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1 INTRODUCTION

Over the past few years, there has been an increase of clinical interest aimed at looking
for correlations between morphology, extracted through Statistical Shape Models (SSMs), and
hemodynamic features, derived from Computational Fluid Dynamic (CFD) simulations, in car-
diovascular diseases [1]. Statistical Shape Models are well-established tools for assessing the
variability of vascular geometries. Starting from a heterogeneous population, SSMs can pro-
vide useful biomarker information in terms of geometrical features (e.g. size, curvature, ori-
entation) [2]. SSMs are based on a non-rigid registration process, which can be challenging
to perform with complex anatomies, coupled with a dimensionality reduction step, typically
achieved through Principal Component Analysis (PCA). Thoracic aorta diseases can present a
particularly complex morphological scenario, and several studies in literature have explored the
connection between vessel geometry and hemodynamics [3]. These studies mainly focused on a
patient-specific investigation, with no statistical analyses. Due to the complex shapes involved,
when a statistical perspective is employed, the supra-aortic vessels are excluded [4] or modeled
in an idealised manner [5]. This is also true when the hemodynamic descriptors are derived
from CFD simulations [6]. In the context of the pulmonary artery (PA), Tetralogy of Fallot
(ToF) represents a complex case of cardiovascular disease, where geometries are subject to sig-
nificant variations. Despite the overall geometry presents a simplified scenario, the associated
Y-shape varies considerably among patients. Furthermore, since this disease predominantly af-
fects paediatric patients, the complexity of studying these morphologies is further increased by
the surgeries they have undergone. Capuano and colleagues [7] studied the flow split by applying
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an SSM to five healthy patients. In [8], the geometric variability and flow distribution in the
pulmonary arteries of seven ToF patients were studied with respect to blood flow characteris-
tics. More recently, the differences in blood flow dynamics between healthy adults and those
who have undergone repair for ToF were also investigated [9].
The aim of this work is to present a fully automated pipeline able to correlate morphology
and hemodynamic results for two complex cardiovascular districts: thoracic aortas affected by
aneurysms and pulmonary arteries with Tetralogy of Fallot. The framework combines the ability
of SSMs to quantify shape complexity and to generate new realistic geometries, to hemodynamic
results from CFD simulations. Finally, a correlation study between the morphological and hemo-
dynamic features, derived from SSMs and CFD simulations respectively, is presented.

2 MATERIALS AND METHODS

2.1 Image processing

A total of 50 thoracic aortas from CT and 40 pulmonary arteries from MRI were considered.
The dataset of thoracic aortas included both healthy and aneurysmatic cases; while all the
pulmonary arteries were affected by Tetralogy of Fallot. Table 1 reports the clinical data for
both datasets.

Table 1: Population demographic and clinical data.

District Dataset Image technique Age (years) Sex (females/males)

Aorta 50 CT 65.7 ± 13 18/32

Pulmonary 40 MR 22 ± 10 22/18

The images were processed with a semi-automatic segmentation approach in 3D-Slicer [10]
using a region-growing algorithm to extract the 3D virtual geometries. Segmented anatomies
were further refined using the open source software Meshmixer (Autodesk Inc., USA) to improve
surface quality.

2.2 Statistical Shape Models

In Scarpolini et al. [11] our non-rigid registration algorithm able to include the supra-aortic
vessels in the analysis of complex morphology of thoracic aortas was presented. Briefly, the key
concept of a non-rigid registration process is to deform a source surface mesh Ms into a target
surface mesh Mt [12]. This goal was obtained with the minimization of the objective function
ϕ(Ms,Mt), described in Eq.1. This includes both the distance between the two whole surfaces
d(Ms,Mt) and the distance between pairs of open boundaries

∑n
j=1 αjd(B

j
s , B

j
t ), where n is

the number of open boundaries and Bj
s and Bj

t are the set of points on the j-th open boundary
of the source and target mesh, respectively.

ϕ(Ms,Mt) = d(Ms,Mt) +
n∑

j=1

αjd(B
j
s , B

j
t ) (1)

This latter term acted as landmarks to achieve the correct registration of the supra-aortic
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branches (n = 5) and, when the code was adapted to the pulmonary cases, the summation
of the latter term in Eq.1 was reduced to n = 3 as there are only three open boundaries in the
pulmonary arteries. The update rule for the minimization problem used a modified second-order
gradient descent approach. To enhance registration performances, the registration process was
iteratively applied four times using a multi-scale strategy with varying mesh resolutions. This
multi-scale non-rigid registration algorithm R(Ms,Mt) was applied between the source Ms

template geometry and each model of the dataset Mi
t (i = 1, ...,M with M=50/40 as the total

number of aortas and PAs, respectively). This allowed to represent each of all the 3D models
of the starting dataset as shape s, i.e. as a vector were the coordinates of the k-points are
concatenated:

s = (x1, y1, z1, ..., xk, yk, zk)
T (2)

This process produced the shape dataset, characterised by isotopological surface meshes,
meaning all meshes had three main features: (i) same number of k-points; (ii) same connectivity
and; (iii) point-to-point correspondence. To evaluate registration performances, the Chamfer
and Hausdorff distances were measured between the initial and the shape datasets for each
sample. Lastly, to create the SSM, it was necessary to reduce the dimensionality of the dataset.
Principal Component Analysis is one of the most commonly used tools for this purpose. It is a
statistical procedure that allows summarizing the information in large data tables with minimal
information loss. PCA performs eigendecomposition of the covariance matrix S of the shape
dataset as follows:

S =
1

M − 1

M∑
i=1

(si − s̄)(si − s̄) (3)

Then it extracts the m = min((M − 1), 3k) principal modes of variation (eigenvectors ϕi) and
their associated variances (eigenvalues λi). These modes are uncorrelated and ordered by de-
creasing values of variance (λ1 ≥ ... ≥ λm). For the purposes of dimensionality reduction, the
number of modes was reduced to the first m′ = 16 ones, as the percentage of their cumulated
variance is ∼98% and ∼97% for the thoracic aortas and PAs, respectively (Fig. 1). These
percentages indicate that the mesh reconstruction, which involves a linear combination of the
anatomical modes that deform the average mesh, can be achieved without significant informa-
tion loss. At this point, new realistic shapes can be generated by varying the coefficients ωi from
a Gaussian distribution, of the linear combinations:

s = s̄+
∑
i

ωiϕi (4)

2.3 CFD simulations

Concerning the aortic district, by varying mode 0, we observed a variation from a healthy
to a complete aneurysmatic shape and this is due to the fact that this mode accounts for most
of the variability within the dataset (∼35%). CFD simulations were carried out on five new
shapes, generated by varying the coefficients ωi between ±2 standard deviation (SD) of this first
mode (

√
λ1), with intermediate steps of 1.

In the PAs cases, however, it is the study of the flow split at the bifurcation which is of clinical
interest, so we focused on the variation of mode 4. The volumetric meshes were generated with
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Figure 1: Individual and Cumulative variance of the first 16 modes for both the thoracic aorta (a) and
the pulmonary arteries (b). The percentage of the cumulated variance is ∼98% for the thoracic aortas
and ∼97% for the PAs.

an automatic in-house script which prepares the superficial mesh as a multiblock model with
wall, caps and extensions and generates the volumetric mesh in ANSA BETA CAE. The meshes
were characterized by an average element edge size of 1 mm and an imposed target skewness
of 0.45. The numerical simulations were conducted using AnsysTM FluentTM , where the 3D
incompressible Navier-Stokes equations were solved numerically in their discrete form using
the finite volume method for blood flow simulation. Blood was modeled as an incompressible,
Newtonian, and laminar fluid with a constant density of 1060 kg/m3 and a viscosity of 3.5
10−3Pa · s. The arterial wall was assumed to be rigid with no-slip conditions. Three cardiac
cycles of 0.8 seconds each were simulated, and results from only the last cycle were considered.
Figure 2 depicts the boundary conditions applied for each district. Since the simulations had to
be run on the same mesh resulting from the PCA statistical atlas deformed between ±2 SD of
mode 0 and of mode 4, fixed ideal flows were applied at the inlets: the ascending aorta [13], and
the main pulmonary artery (MPA) [14]. This resulted in a variable inlet velocity, depending on
the inlet area of each mesh itself.
For the thoracic aorta, a three element Windkessel model was applied at the four outlets: the
three supra-aortic branches and the descending aorta. The associated RCR model is composed
of a proximal resistance RP , in series with a parallel made of a distal resistance RD and a
capacitance C [15]. For the calculation of the Windkessel parameters, the process described in
Xiao et al. [16] was applied. The associated pressure was derived from the following ordinary
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differential equation:

P (t) +RDC
dP (t)

dt
= RP +RDQ(t) +RPRDC

dQ(t)

dt
+ PD(t) +RPC

dPD(t)

dt
(5)

For the PAs a constant pressure was applied at the two outlets corresponding to the left and
right pulmonary artery (LPA and RPA, respectively) as described in Fanni et al. [17].

𝑅𝑝𝑖 = 𝑅𝑝
𝐴𝑡𝑜𝑡

𝐴𝑖

𝑅𝑑𝑖 = 𝑅𝑑
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Figure 2: CFD simulation setup for a) the thoracic aorta and b) the pulmonary arteries with an ideal
flow at the inlet and the RCR lumped model at the outlets.

2.4 Correlation Analysis

In order to asses the effects of the morphology on the hemodynamics, the wall shear stress
(WSS)-based descriptors were evaluated for the aortic vessel. In particular, the Time Aver-
aged Wall Shear Stress (TAWSS), the Oscillatory Shear Index (OSI), and the Endothelial Cell
Activation Potential (ECAP) were calculated as follows:

TAWSS =
1

T

∫ T

0
|WSS(t)| · dt (6)

OSI = 0.5

1−

∣∣∣∫ T
0 WSS(t) · dt

∣∣∣∫ T
0 |WSS(t)| · dt

 (7)

ECAP =
OSI

TAWSS
(8)

The TAWSS represents the average WSS magnitude over the total time of a cardiac cycle
(T); the OSI quantifies the change in direction and magnitude of WSS; while the ECAP is the
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ratio between OSI and TAWSS and characterizes the degree of thrombogenic susceptibility of
the vessel wall. We focused the investigation on the ascending aortic portion, as this is the area
characterised by the aneurysmatic dilation. The aneurysms was selected on the mesh at +2
SD, as this is where the aneurysm is most evident. The point-to-point correspondence achieved
with the SSM allowed us to apply this selection to all the other four meshes simply by using
point identifiers. Traditional bivariate correlation analysis (Pearson correlation coefficient r and
p-value p were evaluated) was then employed to evaluate these correlations.
In the PAs cases, we focused our attention on the flow split at the bifurcation, as this is the
parameter of greatest clinical interest. This flow split was evaluated in relation to the geometric
changes.

3 RESULTS

3.1 Statistical Shape Models

Figure 3 depicts the results of the non-rigid registration process for both the aorta with
the supra-aortic vessels (Fig. 3a) and the pulmonary arteries (Fig. 3b). As we can observe,
during the registration process, as coarser details were captured, the resolution increases to cope
with finer details. Similarly, the registration process for the pulmonary arteries was successful,

a)

b)

Figure 3: Examples of non rigid registration results for a) thoracic aorta and b) pulmonary artery. The
template geometry (blue) is deformed in the target mesh (red) with changes in resolution during the
process.

despite the geometries were very peculiar and different from each other (Fig. 3b). Evaluations
using Chamfer and Hausdorff distances between the registered shapes and the original targets
showed a maximum error of 0.5 mm, consistent with the average edge length of each surface mesh.
Regarding dimensionality reduction, we retained the first 16 modes as they accounted for almost
98 and 97% of the total variability in the dataset (aorta and PA, respectively). This ensured
minimal information loss when reconstructing and generating new geometries. As expected,
since the aorta dataset was made of both healthy and aneurysmatic patients, the change of
mode 0 from -2 to +2 standard deviation, resulted in a geometry-change from a healthy to a
completely aneurysmatic shape (Fig. 4a). A variation in the size and curvature of LPA and
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RPA can be observed in the variation of mode 4 (Fig. 4b).

Mode 0

Mode 4

0 SD +2 SD+1 SD-1 SD-2 SD

a)

b)

Figure 4: New generated shapes for a) the thoracic aorta and b) the pulmonary arteries by varying
mode 0 and mode 4 from -2 to +2 standard deviation, respectively.

3.2 CFD Simulations and Correlation Analysis

Figure 5 shows the results of the CFD simulations performed on the variation of mode 0 for
the thoracic aorta. In particular, we can observe that low WSS values (< 1 Pa) were associated
with aneurysmatic shapes, whereas smaller shapes (-2 SD) exhibited higher WSS values (Fig.
5a). A similar negative correlation was observed for TAWSS values (Fig. 5b). Conversely, OSI
and ECAP showed the opposite trend: as the aneurysm volume increased, the values of these
indices also increased (Fig. 5c,d). Significant r values over 95% with p values below 0.05% were
found for WSS (r = −0.97% p = 0.007), TAWSS (r = −0.96% p = 0.009) and ECAP (r = 0.96%
p = 0.001).

Analyzing the outcomes of the PAs, from the third column of Figure 6, we can see how
the flow split at the different bifurcations is influenced by the geometry of the vessel itself. In
particular as the area of the LPA decreases, the flow increases in the RPA, as does its area. In
the second column of Figure 6, velocity streamlines and velocity through plane at the systolic
peak are reported for the PAs.

4 DISCUSSION AND CONCLUSIONS

In this work, we evaluated the influence of vascular geometry on the hemodynamics of two
vessels affected by cardiovascular diseases: aneurysmatic aortas and pulmonary arteries affected
by Tetralogy of Fallot. In fact, when dealing with these two pathologies, the vascular hemo-
dynamics is highly variable and it is deeply affected by different geometrical vascular features.
Since this geometrical dependence is pivotal for a deeper understanding of these pathological
vascular hemodynamics, an automated pipeline was developed to extract vessels’ morphologi-
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Figure 5: Correlation results between the variation of the aneurysm from -2 to +2 SD of mode 0 and
hemodynamic parameters. Negative correlations with a) WSS and b) TAWSS; while positive correlations
with c) OSI and d) ECAP.

cal parameters via SSM and fluid dynamic indexes via CFD simulations. Finally, the results
obtained from this procedure were correlated to understand how and whether geometry affects
hemodynamics. First of all, we assessed the capability of our non-rigid registration algorithm,
initially developed for the thoracic aorta [11], to effectively handle another great vessel with a
different pathology: the pulmonary artery affected by Tetralogy of Fallot. The code was adapted
to manage the intrinsic differences of the pulmonary artery with respect to the aorta, obtaining
optimal registration outcomes with negligible errors. In addition, we also tested the potentiality
of these generated SSMs to create new realistic geometries, from healthy to pathological vessels,
on which it is possible to carry out CFD simulations for hemodynamics analysis. Indeed, the
CFD results of these new synthetic data could be of clinical support for preventive diagnosis
in real patients who have similar geometry to those tested. In the case of patients with aortic
aneurysm, it was possible to delineate the relationship between shear forces along the vascu-
lar wall and morphological parameters, particularly the increase of volume observed in the five
thoracic aorta geometries. Significant correlations between the variation in size and the hemo-
dynamic parameters were discovered, which may be important biomarkers for the pathological
processes. Specifically, we observed low WSS and TAWSS values in the aneurysmatic area (neg-
ative correlation Fig. 5a,b), along with high OSI and ECAP values (positive correlation Fig.
5c,d). These results are statistically significant, as indicated by the high Pearson coefficient
and a significant p − value of less than 0.05%. The only exception is the OSI value (r = 0.8%
p = 0.12), which has a higher p− value, likely due to the limited dataset and small sample size.
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Figure 6: In the first column the five generated geometries from the variation of mode 4 from -2 to
+2 SD. In the second column velocity streamlines and velocity through plane. In the third column the
percentages of flow splits are reported: as the LPA area decreases the flow increases in the RPA, as does
its area.

Our findings for the thoracic aorta are consistent with those reported in the literature ([18], [19],
[20], [21], [22], [23], [24]). It is also worth noting that very high (WSS and TAWSS) and low
(OSI and ECAP) hemodynamic values were observed in the sinotubular junctions, which could
be due to the different curvature of these regions. Regarding the pulmonary arteries affected
by Tetralogy of Fallot, the morphology was investigated in relation to the flow split of the bi-
furcations. In particular, the mode 4 was chosen because this highlighted a variation in the size
and curvature of the two bifurcations (LPA and RPA). The results showed that there was an
increase of the flow in the RPA, as the LPA area decreases.
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Future developments could investigate variations of other modes, linked to different morpholo-
gies. Many other parameters could also be investigate such as tortuosity, ratio of ascending to
descending aorta diameter and so on. In the context of the SSM framework, future efforts should
focus on further automating the entire processing pipeline. Ideally, a newly scanned patient’s
shape would be instantly added to a local or cloud-based SSM database, enabling immediate
comparison of the patient with a selected population. This would allow for the direct calcula-
tion of shape biomarker values, abnormality scores, or clustering visualizations, which could be
seamlessly integrated into the diagnostic process. One of the main limitations of this study is the
relatively small patient sample size. In the future, incorporating additional geometries, includ-
ing those from patients with new pathologies, could enhance and update the SSM. Additionally,
it would be beneficial to include more clinically relevant functional or outcome parameters to
identify clusters of patients with high or low risk.

In conclusion, the methods and tools presented for analyzing shape and function demonstrate
significant potential to enhance our understanding of complex structural diseases. This could
lead to the development of improved diagnostic and risk stratification strategies, and possibly
new surgical approaches.
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