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Summary. The current work presents the incorporation of the Lower-Order Refined (LOR) precondi-
tioner within the incompressible Navier-Stokes equations solver of the open-source spectral/hp element
method framework Nektar++. This preconditioner is constructed on a low-order (P=1) finite element
discretisation spectrally equivalent to a given high-order discretisation. The LOR preconditioner pro-
vides advantages like low cost operator evaluations, constant memory requirement per degree of freedom,
minimal sensitivity to high aspect-ratio elements and controlled iterative condition number with increas-
ing problem size. The contribution extends to developing a functional LOR preconditioner tailored for
mixed-element 3D mesh configurations, encompassing both prismatic and tetrahedral elements, allowing
usage for complex geometries requiring unstructured 3D meshes with boundary layers. Notably, the
Nektar++ implementation is the first instance of using the LOR preconditioner with a modal expansion
basis function. This study presents the iterative performance and scaling of the proposed preconditioner
to solve the pressure Poisson system arising from the incompressible Navier-Stokes equations solver for
industrial test cases relevant to the context of race-car aerodynamics.

1 INTRODUCTION

Spectral hp/element methods [1] have gained recent prominence in simulating high Reynolds (Re)
number incompressible flows around complex, 3D industrial geometries, including multi-element wings
[2, 3]. The iterative solution of these methods is more computationally expensive than their lower-order
counterparts because of the typically large problem sizes, various length scales involved, anisotropic
spatial discretisation and denser linear systems. These factors lead to highly ill-conditioned matrices,
and efficient preconditioning techniques are needed to alleviate the computational cost of these methods,
facilitating their adoption in industrial applications. Furthermore, the preconditioning technique must
scale to leverage modern high-performance computing systems with many CPU cores, adding design
considerations. The developments in designing an accurate, robust, efficient, and scalable precondi-
tioner will pave the way towards adopting higher-order (HO) methods in industries characterised by fast
turnaround times, such as Formula 1.

The focus of this study is the efficient design and use of preconditioning techniques for the incompress-
ible Navier-Stokes equation (IncNS) solver in the open-source spectral/hp methods framework Nektar++
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[4]. The solver is implemented using the velocity correction scheme [5], also known as the high-order
splitting scheme, which splits the incompressible Navier-Stokes equations into a pressure Poisson system
and a Helmholtz problem that includes the viscous terms. Notably, the pressure Poisson system resulting
from the velocity correction scheme presents an elliptic partial differential equation (PDE) problem,
posing a numerically challenging task for preconditioning due to its stiffness compared to the Helmholtz
problem arising from the viscous terms. Currently, available preconditioners in Nektar++ are not well-
suited to tackle these issues, necessitating the development of specialised preconditioning strategies for
the pressure Poisson system.

A potential candidate is the Lower-order refined (LOR) preconditioner, also known as the SEMFEM
preconditioner, which uses a spectrally equivalent [6] lower-order (P=1) discretisation to precondition the
high-order problem [7, 8, 9, 10]. The motivation behind this approach is to achieve a sparser preconditioner
by leveraging the sparsity of lower-order operators compared to their higher-order counterparts. The
advantages of using a lower-order discretisation to improve conditioning properties for preconditioning
the finite element method were observed previously [11, 12, 13].

Another advantage of using a LOR discretisation is its constant memory requirement per degree of
freedom, making it less memory-intensive than higher-order discretisation [14]. These methods show
minimal sensitivity to high aspect-ratio elements [9], making them suitable for complex geometries.
A bounded iterative condition number behaviour with increasing problem size was later established by
many works [15, 16, 17]. Finally, many preconditioning methods are readily available in existing software
packages, like the algebraic multigrid (AMG), to solve the lower-order problem (P=1) for elliptic PDEs
generated from the LOR discretisation.

Recent years have witnessed significant progress in the development of such lower-order precon-
ditioning techniques, especially for meshes with rectangular and hexahedral elements with Lagrange
polynomial basis and GLL-based quadrature [8, 9, 10, 18, 19, 20]. However, to the authors’ knowledge,
there is limited work for triangular elements in 2D and no available LOR preconditioner implementation
for prism, tetrahedron, and pyramid elements in 3D. Canuto et al. [10] examined the performance and
condition numbers for different P1 and Q1 type finite elements in 2D and 3D. Subsequently, Bello-
Maldonado and Fischer [9] demonstrated a lower-order finite element preconditioner for a Poisson solver
using a P1 discretisation (i.e. triangles in 2D and tetrahedrons in 3D) in the lower-order space, albeit for
rectangular and hexahedral high-order spectral elements. A low-order finite-element approach was also
tested by Schöberl et al. [21] for triangular and tetrahedral meshes, albeit in the context of overlapping
Schwarz preconditioners, and observed bounded condition number behaviour in both h and P. Chalmers
and Warburton [22] attempted the approach on triangular elements and observed that there is no optimum
node set that provides the bounded iterative condition behaviour with increasing problem size and predict
conditioning challenges if the approach is further extended to prisms, tetrahedrons and pyramids [22, 23].

This work demonstrates the LOR preconditioner for spectral/hp elements in Nektar++ for prismatic and
tetrahedron elements in 3D. The quadrilateral and triangle elements implementation in 2D was previously
communicated by Khurana et al. [24]. Another research gap addressed in this study is the implementation
of the LOR preconditioner for modal or hierarchical expansion basis functions for the higher-order finite
element, along with standard higher-order Lagrange-type basis functions. This development allows the
application of the LOR preconditioner to mixed element-type meshes necessary for unstructured meshes
around complex, 3D geometries. This study investigates the iterative conditioning, performance and
scaling of the proposed preconditioner for test cases relevant to the context of race-car aerodynamics.

The structure of the document is as follows: Section 2 provides an overview of the spectral/hp
method and how it is used to formulate the IncNS solver in Nektar++, followed by the description of
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preconditioning with a focus on LOR methodology. The LOR preconditioner’s conditioning properties,
iterative performance and scalability for the Poisson problem and within the IncNS solver are presented
in Section 3. Section 4 summarises the work with a future outlook.

2 Methods

2.1 Spectral/hp element method

Using the spectral/ℎ𝑝 element method to discretise a partial differential equation L(𝑢) = 𝑓 over a
domain Ω with appropriate boundary conditions on domain boundaries 𝜕Ω, the dependent variable is
represented using the following expansion in terms of the elemental modes:

𝑢𝛿 (x) =
𝑁dof−1∑︁
𝑛=0

𝑢̂𝑛Φ𝑛 (x) =
𝑁el∑︁
𝑒=1

𝑁𝑒
𝑚−1∑︁
𝑛=0

𝑢̂𝑒𝑛𝜙
𝑒
𝑛 (x) (1)

where the domain has a total of 𝑁dof degrees of freedom and Φ𝑛 (x) are the global basis functions and
𝑢̂𝑛 are the expansion coefficients. The domain Ω can be further decomposed into an h-sense by 𝑁el non-
overlapping elements, where Ω𝑒 signifies an element. For a P-expansion there are 𝑁𝑒

𝑚 local polynomial
expansion modes within the element Ω𝑒, with 𝜙𝑒𝑛 (x) being the 𝑛th local expansion mode within the
element Ω𝑒, and 𝑢̂𝑒𝑛 represents the 𝑛th local expansion coefficient within the element Ω𝑒.

The approximation Eqn. (1) is utilized in a Galerkin formulation. We assume L(𝑢) is a linear operator.
By using the appropriate reduced finite-dimensional function spaces for trial (𝑈 𝛿) and test (𝑉 𝛿) functions,
we wish to determine an approximate solution 𝑢𝛿 ∈ 𝑈 𝛿 that satisfies the integral equation∫

Ω

𝑣𝛿 · L(𝑢𝛿)𝑑x =

∫
Ω

𝑣𝛿 𝑓 𝑑x ∀𝑣𝛿 ∈ 𝑉 𝛿 .

If L(𝑢𝛿) contains a second-order differential operator, an integration by parts is performed to obtain the
weak form which is denoted by

𝑎(𝑣𝛿 , 𝑢𝛿) = (𝑣𝛿 , 𝑓 ).
This also allows us to enforce Neumann boundary conditions in a weak form. For a Bubnov-Galerkin
projection, where the 𝑈 𝛿 = 𝑉 𝛿 , using the approximation (1) and applying integration by parts, this
problem can be represented as the following in matrix terms

Aû = f̂ (2)

where A is the global matrix (i.e. Helmholtz or Mass matrix) with element A[𝑚] [𝑛] = 𝑎(Φ𝑚,Φ𝑛) and f̂
is the vector of coefficients f̂ [𝑚] = (Φ𝑚, 𝑓 ). The choice of basis functions (𝜙𝑒𝑛) and the quadrature rule
for Eqn. (1) affect the system matrix A. For 3D cases, Ω𝑒 is either one of the following element types:
hexahedral, prism, pyramid or tetrahedron.

Within Nektar++, the local expansion or basis functions are built from 1D functions. There are
two choices for these functions: a) modal or hierarchical expansion basis, where the expansion set of
order 𝑃 − 1 is contained within the expansion set of order 𝑃, and b) nodal expansion basis which is
a non-hierarchical basis consisting polynomials of order 𝑃 through a pre-decided set of nodal points.
In Nektar++, the modal expansion bases are P𝑡ℎ order Legendre polynomials (𝜓𝑎

𝑝 (𝜉)) modified at the
boundaries to ensure𝐶0 continuity, where a Gauss-Lobotto-Legendre quadrature is adopted for numerical
integration. The nodal expansion bases are P𝑡ℎ order Lagrange polynomial (ℎ𝑝 (𝜉)) using nodal points
through the zeros of the Gauss-Legendre-Lobatto integration rule (𝜉GLL).
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2.2 Incompressible Navier-Stokes equations solver in Nektar++

The IncNS equations solver in Nektar++ is implemented using the spectral/hp element method with a
continuous Galerkin discretisation. The IncNS equations governing viscous Newtonian fluid flows can
be written as follows:

𝜕u
𝜕𝑡

+ u · ∇u = −∇𝑝 + 𝜈∇2u + f (3a)

∇ · u = 0 (3b)

where u is the velocity, 𝑝 is the specific pressure (including density), f is the forcing term and 𝜈 the
kinematic viscosity. The solver uses the Velocity Correction Scheme (VCS) introduced by Karniadakis
et al. [5] to decouple the velocity and the pressure system. In the Nektar++ implementation of the IncNS
solver, the time is discretised using a backward approximation:

𝜕u
𝜕𝑡

𝑛+1
≃ 𝛾0ũ𝑛+1 − û

Δ𝑡
(4)

where ũ𝑛+1 is an intermediate velocity, û is the summation of previous solutions and 𝛾0 is a constant.
The chosen approximation order (𝐽) of the time derivative decides the û and 𝛾0. To decouple the system,
we impose that ∇ · ũ𝑛+1 = 0. The following final decoupled equation systems are obtained:

• Pressure: the strong form equivalent of the pressure equation system is

∇2𝑝𝑛+1 = ∇ ·
( û
Δ𝑡

− N∗,𝑛+1
)
, (5)

where N∗,𝑛+1(u) = [u·∇u]∗,𝑛+1 is the advection term (N) and the superscript indicates extrapolation
from previous solutions according to the order of the time derivative 𝐽.

• Velocity: (
∇2 − 𝛾0

𝜈Δ𝑡

)
u𝑛+1 = −

( 𝛾0
𝜈Δ𝑡

)
û + 1

𝜈
∇𝑝𝑛+1 (6)

It is useful to note that Eqn (5) and Eqn (6) take the form of a Helmholtz equation, ∇2𝑢(x) +𝜆𝑢(x) = 𝑓 (x),
where 𝑢 is the dependent variable. The pressure equation Eqn.(5) is of the Poisson form (i.e. Helmholtz
equation with 𝜆 = 0). Thus, the solution of the Helmholtz equation is the work-horse of the IncNS
solver. Using a similar procedure as Section 2.1, The Helmholtz equation can be discretised using the
spectral/hp element method which results in the following representation in matrix terms,

Hû = f (7)

where H represents the Helmholtz matrix, û are the unknown global coefficients and f is the inner product
of the expansion basis with the forcing function.

2.3 Preconditioning in Nektar++

The system in Eqn. (7) needs to be preconditioned for an iterative solution in the IncNS solver. This
is done by applying a preconditioning matrix M to the system in the following manner:

M−1(Hû − f) = 0, (8)
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to achieve an equivalent system with better iterative properties. For the iterative solvers in Nektar++, the
preconditioner M is applied to the residual vector r̂𝑘+1 at every iteration

ẑ𝑘+1 = M−1r̂𝑘+1. (9)

where r̂ = Hû − f. For a preconditioner to be effective, the condition number 𝜅 of the modified system
M−1H must be improved and be closer to 1 than H, or 𝜅(M−1H) ≪ 𝜅(H).

2.3.1 Lower-order Refined (LOR) preconditioner

For the construction of the LOR preconditioner, the global matrix H is interpolated from the higher-
order spectral/hp discretisation to its corresponding low-order (P=1) “refined” finite element discretisation
H𝐿 . The conceptual representation of this conversion is seen in Fig. 1, where the LOR mesh on the right
is a sub-structured grid of collocated Gauss-Lobatto-Legendre (GLL) nodal points. The application of
the preconditioning matrix M is then formulated as M−1 = H−1

𝐿
.

` `

Figure 1: Representation of converting a higher-order finite element grid at P=3 to its lower-order P=1 equivalent
for the LOR preconditioner. The red dots represent the points on the linear mesh, and the purple dots represent the
quadrature points within a linear element. The resulting LOR mesh only contains linear DOF. The spacing of the
linear DOF for the LOR mesh here is done in a GLL manner, the same as that of the higher-order element.

For the high-order discretisation H, every internal DOF is coupled with every other DOF in an
element. The conversion to the LOR space H𝐿 increases the sparsity as now the DOF are only connected
to their immediate neighbours. The difference in connectivity between the two discretisations is further
accentuated in mathematical operators, even if the number of DOF is the same (as seen in Fig. 1). Thus,
the operators on the lower-order discretisation are cheaper to evaluate than their higher-order counterparts.
The generalised Vandemonde matrix V from Eqn. (10) is used for the interpolation of the higher-order
polynomial space to the collocated Lagrange basis in the LOR space. In matrix terms, this interpolation
is expressed as,

V f̂ = f (10)

where, f [𝑖] = 𝑓 (𝜉i) is the known polynomial expansion, V[𝑖] [ 𝑗] = 𝜙 𝑗 (𝜉i) where 𝜙 𝑗 is the chosen basis
function and f̂ [ 𝑗] = 𝑓 (𝜉j) are the unknown expansion coefficients. The unknown Lagrange polynomials
are then found using f̂ = V−1f. The interpolation basis works for any basis selection in the HO space,
where the matrix V is appropriately constructed according to the choice of higher-order expansion basis
[1]. The interpolation for the case of the nodal expansion corresponds to a collocation projection. In
contrast, a modal expansion basis is more involved as the construction of V has to handle the change of
basis. The interpolation step is applied to both the trial and test functions in the higher-order polynomial
space, and the interpolated functions are then used to construct H𝐿 .

Fig. 2 gives an overview of the Nektar++ LOR preconditioner algorithm. The input to the LOR
preconditioner code is the residual of the iterative solution r̂ at a given iteration. Interpolation of
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the solution from the HO discretisation to the LOR space is done using an appropriately constructed
generalised Vandemonde matrix V, depending on the choice of the higher-order expansion basis. Post
the interpolation to the LOR space; the linear system is solved using an appropriately chosen solution
strategy, referred to as the inner-iteration strategy from here on. The solution from the LOR mesh is then
copied back to the HO space, which is then transformed back onto the original expansion by the inverse
of the V matrix operation. Appropriate scatter-gather transformations are handled using the assembly
maps (A𝐻 ,A𝐿) in both spaces.

`

Input r̂

Solve LOR System

Global to Local Change of basis: HO to LOR Scatter

Local to Global Change of basis: LOR to HO Gather

Figure 2: Representation of the current algorithm for the LOR preconditioner. There are three major steps: a) The
conversion to the LOR mesh (left to right), b) solving the LOR linear system and c) projecting the solution back to
the HO mesh (right to left). This process takes place at every preconditioned iteration.

2.3.2 LOR space for simplices

The choice of discretisation in the LOR space affects the conditioning properties of the LOR precon-
ditioner. The default point distribution in the LOR space is the GLL distribution, which is consistent
with the spectral equivalence of the HO-LOR spaces. However, the LOR space for simplices like prisms
and tetrahedrons requires extra considerations. For a nodal expansion in triangles and tetrahedrons, a
closed-form expression for Lagrange polynomial does not exist like in the case of tensorial product of
modal expansions for Gauss-Lobatto-Legendre (GLL) nodal points [1]. Thus, the formation of LOR
space, which is a grid of collocated nodal points at P = 1, can’t be created in a straightforward manner
with either choice of higher-order expansion basis.

To solve this issue, Nektar++ originally uses a more easily defined polynomial expansion (𝜙𝑒𝑙𝑒) through
a different set of nodal points of the same dimension, spanning the same space, called the electrostatic
points (𝜉ele) instead of the chosen GLL nodal points (𝜉GLL), based on the work of Hesthaven [25]. For
the new set of nodal points, the interior nodal points are determined by the minimisation of electrostatic
potential, and all the edge points are constrained to GLL quadrature points. The same approach is
translated to the construction of LOR space. The visualisation of this construction is seen in Fig. 3.
Fig. 3a and 3b show the LOR space for tetrahedrons at P = 3 and 6. Fig. 3c and 3d show the LOR space
for prisms at P = 3 and 6, where a prismatic domain expansion is achieved by extending the triangular
nodal expansion by making a tensor product with the Lagrange polynomial in the third direction. The
reader is referred to Khurana et al. [24] for a detailed explanation of the construction of LOR space for
triangles.
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(a) Tetrahedron at P = 3 (b) Tetrahedron at P = 6

(c) Prism at P = 3 (d) Prism at P = 6

Figure 3: Visual representation of the creating the LOR space for simplices at P = 3 and 6. Within each subfigure,
the figure on the right shows the LOR space for a HO element on the left. The LOR space is viewed as a collocated
Lagrange basis at P=1 indicated by red dots, with on 𝜉ele points in the interior and 𝜉GLL points constrained the
boundary. One can identify this by looking at any of the triangular faces for the simplices.

3 Results

An efficient solution of the pressure Poisson in Eqn. (5) is the primary application of interest for
improving the performance of the IncNS solver. Thus, the Poisson equation (Eqn. 11) is the primary test
problem for this study

∇2𝑢(x) = 𝑓 (x) (11)

A simple, known forcing function in Eqn. (12) is used for all test cases in further sections, with either a
Dirichlet boundary condition from Eqn. (13) or a zero Neumann boundary condition on the boundaries
unless specified otherwise.

Forcing: 𝑓 (x) = −𝑑∏𝑑
𝑖=1 sin(𝑥𝑖) (12)

Dirichlet BCs: 𝑢𝜕Ω =
∏𝑑

𝑖=1 sin(𝑥𝑖) (13)

To understand the conditioning properties of the preconditioning strategies in this section, an iterative
condition number (𝜅) is used, which is evaluated for the action of the preconditioning matrix M or
𝜅(M−1H). The 𝜅 is estimated by the ratio of magnitudes of the max and min eigenvalues 𝜆 of the system,
i.e., |𝜆𝑚𝑎𝑥 |

|𝜆𝑚𝑖𝑛 | . A standard eigensolver based on the QR-method [26] has been used out of the box to evaluate
the eigenvalues. The iterative solver settings used in the upcoming sections are detailed in the Appendix.
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3.1 Conditioning properties

A unit cube in 3D as seen in Fig. 4, discretised using tetrahedrons and prisms, is the first test case of
this study. The LOR preconditioner is evaluated on meshes containing only prisms (Fig. 4a) and only
tetrahedrons (Fig. 4b) to understand the conditioning properties for these element types. The Poisson
problem is solved with the forcing function in Eqn. (12) for 𝑑 = 3 and Dirichlet BCs from Eqn. (13) on
all the domain boundaries. A modal HO basis function is chosen, described in Section 2.1.

(a) Cube-prism mesh (b) Cube-tet mesh
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Cube-prism - Diagonal

Cube-prism - LOR

Cube-tet - Diagonal

Cube-tet - LOR

(c) 𝜅 with P for different preconditioners

Figure 4: Comparison of the condition number (𝜅) on applying the LOR preconditioner for the cube case with
Dirichlet BCs on all boundaries. Two different meshes are investigated to see the effect of different types of
higher-order elements.

Fig. 4c compares the condition number for a prism mesh (Cube-prism) to the tetrahedron mesh (Cube-
tet) for increasing polynomial order. The conditioning of the LOR preconditioner is better than the
Diagonal; however, it still shows an increasing trend, especially at higher polynomial orders. However,
for the polynomial range of 𝑃 ≤ 6, the condition number is controlled, and the hope is that this will be
sufficient to improve the conditioning of larger 3D meshes.

3.2 Iterative performance

To further evaluate the iterative properties of the LOR preconditioner, the performance of the precon-
ditioned GMRES solution is evaluated here for a flow past a 3D Hemisphere case seen in Fig. 5. The
Poisson problem is solved in the domain with either Dirichlet BCs from Eqn.(13) on all boundaries or
zero Neumann BCs on all boundaries but the outlet, which is Dirichlet from Eqn.(13).

Two different meshes are considered for this geometry - one containing only tetrahedron elements
(Fig. 5a) and the second mesh contains six additional prism layers on the surface of the hemisphere
(Fig. 5b). The second mesh is a step towards meshes typical of aerodynamics simulations, where
boundary layers are added to better resolve the near-wall flow.

Fig. 6 shows the results for the outer iterations needed to solve the Poisson equation for the 3D
hemisphere case with increasing polynomial order. A comparison is made with the default iterative
solver configuration for the pressure system in the IncNS solver for large 3D cases, also referred to as
“Baseline”, moving forward. The default setup applies a static condensation to the system matrix [1] and
uses a conjugate gradient solver with the Diagonal preconditioner (Diagonal+CG+StaticCond in Fig. 6).
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(a) Only tetrahedrons (5272 elements) (b) Tetrahedrons and 6 prism layers (5076 elements)

Figure 5: Meshes for the 3D Hemisphere case. The meshes have been generated using the MCF file capability in
the mesh generation software NekMesh [27], with the same settings across the two meshes. The top row shows the
isometric view of the surface mesh inside the domain, and the bottom row shows the bottom view of the domain.
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Figure 6: Outer iterations to solve the Poisson equation for the 3D Hemisphere case - polynomial order sweep.
The iteration results are an average of three runs on 10 MPI ranks on a single computational node. StaticCond =
Static Condensation. LOR/Diagonal: Preconditioner. CG/GMRES: Iterative solver. Dirichlet: Dirichlet BC on
all boundaries. Neumann: Zero Neumann BCs on all domain boundaries apart from the outlet, which is Dirichlet.
1iter = 1 V-cycle of AMG for LOR solution. tol1e-4 = V-cycles are applied until relative tolerance drop of 10−4.

The iterative performance of the LOR preconditioner is consistently best across the two meshes and
boundary condition choices for the polynomial range of 𝑃 ≤ 6. For higher polynomial orders, the
Diagonal preconditioner with GMRES performs better than LOR only for the Dirichlet BCs. However,
this is not too concerning as the Neumann case is more similar to the BCs applied for the pressure system
for an incompressible flow simulation. For complex meshes, such a high polynomial order is rarely used.
Interestingly, LOR always performs better than the Baseline configuration for the pressure system.
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Two LOR inner iteration strategies are also tested, where at every inner solver iteration, either 1 AMG
V-cycle is applied (1iter), or V-cycles are applied until a drop of 10−4 is seen in the residual (tol1e-4).
The tol1e-4 approach shows a lower outer iteration count as the inner solution is solved to a lower residual
due to the application of multiple V-cycles. The 1iter approach also gave variable iteration results across
the three runs due to the inaccuracies in solving the LOR space problem. However, the 1iter approach is
not considerably far off iterations-wise from the tol1e-4.

3.3 Application on industrial test cases

The Imperial Front Wing (IFW) is a publicly available industrial benchmark [28]. IFW is a multi-
element wing operating in ground effect, generating a complex system of interacting vortices downstream,
which is a good stress-test case for the IncNS solver. The industrial test cases considered for the current
study are: a) IFW with a wheel downstream (IFW-W, Fig. 7a), and b) a slice of the IFW at a spanwise
section 250mm from the symmetry plane extruded 50mm in width (eIFW, Fig. 7b). The higher-order
mesh for both cases is a mixture of tetrahedrons and prisms. The performance of the LOR preconditioner
is compared with the Baseline setup for large 3D simulations in the IncNS solver. The tests run in this
section use the HX1 cluster from Imperial College Research Computing Service. Each compute node
in the cluster contains Lenovo SD630v2 servers, each with 2 x Intel Xeon Platinum 8358 (Ice Lake)
2.60GHz 32-core processors; resulting in 64 cores per node and 512 GB RAM per node.

(a) IFW with Wheel (2.87 × 106 elements) (b) extruded IFW slice (4.22 × 105 elements)

Figure 7: Geometry for the test cases in this study. The higher-order meshes are a mixture of tetrahedrons and
prisms, with eight boundary layers along the airfoil elements and five boundary layers on the floor profile containing
prismatic elements. The rest of the domain is filled with tetrahedron elements.

3.3.1 Poisson Solve performance

The LOR preconditioner’s iterative performance is tested on the IFW-W case. The Poisson problem
is solved in the domain with zero Neumann BCs on all boundaries but the outlet, which is specified as
zero Dirichlet. Table 1 compares the iterations and timings information of the Poisson solve for two
polynomial orders. LOR outperforms the Baseline setup for a problem of this size both for the iterations
needed and time to solve. The time to solve for the LOR preconditioner scales up approximately as the
local degrees of freedom on increasing the polynomial order. The cost of a LOR iteration (time to solve
per iteration) is much higher (about 20x) than that of the Baseline setup. However, the conditioning
properties of LOR control the number of iterations well within this margin.
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Polynomial
order (P)

Degrees of
Freedom (×106)

Outer iterations
to 1e-4 tolerance

Time to Solve
[sec]

Time to Solve
per iteration [sec]

Global Local LOR Baseline LOR Baseline LOR Baseline
2 9.59 53.1 67 3504 6.578 39.097 0.0981 0.0046
3 32.2 112.1 124 4142 16.313 62.414 0.3178 0.0151

Table 1: Comparison of LOR and Baseline configurations for solving the Poisson equation for the IFW with Wheel.
The tests are run on 12 computational nodes on the HX1 cluster.

A strong scaling study is further conducted to understand the scaling performance of the LOR
preconditioner. Fig. 8 shows solve time per iteration costs and compares LOR vs Baseline configurations.
There is an evident loss in scaling seen in Fig. 8a and 8b for the time to solve the Poisson equation, as the
deviation from ideal scaling is much larger for LOR compared to the Baseline. To attempt to understand
this loss of scaling, the three major steps in the LOR preconditioner, as explained previously in Fig. 2, are
timed. Fig. 8c indicates that most of the loss in scaling comes from the SolveLORSystem routine, which
uses the AMG routines to solve the LOR space. The solution transfer to and from the HO-LOR spaces
scales up ideally.

Furthermore, for a given polynomial order, Fig. 8a has some missing points towards higher local DOF
per rank for the LOR compared to the baseline. This is due to the memory footprint of the LOR being
much larger than the Baseline setup, which does not allow the simulation to run when few computational
resources are available. The LOR preconditioner requires the generation of the LOR space, which
becomes a memory-intensive task in the current implementation for a complex geometry simulation.
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Figure 8: Strong scaling study - Time to solve for Poisson equation for the IFW with Wheel. The black dotted line
indicates ideal scaling. The tests are run on 1, 2, 4, 8, 12, 16, 20, and 28 computational nodes on HX1 cluster.

3.3.2 Performance within the IncNS solver

This section evaluates the performance of the LOR preconditioner for the pressure system within the
IncNS solver of Nektar++. The tests are done for an unsteady flow at a 𝑅𝑒 = 2 × 105 around the eIFW
test case. The tests done here are done by varying the configuration of the pressure system only. The
setup of the simulations in this section is detailed in the Appendix.

The simulation is run at a polynomial order of P=3 for pressure for 0.5 seconds, or two convective
time units (CTU) at a constant timestep of 10−5 seconds. Table 2 shows the average iteration numbers
and timing information from CTU = 1 to CTU = 2. The LOR provides an improvement of 31% over the
Baseline setup for the pressure solution. The average outer iterations needed for the pressure solution are
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9 GMRES iterations for LOR compared to 518 for Baseline, albeit cheaper, conjugate gradient iterations.
The velocity system is unaffected by the changes in the pressure system setup, as the average iterations
remain the same.

Avg time per Timestep [sec] Time to CTU [hrs] Avg. Pressure iters Avg. Velocity iters (U,V,W )
LOR 2.745 19.06 9 (45,38,44)

Baseline 3.979 27.63 518 (45,38,44)

Table 2: Timings and Iterative performance for the extruded IFW case with the IncNS solver. The numbers are
averaged from CTU = 1 to CTU = 2, resulting in 25000 solver steps. The simulations are run on 4 compute nodes.

Fig. 9 shows the evolution of various properties for the simulation of the LOR vs Baseline setup
for the pressure system. The pressure iterations differ by one order of magnitude, and LOR converges
to approximately 10 iterations. The variance in pressure iterations is also lower for the LOR, which
testifies to the conditioning properties of this preconditioner. The evolution of force coefficients and
Courant-Friedrichs-Lewy (CFL) number is similar for the two setups, validating the LOR preconditioner
implementation.

100 101 102 103 104

IncNS Solver time steps

101

102

103

P
re

ss
u

re
It

er
at

io
n

s

Baseline - Conjugate Gradient, Diagonal

LOR - GMRES, LOR

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (CTU)

1.05

1.10

1.15

C
F
L

Baseline

LOR

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (CTU)

0.012

0.014

0.016

C
D

Baseline - Mean: 0.01462

LOR - Mean: 0.01467

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (CTU)

−0.59

−0.58

−0.57

C
L

Baseline - Mean: -0.5815

LOR - Mean: -0.5816

Figure 9: Time stepping evolution of parameters for the extruded IFW case with the IncNS solver.

4 Conclusion and Future work

The current study presents the LOR preconditioner for mixed-element 3D mesh configurations con-
taining simplex elements within the incompressible Navier-Stokes (IncNS) equations solver of Nektar++.
LOR preconditioner provides improved conditioning properties over the existing preconditioners for the
pressure Poisson system, which translates to better iterative performance. These advantages are seen
upon testing the LOR preconditioner for selected industrial geometries based on the Imperial Front
Wing. However, two issues in the current implementation are also exposed: scalability and memory
footprint, which limit the application envelope of the LOR preconditioner. Nevertheless, using the LOR
preconditioner within the IncNS solver provides substantial computational gains for incompressible flow
simulations. Future work for this preconditioner involves improving the scalability of the LOR algorithm
by focusing on the solution strategy of the LOR space. Efforts will also be undertaken to improve memory
consumption by debugging mesh graph routines and looking into matrix-free approaches.
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Appendix

Iterative solver settings: All the tests in this study which use an iterative solver have been run until a
convergence tolerance 10−4 is reached. The solver used most frequently is GMRES, with a restart after
the GMRES projection reaches 100 vectors.

• BoomerAMG from Hypre [29] is used via its interface from PETSc [30] for solving the LOR space.
Solver settings for LOR inner iteration strategy:

– 1 V-cycle for AMG, or until a tolerance, if specified
– HMIS coarsening
– Strong threshold = 0.70 for 3D cases
– Coarse grid size = 10 to control the levels of AMG cycle
– Extended+i interpolation with a Pmax = 2 and truncation of 0.3
– SOR/Jacobi smoothener with two sweeps going up and down

IncNS solver simulation setup: The characteristic length of the Imperial Front Wing geometry and its
variants is described by the chord length of the main element and is equal to 0.25 m. The computational
domain emulates the extruded IFW inside a wind tunnel. The freestream air enters the domain and is
enforced as a uniform Dirichlet boundary condition at the inlet. The ceiling and the side walls are treated
as slip walls. A high-order stable form of zero Neumann boundary condition at the outlet is used for
velocity, and the pressure is fixed to the ambient pressure.

• Solver settings:

– Taylor-Hood approximation: The polynomial order for the velocity is P+1, pressure is P.
– A second-order time-integration scheme with a constant time-step of 10−5 sec.
– Initialisation from a velocity field obtained from a RANS solution, and the pressure is 0.
– Linear solvers use an absolute tolerance strategy with a convergence tolerance 10−4.
– Stabilisation: Spectral Vanishing Viscosity DG Kernel [31]
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