in Newton 1tera-
tions. The element-to-element stiffness matrices can either be assembled
into the global tangent stiffness matrix [8] or accounted for in the right-
hand-side vector to prevent fill-in.

This paper also addresses another issue: the use of nonlocal displacements as
the basis of the nonlocal damage model. The standard approach is to define the
nonlocal state variable as the nonlocal average (NLA) of the (strain-related)
local state variable. Other approaches have been proposed in the literature
(see [9] for a comparative analysis), based, for instance, on nonlocal strains
or nonlocal damage. An alternative approach is presented here: to use nonlo-
cal displacements, obtained as the NLA of local displacements, to drive the
evolution of damage. According to our preliminary numerical experiments, the
resulting model exhibits a satisfactory behaviour and it is very attractive from
the computational point of view, especially regarding the computation of the
consistent tangent matrix.

1.2  Qutline of Paper

The rest of the paper is organized as follows. Nonlocal damage models are
briefly reviewed in Sect. 2. The proposed model based on nonlocal displace-
ments is presented in Sect. 3. Numerical aspects are discussed in Sect. 4.
Although they are clearly interrelated, the issues of efficiency and reliability
are covered separately for expository purposes. Regarding efficiency, see Sect.
4.1, the key features are adequate control strategies (for load-stepping) and
iterative solvers (for iterations within the load-step). The consistent tangent
matrix for the proposed model based on nonlocal displacements is derived in
Sect. 4.1.4. Reliability, see Sect. 4.2, refers to the adaptive strategy based on
error estimation. The two main aspects, nonlinearity and nonlocality, are cov-
ered respectively in Sects. 4.2.1 and 4.2.2. Section 5 contains some illustrative
applications. Finally, the concluding remarks of Sect. 6 close the paper.



Table 1
General expression of an elastic-damage model

Stress-strain relationship o(x,t) =(1 — D(x,t))Ce(x,t) (1)
Local state variable Y(x,t) =Y (e(x,t)) (2)
Nonlocal state variable Y(x,t) = | alx—2z)Y(z,t)dV (3)
Ve
Weighting function a(x —z) =a(r;l.) with r = [|x — z| (4)
Damage evolution Dix; 1) =D(m2,g{}7(x,*r)) (5)
T._..

2 Overview of Nonlocal Damage Models

FFor simplicity, only elastic-scalar damage models are considered here. However,
many of the ideas, methods and algorithms can be extended to more complex
damage models incorporating, for instance, anisotropy or plasticity [5,10].

A generic nonlocal model of such type consists of the following equations,
summarized in Table 1:

e A relation between Cauchy stresses o and small strains €, where the loss of
stiffness (from elastic stiffness C to zero stiffness) is described by means of
a scalar damage parameter D which ranges from 0 to 1, (1);

e The definition of a local state variable Y as a function of strain €, (2);

e The definition of the nonlocal state variable ¥ as the average of the local
state variable Y, (3);

e A weighting function o which depends on the distance r between two points
and contains a characteristic length [, as a parameter, (4);

e A damage evolution law, where the nonlocal state variable Y drives the
evolution of the non-decreasing damage parameter D, (5).

Many nonlocal damage models encountered in the literature can be accom-
modated with little or no modification into the general framework of Table 1.
The most common choices for (2), (4) and (5) are reviewed next.

2.1 Local State Variable

The local state variable Y is a suitable scalar measure of strains €. Three
common definitions are the energy release rate [1,11]

1 .
Y = EETCE,, (6)



the average of positive principal strains &; used in the Mazars model [12]

¥ = \/Z (max(0, ;)]”, (7)

and a function of strain invariants used in the modified von Mises model [13]

k=1 1 | fE=1.%". 1%
Y = I + — | ;
ok —2v) T 2k \ (1 - 2yI‘) (1+ ;;)2"]2 (&)

In (8), I; and J; are the first and second invariants of the strain and deviatoric
strain tensors respectively, and k is the ratio of compressive to tensile strength.

2.2  Weighting Function

The weighting function « is typically defined as

ag(r;le) = exp | (2?")2: . (10)

For computational efficiency, the infinite support of the Gaussian function is
truncated for the nonlocal averaging. Another possibility is to use a parabolic
function with compact support, see [9]. In any case, the integral in the de-
nominator of (9) is not a constant: near the boundaries, the support of ay
may lay partially outside the domain, so a lower value of the integral is ob-
tained. In fact, it is necessary to modify the Gaussian function «q into the
weighting function « as indicated by (9) to ensure consistency of order 0 (i.e.
reproducibility of constant functions). This guarantees that a constant field of
local state variable Y (x) =Y is not modified due to nonlocal averaging (that
is, Y(x) = Y(x) = Y) and, hence, that a constant strain field & results in a
constant stress field o.

As a remark, is is worth noting that this function is sometimes written as

(9,16]

CEU(T;IE) = €Xp | — (ﬂ!c) : (11)

=3 =

Note that the characteristic lengths in (10) and (11) differ by a factor of 2v/2.




2.3 Damage Fvolution Law

Two typical choices to describe the evolution of damage above the damage
threshold Y, are the exponential law [12]

Yo(1 — A)
Y

D=1 A exp [—-B (? - Yg)] (12)

and the polynomial law [17,16]

D=1 .. S— | (13)
14+ B(Y —Y) + A(Y — Yp)?

In (12) and (13), parameter A is associated to residual strength and parameter
B controls the slope of the softening branch at the peak (i.e. at Y = Yj), see

7).

In Mazars model, damage D is expressed as a combination of tensile damage
Dy and compressive damage D, [12]. Each of these two components evolves
according to an exponential law (12), with the corresponding parameters A,
and B, for compression and A; and B; for tension.

3 A Nonlocal Damage Model Based on Nonlocal Displacements

As Table 1 reflects, the standard approach is to define a scalar local state
variable Y (as a function of strains) and then to average it into the nonlocal
state variable Y, which drives the evolution of damage.

However, other variables can be selected for averaging. In fact, a number a
proposals can be found in the literature. Either scalar (for instance: damage
D) or vectorial (for instance: strain €) Gauss-point quantities may be aver-
aged into the corresponding nonlocal quantities (D and € in the two examples
mentioned). The existing approaches are compared in [9] by means of a simple
1D numerical test (bar under uniaxial tension).

A new proposal is made here: to compute nonlocal displacements 1 by aver-
aging the local (i.e. standard) displacements u. These nonlocal displacements
u drive the evolution of damage, see Table 2.

Regarding the basic ingredients of a nonlocal damage model reviewed in Sect.
2, the only one that requires some modification is the weighting function. Since
displacements, rather than strains, are averaged, consistency of order 1 (i.e.



Table 2

Standard approach (nonlocal state variable) vs. alternative approach (nonlocal dis-
placements). Subscript NL denotes quantities with nonlocal information but com-
puted locally. The tilde is reserved to truly nonlocal quantities (i.e. computed via
nonlocal average, NLA, of a local quantity)

Standard approach Alternative approach

Local displacement u Local displacement u

Local strain € = V*u Nonlocal displacement 1 = NLA (u)
Local state var. Y =Y (¢) Nonlocal strain exy, = V*u
Nonlocal state var. Y = NLA(Y) Nonlocal state var. Yy, = Y (exy)
Damage evolution D = D(?] Damage evolution D = D(Yny)

Local strain € = V°u

Stress-strain law ¢ = (1 — D)C : € Stress-strain law 0 = (1 — D)C : ¢

reproducibility of polynomials of degree 1) is needed to ensure that a constant
strain field results in a constant stress field.

This can be achieved by means of a moving least-squares fitting, a standard
technique in particle (or meshless) methods [18,19], briefly summarized here.

For a given point x, the goal is to approximate a function f in the neighbour-
hood V, (in our case, associated to a characteristic length) of x by means of
a polynomial of degree n, f;_(z),

fi.(z) = P* (z)c(x) (14)

where P(z) = {po(2),p:1(2), . .. ,pn(z)}" contains a complete basis of the space
of polynomials of degree less or equal to n. The vector of coeflicients c(x) is
obtained by a least squares fitting with the local scalar product

(9,1), = [ cwlx —E)g(E)h(€) de. (15

Va

centered at x and weighted with cq. The resulting normal equations are

M (x)c(x) = b(x) (16)
with -
M(x) = [ aolx—E)PEP(€) dg (17)
and
b(x) = | aolx— E)PE)S(€) de. (18)
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Figure 1. Nonlocal average of a linear function. Consistency of order 0: (a) whole
domain; (b) zoom in boundary. (¢) Consistency of order 1
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The smoothed function at x, f(x), is obtained by evaluating the local poly-
nomial approximation (14) at z = x, that is

f(x) = fi. [z=x%) = P* [x)e(x): (19)

For n = 0 (consistency of order 0), (19) boils down to the standard nonlocal
averaging represented by (3) and (9). For n = 1 (consistency of order 1), (16)
1s a linear system of dimension 2 to be solved at each node. This is done only
once, at the beginning of the computation, and coefficients ¢y(x) and ¢;(x)
are stored and reused throughout the analysis.

The relevance of consistency of order 1 is illustrated by Fig. 1. If a linear 1D
field of local displacements is averaged with the weighting function (9), see
Fig. 1(a), it is not reproduced correctly near the boundaries. The discrepancy
increases with nonlocality, measured as the ratio of characteristic length to
element size, see zoom in Fig. 1(b). With consistency of order 1, on the other
hand, the nonlocal displacement field matches the local field, see Fig. 1(c).

4 Numerical Aspects

As discussed in the introduction, reliability and efficiency are the two major
issues in virtually any branch of computational (solid and fluid) mechanics.
When modelling quasi-brittle materials, the development of reliable and effi-
cient algorithms must take into account that the structural response is typ-
ically (1) very nonlinear, (2) localized, (3) highly dependent on the value of
material parameters and (4) geometrically complex (curved cracks, primary
and secondary failure mechanisms, etc.).



4.1 Efficiency

Due to material nonlinearity, FE discretization of the equilibrium equation
leads to a nonlinear system of algebraic equations, which is solved in an
incremental-iterative fashion [20,21]. Thus, the two key ingredients for an ef-
ficient numerical model are:

(1) An adequate control strategy to define the increments (i.e. time- or load-
stepping).

(2) A suitable nonlinear solver for the iterations within each increment, in-
cluding the appropriate (secant or tangent) stiffness matrices.

4.1.1 Control Strategy (for Increments)

The softening behaviour of the stress-strain law leads to structural softening
of the snap-through or snap-back type, as shown in Figs. 11, 20 and 26 of
Sect. 5. As a consequence, force control is not a suitable control strategy;
either displacement control (for snap-through) or arc-length control (for snap-
through or snap-back) are required.

In any case, the localized nature of quasi-brittle failure must be accounted for.
For arc-length control, for instance, the classical constraint [20]

JAuTAu + (Afext)TAfext = As, (20)

which prescribes the norm of the increment of solution (displacement and
external forces) to a given arc-length As is not appropriate, because Au is a
global quantity that does not reflect localization.

Alternative constraints are required. Two possibilities are 7]
max |Ag;;| = As (21)

and
‘ﬁucharacteristicl — &51 (22)

where Ueparacteristic 1 one (or a combination of a few) characteristic degree(s) of
freedom. For notched specimens, for instance, one can use the CMOD (Crack-
Mouth Opening Displacement) or CMSD (Crack-Mouth Sliding Displacement)
as the arc-length parameter.

Another important issue is the proper selection of the prescribed arc-length
As. For complex computations, it is not practical to use a constant value,
so automatic load-stepping is required to adapt the “load-step” As along the
analysis. A common choice is to use ad-hoc formulas based on comparing the



desired number of iterations per step with the actual number of iterations in
the last step [20].

A more rigorous approach is to use adaptive time-stepping strategies based on
techniques for the numerical solution of ordinary differential equations. The
time error is controlled such that it is at least one order of magnitude smaller
than the space error. Thus, the effect of the time integration in the space error
may be considered negligible. This approach is developed in [22]| for initial
boundary value problems (i.e. evolutionary problems involving, for instance,
viscoelasticity or coupled chemo-mechanical behaviour of concrete). This idea
makes even more sense for the boundary value problem under consideration
here, where inertia effects are neglected (quasistatic problem), so physical time
does not appear in the governing equations. If load steps (that is, pseudo-time
increments) are properly chosen, then the error associated to load-stepping is
negligible with respect to the space error for each load level.

4.1.2  Nonlinear Solver and Stiffness Matriz (for Iterations)

Within each increment, the equilibrium equation remains nonlinear and de-
mands an iterative solution. A nonlinear solver amounts basically to the se-
lection of a particular stiffness matrix.

One possibility {17,15,7,6] is to work with the secant stiffness matrix, com-
puted from the damaged elastic moduli (1 — D)C. The main advantage of this
approach is that the secant matrix is symmetric positive definite and very sim-
ple to compute (the factor (1 — D) at each Gauss point is the only difference
with respect to the elastic stiffness matrix). The main drawback is that it must
be supplemented with convergence acceleration and, even so, convergence is
only linear.

If quadratic convergence is desired (full Newton-Raphson method), the consis-
tent tangent matrix is required [21]. For nonlocal damage models, this poses
a substantial difficulty: due to nonlocality, there is interaction between non-
adjacent nodes, and the consistent tangent matrix exhibits a larger bandwidth
(with respect to the sparsity pattern of the elastic or secant matrices) [17,8],
as discussed next.

In FE analysis, the internal force vector is typically computed with a Gauss
quadrature as

fing (1) = ZWPB;T‘T;H(“) (23)

where p ranges the Gauss points, w, are the corresponding integration weights,
B, is the usual matrix of shape function derivatives at Gauss point p and

10



stresses o, are

o,(u) = (1-D,)CB,u . (24)

The consistent tangent matrix 1s

8fmt 00
Ktau = — pr » 81:.? (25)
Combining (24) and (25) results in
Kta,n = KSEE T Knunlaca] (26)
where
K. waﬂBT D;)CB, (27)
is the secant stiffness matrix and
dD,,
Ktmnlﬂcm - Zw;}BI CE;-:J P (28)

is the nonlocal tangent contribution which accounts for the variation of the
damage parameter.

By applying the chain rule, the term 0D, /du can be expressed as

e

oD, 15y 0Yp
ou D(} )811

(29)

The integral (3) required for nonlocal averaging is also approximated via a
numerical quadrature, so the nonlocal state variable Y, is

Y —= E wq@pq};: (30)

qG‘#‘};

where ¢ ranges the Gauss points §, in the neighbourhood V,, of Gauss point
‘Ep: and Qpg = '95(?" == H‘fp = EqH)

By differentiating (30), the last term in (29) can be expressed as

81"
ou

Y
Z wﬂaiﬂ‘*‘? au z Wqllpg—— aE (31)

qc Vjﬂ QEV}J

where the chain rule and the relation d¢,/0u = B, have been used.

i



Table 3
Properties of stiffness matrices

Increased Nonlocal

Matrix Symmetry bandwidth interaction Convergence
| S Secant Yes No No Linear
Ksee + Kiocal,y Local tangent No No No Linear
| Consistent tangent No Yes Yes Quadratic

By replacing (31) into (29) and then into (28), the nonlocal matrix can be
expressed as

Y,
O€

Knunlocal,l’ - = Z wqu?:CEpD (}7)

PygeEV)

1B, (32)

where w,, = wyw,0,, and the subscript Y denotes the nonlocal quantity. Due
to the double loop in Gauss points caused by nonlocal interaction, K, oniocaly
cannot be assembled from elementary contributions solely.

To avoid the additional non-zero entries, some authors [13,16] neglect the
nonlocal interaction by taking w,, = 0 for p # ¢:

Y,
Klucal,}’ — Z UJIJP CEP (Y) Oe B (33)

However, the resulting local tangent matrix Kgoe + Kjocar,y 18 no longer con-
sistent, and quadratic convergence is lost.

These three basic choices are summarized in Table 3.

4.1.8  Quadratic Convergence Without Fill-in
[f the consistent tangent matrix is chosen, equilibrium iterations read

KE

tan

juttt = —r*, (34)

where 7 is the iteration counter, r* is the residual and du'"' is the iterative
correction in displacements.

Due to the increased bandwidth of K! , fill-in during the factorization is
considerably larger than for a local (tangent or secant) stiffness matrix. If
this additional fill-in is a critical factor, it can be avoided by accounting for
the nonlocal interaction in the right-hand-side vector. The consistent tangent

matrix can be expressed as

Kt.an == Ksec: = Klncal,l" T K;J#q,'t" (35)

12



where K.,y is the part of the nonlocal matrix Kionlocaly neglected when
approximating (32) by (33).

Equations (34) and (35) can be combined into the system of equations

(K;ec = Klﬂcal }") 5ui+] = _ri o p;éq }"5111-'—1 (36)
which can be solved with an inner iterative scheme,

( sec + K]ncal,}’) (511?;11 == I‘ o KE p#q, l’éuﬂ-l (37)

where k is the counter for the inner iterations. Note that extra fill-in 1s in-
deed precluded because the matrix in system (37) is local. Moreover, once
K. ocaly 18 factorized, the inner iterations have a relatively modest com-
putational cost. Linear convergence is expected for these inner iterations £,
but — and this is the key issue —, quadratic convergence without increased
fill-in will be achieved for the expensive, outer equilibrium equations ¢. More-
over, the tolerance of the inner k loop is usually not taken as a constant, but
dependent on outer iteration 4 to increase the efficiency. This is standard in
numerical algebra [23]. In fact at the initial iterations of the Newton-Raphson
method a larger tolerance is prescribed and, as i increases, the tolerance of
the inner loop approaches the standard value.

If factorizing the non-symmetric matrix KW + Kjycay i inconvenient with
the finite element code at hand, matrix Ki .y can be taken to the right-
hand-side. The inner loop then reads

KE

sSeC

611}:—11 — —I‘ o jr{1n:m]u::nu'::.z':l,l Yéuﬂ*] (38)

and the usual Cholesky factorization applies. More (but cheaper) inner itera-
tions should be expected.

4.1.4 Consistent tangent matriz for model based on nonlocal displacements

The proposed model based on nonlocal displacements has very attractive nu-
merical properties. As shown here, the consistent tangent matrix 1s quite sim-
pler to compute than in the standard case shown above.

Equations (23)-(28) are also valid for the new model. However, the term
0D, /du is now

8Dp ay aﬁm ou
———F = D'(Yy T = ;
( th) aENL (ERLP) ou OJOu

(39)

Note that nonlocal strains exy, are computed locally as the symmetrized gra-

13



dient of nonlocal displacements, see Table 2. This means that

OENL,

EnL, = Byu el =~
’ % du

= ;. (40)

The last term in (39), 0t1/du, reflects the nonlocality of the model. After finite
element discretization and numerical integration, the averaging process (19)

leads simply to

ol
= A_ —_— = A
u u =35 o ; (41)

where A is a matrix of nonlocal connectivity. Note that this matrix contains
purely geometrical information. It does not change as damage evolves, so it
can be computed and stored at the beginning of the analysis.

Substitution of (39), (40) and (41) into (28) results in

Knmllﬂcal,u = Klncal,uA (42)

with

oY
Oent,

Kiocalu = — »_ w,B. Ce, D' (Ya,) (ext,)Bp - (43)
p

Note that Kjoca1u can be computed in the usual way by assembling elementary
matrices, like in any local material model. After that, nonlocality is accounted
for by means of the constant matrix A, which “spreads” the stiffness of Kjqcar o
mto Knnnlnc&l,u-

By replacing (42) in (26), the consistent tangent matrix can be expressed as

Kta,n = Ksec i KIDEEL]A' (44)

This simple structure of K;,, is due to the fact that the nonlocal average
is performed completely “upstream” in the constitutive equation (i.e. with
displacements, the primal unknowns in the FE analysis).

4.2 Reliability

Even for nonlinear problems, simply obtaining a finite element solution is
nowadays not enough. One must also ensure the quality of the numerical re-
sults in an objective, quantifiable manner. With that purpose, we present here
an adaptive strategy based on error estimation [7,6]. The two key ingredients
are a residual-type error estimator for nonlinear problems [24]| and h-remeshing

25].

14



The issue of reliability is relevant in all fields of computational mechanics. In
failure modelling of quasi-brittle materials, it is critical. Due to brittleness, the
particular choice of a constitutive equation or a set of material parameters can

have a very significant influence (not only quantitative but even qualitative)
on the failure mechanism.

Of course, the finite element mesh also affects the numerical solution. For this
reason, it is essential to keep FE errors under control when assessing the effect
of material modelling. If models or sets of parameters are compared with a
given mesh (deemed “sufficiently fine” but with no objective measure of its
quality), the effect of FE discretization errors could be erroneously attributed
to the different material models.

The key ingredient of the adaptive strategy is the error estimator. We use a
residual-type error estimator first developed for linear problems in continua
26] and later extended to other problems, such as local nonlinear models,
e.g. plasticity or visco-plasticity [24,27], nonlocal nonlinear models (nonlocal
damage [6]), or (linear and nonlinear) shells [28].

The focus here is in the two main issues of the problem under consideration:
nonlinearity and nonlocality. More details about the error estimator can be
found in the references just cited.

4.2.1 Error Estimation: Nonlinearily

Finite element discretization of the governing partial differential equation ren-
ders the algebraic nonlinear equilibrium equation

£ (ug) = £, (45)

where the unknown is the nodal displacement vector ugz, fi#*(uy) is the vector
of nodal internal forces associated with uy and f§* is the discretized external
force term. Subscript H denotes that the working mesh has characteristic size

H.

The exact error of uy is defined as et := u — uy, where u is the exact
solution. Of course, e cannot be computed because u is not available.
Instead, the error et is approximated by the reference error e, := u, —upy,
where uy, is the finite element solution obtained with a finer mesh (h <€ H,

the approach considered here) or a higher-order interpolation:

ffi:.“t(uh—) = Ext : (46)

15
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Figure 2. Finite element of mesh H subdivided into 4 x 4 elements of mesh h

Note that (46) can also be expressed as

i (ug +e,) = £ (47)

Computing e, (or, equivalently, u,) is computationally much more expensive
than computing uy, because it involves solving a much larger nonlinear sys-
tem of equations over a finer mesh, (46) or (47). For this reason, the basic
idea of residual-type error estimators is to approximate e, by low-cost local
computations over subdomains.

The natural subdomains for local computations are the finite elements. For this
reason, the first phase of the error estimator consists on solving the nonlinear
system (47) locally inside each finite element of the working mesh (interior
estimate, see Table 4). To do so, each element ;. of size H is meshed into
4 x 4 elements of size h, see Fig. 2. That it, the fine mesh h is nested into the
working mesh H, with H < h/4.

To avoid the expensive flux-splitting procedures of other residual-type error
estimators (required to prescribe Neumann boundary conditions for each local
problem), homogeneous Dirichlet boundary conditions for the error are pre-
scribed on the element boundary 0€2; (that is, u;, = uy on 02 ). This equality
is also set, over all the element €2, as the initial approximation. Once error
ek 18 obtained, its squared energy norm (based on the SPD secant stiffness
matrix) is computed and added up into the global error estimate.

Of course, the error e, is not really zero along all element edges, as assumed
during the interior estimate. For this reason, a second set of local problems
1s solved, over a different partition of the computational domain into subdo-
mains. A natural choice is to associate these subdomains, called patches, to
the nodes of the working mesh (patch estimate, see Table 5). If four-noded
quadrilateral elements are used, a patch consists of one-fourth of each element
sharing the node, see Fig. 3.

4

patch tor patch Ay, the same ideas discussed for

To compute the estimate e
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Table 4
Pseudocode for the first phase of the error estimation procedure. The interior es-

timate E is stored both locally (E(Q) for k = 1,2,...) and globally (E(2) for the
whole domain €2)

loop on elements k=1,2...

e Build up local refined mesh for element {l

e Set trivial Dirichlet b.c. efjlem =0 on 0§
e Set initial approximation e’glen,l =0 in

e Solve iteratively local nonlinear problem

K ):: int

r(eﬂlem

e Compute squared local norm
E(Qk) :( ell;,m) KSL{‘ h eiem
o Stﬂre error funCtlﬂn: Eelem amm EE]EH] '_I_ eglum

o Upgrade global estimate: E(Q) + E(Q) + E(§2)

end loop

Interior estimate

Figure 3. Patch associated to a node of mesh H subdivided into 4 x 4 elements of
mesh h

elements apply. Again, the boundary conditions and the initial a,ppl oximation
for the local nonlinear problem over the patch consist in setting n® to zero over
O\, and A, respectively.

The only difference is that orthogonality between patch estimate n® and in-
terior estimate € must be imposed, to avoid accounting for the same error
contribution twice. If the Lagrange multiplier is used for boundary conditions,
then the orthogonality restriction can be prescribed as an additional “bound-
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Table 5
Pseudocode for the second phase of the error estimation procedure. The patch

estimate is used to improve the estimate both locally (E(€Q) for k = 1,2,...) and
globally (E(£2) for the whole domain )

loop on patches ¢ =1,2...

e Build up local refined mesh for patch Ay

- —_ ¢ o
e Set trivial Dirichlet b.c. €aten = 0 on oNY,

+ orthogonality to €glem

e Set initial approximation efmmh =0 in Ay

e Solve iteratively local nonlinear problem

l viss EITE 4 ext -
r(ep&tch) T fh (llﬂ E i ep&tcl'l)la"\t o f.-“L Iﬁf =4
e Compute squared local norm

E(AE) = (eﬁ )TKE et

patch sec,h ~patch

o Upgrade global estimate: E(Q2) < E(Q2) + E(A,)
e Upgrade local (element) estimate:

n = number of elements overlapping Ay

‘over =

for k such that Qi NA; # ()
E(Q) < E(Q) + E(Ag)/n

over

end loop

Patch estimate

ary” condition is a simple manner [24].

The proposed two-phase approach for error estimation is summarized in Tables
4 and 5.

4.2.2  BError Bstimation: Nonlocality

The proposed two-phase approach for error estimation consists basically in
solving two sequences of local nonlinear problems over subdomains (elements
and patches), see Tables 4 and 5. The material model, however, is nonlocal.
As a consequence, the internal forces f;,; must be carefully computed in order
to account for the nonlocal nature of the damage model [6].

The “natural” approach would be, see central column of Table 6, to obtain the
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Table 6

Standard nonlocal damage model and model modified for error estimation. Note
the difference in the computation of the nonlocal state variable, steps 4 and 5

Standard model Model for error estimation

1. Error in displ. €y €y
2. Error in strains e. = Vé(ey) e. = Vi(eu)
3. Strain Enh = EH + €¢ Ep =EH + €&
Y
4. Local state var. Y, = ¥ (&) Y, ~Yy+ C,}—~(£;_,r)eE
B
ey: Brror in Y
5. Nonlocal state var. }7;,, = NLAgub(Ys) 5 = NLAgu(ey) ;

i‘a - i;H T ey
6. Damage Dy = D(i;}a) Dy = D(?}L)

7. Stresses an = (1 t= Dh)C Ep O = (1 e D;L)C c ER

error in strains e, from the error in displacements e, (in the corresponding
element or patch), compute the refined strains €, and the local state variable
¥},. The nonlocal average over the subdomain (element & or patch ¢), NLAgyp,
then yields the nonlocal state variable Y, , which drives the damage parameter,
D,,. Finally, refined stresses oy, are computed.

Note that the nonlocal average that transforms Y} into fh is over a local
support. This fact leads to non-physical responses, especially in zones of large
damage gradients. Assume, for instance, that the error in strains is small and
en ~ €p. A small variation in Y is also expected (1 YH) However, it
may happen that Y, < Yy, because Y}, contains no mformatmn about nearby
ZONeS.

This point is illustrated in Fig. 4, which depicts the local state variable, the
nonlocal state variable and the damage parameter for a given time increment
in a zone of the working mesh H with large gradients. The circled element
has a very small local state variable Yy, see Fig. 4(a), below the threshold
Y,. However, since the elements to the right have large values of Yy, it has
a relatively large (above Y) nonlocal state variable Yy, see Fig. 4(b), which
leads to damage, see Fig. 4(c). If the standard model is used to solve the
local problem on the circled element during error estimation, a small error
in strains leads to a small variation in the local state variable which, after
nonlocal averaging over the element, results in a low value of the nonlocal
state variable (that is, Y, < iu) As a consequence, damage cannot 1ncrease
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Figure 4. Fields in a zone of large gradients: (a) local state variable Y; (b) nonlocal
state variable Y; (¢) damage. The damage threshold is Yy = 1.5 x 10~*

in the circled element during error estimation. When estimating the error for
the circled element, the nonlocal state variable Yy, rather than the local state
variable Yy, is representative of its mechanical properties.

For this reason, the nonlocal damage model is slightly modified for error es-
timation, see right column in Table 6. The difference resides in the way the
nonlocal state variable Y}, is computed. By means of a first-order Taylor ex-
pansion, the local state variable Y}, is expressed as Yy plus an error term ey .
Note that the derivatives 0Y/0e needed for computing ey are also required for
the computation of the consistent tangent matrix, so they do not represent a
computational overhead of the modified model.

The error term ey is averaged over the element/patch into ez. As a conse-

quence, Y}, is computed as the addition of a reference value Vo whlch describes

the real damaged stiffness, and an error term g,

With this modified model, a small variation in strains does result in a small
variation in the nonlocal state variable (that is, Y, ~ ?p;), (Going back to figure
4, this means that the damage level of the circled element may either remain
constant (for Y;, < Yy) or increase (for Y3, > Yy) during error estimation.

To sum up: the standard model is not capable of capturing the spread of the
damaged zone associated to error estimation.

5 Applications

In this section, various representative numerical examples are described in
detail. First, the behaviour of the proposed model based on nonlocal displace-
ments is illustrated by means of a simple uniaxial test. After that, three exper-
imental tests (the three-point bending test, the single-edge notched beam test,
and the Brazilian cylinder-splitting test) are modelled with standard nonlocal
damage models. The goal is to discuss, among others, the following issues: the
performance of the proposed adaptive strategy based on error estimation; the
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Figure 6. Uniaxial tension test with various characteristic lengths. (a) final damage
profiles; (b) force-displacement curves

influence of the material parameters on the structural response; the ability
of the proposed approach to capture complex failure mechanisms; the com-
parative performance of the various stiffness matrices; the effect of exploiting
problem symmetry on the failure pattern.

-

51 Uniaxial Tension Test

A bar is subjected to uniaxial tension, see Fig. 5(a). The one-dimensional
version of the damage model based on nonlocal displacements, see Table 2,
with Y (¢) = ¢ and a linear softening law, see Fig. 5(b), is used. The central
finite element is weakened (10% reduction in Young’s modulus) to trigger
localization.

The qualitative behaviour of the model is illustrated in Fig. 6. A fixed mesh
of 95 elements and five different characteristic lengths (from lo = h to l. =
5h) have been used. Figs. 6(a) and 6(b) show respectively the final damage
profile and the force-displacement curve. Note that, as desired, the width of
the damage zone and the brittleness of the structural response is controlled
by the characteristic length.

To check the regularization capability of the model, the test 1s reproduced
with four different meshes (of 15, 25, 35 and 45 finite elements) and three
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Figure 7. Uniaxial tension test. Width of damage profile for different meshes and
characteristic lengths
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Figure 8. Uniaxial tension test. Convergence history of the secant matrix and the
consistent tangent matrix

different characteristic lengths. Figure 7 shows clearly that the width of the
final damage profile is controlled by the characteristic length, and not by the
element size. Mesh dependence is indeed precluded with this damage model.

Figure 8 shows the convergence behaviour with two different nonlinear solvers
at representative load steps and iterations. As expected, only linear conver-
gence is achieved with the secant stiffness matrix, while the consistent tangent
matrix derived in Sect. 4.1.4 leads to quadratic convergence.
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Figure 9. Three-point bending test. Problem statement (Size D=320 mim )

Table 7

Three-point bending test. Material parameters for the Mazars model [29]
Meaning Symbol Value
Young’s modulus B 38 500 MPa
Poisson’s coefficient v 0.24
Characteristic length b 40 mm
Damage threshold Yo 3 %107
Parameter A in compression A 1.25
Parameter B in compression B, 1000
Parameter A in tension Ay 0.95
Parameter B in tension B 9000

5.2 Three-Point Bending Test

A notched beam is subjected to three-point bending, see Fig. 9. 'This test 1S
modelled with the Mazars model [12] and the material parameters obtained
in [29], see Table 7, by fitting the results of various experiments. Plane strain
conditions are assumed.

If a displacement control strategy (with vertical deflection of the point under
the load as the control variable) is used, the structural response of Fig. 10 1s
obtained. Note the abrupt softening behaviour after the peak load, typical of
quasi-brittle materials.

Both in the force-deflection and the force-COD (crack-opening displacement)
curves, Figs. 10(a) and 10(b), the softening branch exhibits, at its beginning
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Figure 10. Three-point bending test. Structural response obtained with displacement
control: (a) force-vertical deflection; (b) force-COD (crack opening displacement)
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Figure 11. Three-point bending test. Structural response obtained with arc-length
control: (a) force-vertical deflection; (b) force-COD (crack opening displacement)

a “suspicious’ straight segment. To check its meaning, the numerical test
1s repeated with a different control strategy: arc-length control with As =
IACOD]|. The results are depicted in Fig. 11.

Figure 11(a) clearly shows that the force-deflection curve exhibits a certain
amount of snap-back behaviour, which cannot be captured with a displacement
control strategy, Fig. 10, which assumes that the control variable (i.e. the
deflection in this case) increases monotonically.

Since the snap-back is moderate, there is not much difference between Figs. 10
and 11. For other problems, however, the appropriate combination of control
strategy and control variable is critical in tracking the nonlinear response [30].
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Figure 13. Single-edge notched beam. Problem statement (all distances in mm)

The convergence behaviour of the various nonlinear solvers 1s summarized
is Fig. 12. Note that quadratic convergence 1s achieved with the consistent
tangent matrix, while only linear convergence is obtained with the secant

matrix.

5.3 Single-Edge Notched Beam Test

A single-edge notched beam (SENB) is subjected to anti-symmetrical four-
point bending [31]. The geometry, loads and supports are shown in Fig. 13.
A plane stress analysis is performed. The concrete beam is modelled with
the modified von Mises nonlocal damage model [13] with exponential damage
evolution, while the steel loading platens are assumed to be elastic.

Two sets of material parameters are used for concrete [6], see Table 8. Ior
material 1, there is a significant post-peak softening in the stress-strain law
for concrete. For material 2, on the contrary, the softening is very slight, so
the residual strength almost coincides with the peak strength 132]. For steel, a
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Table 8
SENB test. The two sets of material parameters: large softening (material 1) and
very slight softening (material 2)

Value
Meaning Symbol Material 1 Material 2
Young’s modulus E 28000 MPa 35000 MPa
Poisson’s coefficient v 0.1 0.2
Characteristic length [, 10 mm 10 mm
Damage threshold Yo 1.5 x107* 6.0 x 107°
Parameter A A 0.8 0.08
Parameter B B 9000 8 200

Poisson’s coefficient » = 0.2 and a Young’s modulus 10 times that of concrete
are used.

5.3.1 SENB Test with Material 1

The results with material 1 are shown in Figs. 14-16. The initial mesh is
shown in Fig. 14(a). Note that this mesh is relatively coarse, with only one
element in the notch width. The final damage distribution and deformed mesh
(amplified 300 times), corresponding to a CMSD of 0.08 mm, is depicted in
Fig. 14(b). The curved crack pattern observed in experiments [31] is clearly
captured. The error estimation procedure discussed in Sect. 4.2 is employed
to compute the error field of Fig. 14(d). The error is larger in the damaged
zone and near the loading platens. The global relative error (i.e. energy norm
of the error in displacements over the energy norm of displacements) is 3.96%,
above a threshold set a priori of 2%, so adaptivity is required.

The error field of Fig. 14(d) is translated into the mesh of Fig. 15(a). Note
the element concentration in the crack and the central supports. This finer
mesh leads to a better definition of the damaged zone, see Fig. 15(b). The
error estimator now detects that the largest errors are associated to the edges
of the cracked zone, see Fig. 15(d). The global relative error of 2.11% is still
slightly above the error goal, so another adaptive iteration is performed. The
outcome of this second iteration is shown in Fig. 16. The qualitative results of
iteration 1 are confirmed: (1) small elements are needed to control the error
in the damaged zones and close to the loading platens and (2) error is larger
in the edges than in the centre of the crack. The global relative error of 1.77%
is below the threshold of 2%, so the adaptive iterative process stops.
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Figure 14. SENB test. Material 1, initial approx. (a) Mesh 0: 659 elem., 719 nodes;
(b) damage; (¢) deformed mesh (x300); (d) error field. Global relative error: 3.96%
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Figure 15. SENB test. Material 1, iteration 1. (a) Mesh 1: 1155 elem., 1228 nodes;
(b) damage; (¢) deformed mesh (x300); (d) error field. Global relative error: 2.11%
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Figure 16. SENB test. Material 1, iteration 2. (a) Mesh 2: 1389 elem., 1469 nodes;
(b) damage; (¢) deformed mesh (x300); (d) error field. Global relative error: 1.77%

27



5.3.2 SENB Test with Material 2

The SENB test is now reproduced with material 2, which has a stress-strain
law with almost no softening [6]. A very similar law has been employed to
simulate the SENB test with gradient-enhanced damage models [32].

The results are shown in Figs. 17-19. The initial mesh is the same as before,
see Fig. 17(a). The change in the material parameters leads to a completely
different failure pattern, dominated by bending of opposite sign in the two
halves of the beam, see Figs. 17(b) and 17(c¢c). A crack at the notch tip is
also initiated, but it is only a secondary mechanism. The error estimation
procedure has no difficulties in reflecting the change in the failure mode, see
Fig. 17(d). The global relative error is 3.66%, so adaptivity is required.

Figures 18 and 19 illustrate the adaptive process. Note that meshes 1 and 2
are quite different from the ones obtained with material 1. The global relative
errors are 2.46% and 2.13%. This value is still slightly above the threshold
of 2%. However, an additional iteration is considered not necessary for the
illustrative purpose of this test.

A final comparison between the two sets of material parameters is offered by
Fig. 20, where the total load is plotted versus the CMSD for meshes 0 and 2.
The results obtained with material 1 — a peak load of around 60 kN (with mesh
2) and post-peak structural softening, see Fig. 20(a) — are in good agreement
with the experiments [31]. With material 2, on the other hand, the peak load
is quite higher and no softening is observed, see Fig. 20(b).

As a final remark, note that Fig. 20 also shows a significant quantitative
difference between the solutions with meshes 0 and 2. The result with the
initial mesh clearly overestimates the peak load. The adaptive strategy based
on error estimation enables an accurate prediction of the structural response.

5.4 Braxzlian Test

The Brazilian (or cylinder-splitting) test provides an indirect measure of ten-
sile strength of quasi-brittle materials. A cylindrical specimen is loaded along
a diametral plane, see Fig. 21.

28



(c)

Figure 17. SENB test. Material 2, initial approx. (a) Mesh 0: 659 elem., 719 nodes;
(b) damage; (¢) deformed mesh (x300); (d) error field. Global relative error: 3.66%
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Figure 18. SENB test. Material 2, iteration 1. (a) Mesh 1: 776 elem., 848 nodes; (b)
damage; (¢) deformed mesh (x300); (d) error field. Global relative error: 2.46%
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Figure 19. SENB test. Material 2, iteration 2. (a) Mesh 2: 870 elem., and 954 nodes;
(b) damage; (c) deformed mesh (x300); (d) error field. Global relative error: 2.13%
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Figure 20. SENB test. Total load versus crack-mouth sliding displacement, (CMSD)
for meshes 0 (solid line) and 2 (dashed line): (a) with material 1 (large softening);
(b) with material 2 (very slight softening)
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Figure 21. Brazilian test. Problem statement: specimen of radius R and bearing strip

of width B. Points () and Q' are used to define the Crack Opening Displacement
(COD)

A plane strain analysis is carried out. The Mazars model is used for the quasi-
brittle specimen, while the steel loading platens are assumed to be elastic.
Geometrical and material parameters are shown in Table 9.

One goal of this example is to assess the influence of problem symmetry on the
numerical results. For this reason, two different computational domains will be
used, consisting of one-fourth and one-half of the problem domain, see Fig. 22.
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Table 9
Brazilian test. Geometric and material parameters (Mazars model)

Meaning Symbol Value

Radius of specimen R 40 mm

Width of bearing strip B 10 mm

Young’s modulus E 37700 MPa (specimen)
300000 MPa (bearing strip)

Poisson coefficient v 0.2

Characteristic length le 2 mm

Damage threshold Yo 10~

Parameter A in compression A, 1.4

Parameter B in compression B, 1 900

Parameter A in tension Ay 1

Parameter B in tension By 15600

7

(a) (b)

Figure 22. Brazilian test. Computational domain and finite element mesh for (a)
one-fourth and (b) one-half of specimen

In both cases, adequate symmetry boundary conditions are prescribed along
the symmetry axes, regarding both the displacement field and the nonlocal
averaging.

Figure 23 depicts the structural response. "I'he applied vertical load is plotted
versus the vertical displacement of the bearing strip and versus the crack
opening displacement (defined as the separation between points Q and @', see

Fig. 21 and [33].)
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Figure 23. Brazilian test. Response with computational domain of Fig. 22(a). Load
vs. (a) vertical displacement; (b) crack-opening displacement. Damage fields at
states 1-5 depicted in Fig. 24
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Figure 24. Brazilian test. Crack formation with computational domain of Fig. 22(a).
Primary crack starts at centre of specimen and propagates outwards. Secondary
cracks caused by compression on each half specimen resisting separately
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The evolution of damage is depicted in Fig. 24. Damage starts above and
below the centre of the specimen (state 1) and propagates along the loading
plane (state 2) until it reaches the bearing plates (state 3). When this pri-
mary crack is fully developed, the specimen is split into two half discs. Under
certain conditions, each half specimen has some extra resistance under com-
pression. After some reloading (state 4, see Fig. 23), a secondary crack system
leads finally to collapse. This complex failure pattern has been experimentally
observed [33] and numerically analysed in detail in [34].

Note that the double symmetry in the crack system of Fig. 24 is prescribed
a priori by the choice of the computational domain. However, one would not
expect such a perfectly symmetrical behaviour in the actual experiment, es-
pecially considering the quasi-brittle nature of the material.

For this reason, the numerical test is repeated with one-half of the specimen as
the computational domain, see Fig. 22(b). The evolution of damage is depicted
in Fig. 25. As expected, the secondary crack is no longer symmetrical with
respect to the vertical axis. Rounding errors (the numerical “equivalent” of
material heterogeneity in the actual experiment) induce a slight non-symmetry
in the primary crack and, as a result, the secondary crack only develops in
one of the half discs.

The global structural behaviour is very similar for the two analyses, see Fig.
26. The force-displacement and force-COD curves only differ in the last part,
which corresponds to the secondary crack. Note the larger stiffness of the solu-
tion with half specimen as computational domain, associated to the formation
of the secondary crack in only one side.

6 Concluding Remarks

Efficiency and reliability are two crucial issues in any field of computational
mechanics. We have addressed them here in the context of failure analysis of
quasi-brittle materials by means of nonlocal damage models. The following
conclusions may be pointed out:

o Advanced control strategies (displacement control or arc-length control with
appropriate control variables) are needed to account in an efficient manner
for the highly nonlinear and localized structural response.

e The consistent tangent matrix provides quadratic convergence in Newton
equilibrium iterations. If the extra fill-in of this matrix caused by nonlocality
is a critical factor, it can be avoided with an inner iterative loop.

e An adaptive strategy driven by an error estimator is required to ensure the
quality of the numerical results in an objective manner.
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Figure 25. Brazilian test. Crack formation computed with one-half of the specimen
as computational domain, see Fig. 22(b). Note that the secondary crack system is
no longer symmetrical with respect to the vertical axis, cf. Fig. 24
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Figure 26. Brazilian test. Effect of computational domain on mechanical behaviour.
Vertical load versus (a) vertical displacement; (b) crack-opening displacement
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e The error estimator may be based on local computations — a common ap-
proach in residual-type error estimators —, provided that the damage model
is slightly modified. The basic idea is that the error in the local state vari-
able, rather than the variable itself, is averaged.

In the numerical examples, we have attempted to cover all relevant aspects,
namely: the relative performance of various control strategies and nonlinear
solvers (three-point bending test); the quantitative and qualitative influence
of material parameters on structural response, assessed in an reliable way
thanks to the error-estimator-driven adaptive strategy (single-edge notched
beam test); the ability of the proposed approach to capture complex failure
mechanisms and the role of symmetry in the computational domain (Brazilian
test).

We have also briefly discussed a new nonlocal damage model based on the
nonlocal average of displacements (rather than the state variable). Our pre-
liminary results indicate that this model is sound from a physical point of
view and has very attractive numerical properties, especially regarding the
computation of the consistent tangent matrix.
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