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Summary. This work investigates various elastoplastic material models in topology optimiza-
tion. A novel topology optimization framework using the level-set method and COMSOL Multi-
physics is proposed to handle the complexities introduced by nonlinear material behaviors. This
method broadens the range of applicable plasticity models and streamlines nonlinear analysis in
topology optimization.

1 INTRODUCTION

Plasticity material models capture the transition from elastic to plastic behavior, which is
crucial for accurately predicting the performance of materials under various loading conditions.
Integrating these models into structural optimization allows engineers to design structures that
are both material-efficient and resilient to mechanical loading. This is particularly important
in industries such as aerospace, automotive, and civil engineering, where safety, durability, and
cost-effectiveness are fundamental.

Consequently, plasticity material models have garnered significant attention in structural op-
timization, providing a robust framework to design resilient structures capable of withstanding
mechanical loads while minimizing material usage. For instance, [1] employed an elastoplastic
von Mises material model with linear isotropic hardening to maximize structural ductility under
volume constraints, using the Solid Isotropic Material with Penalization (SIMP) approach but
limited to 2D examples. Similarly, [2] explored plastic work objectives using a fine strain plas-
ticity model. [3] aimed to prevent plastic strains through stress-constrained topology optimiza-
tion, while [4] emphasized adjoint sensitivity analysis with anisotropic plastic models. [5, 6, 7]
extended the framework to finite strain viscoplastic systems and periodic micro-structures, high-
lighting the challenges of numerical stability and the importance of initial conditions. [8] intro-
duced a level-set method for shape optimization under quasi-static plasticity, demonstrating its
application in both 2D and 3D examples. The works of [9, 10, 11] explored alternative methods
such as Evolutionary Structural Optimization (ESO), Bi-directional Evolutionary Structural
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Optimization (BESO), and Second Order Cone Programming (SOCP), respectively, each con-
tributing unique approaches to handle stress constraints, compliance minimization, and volume
reduction. Despite the advancements, most studies remain limited to 2D examples and utilize
the von Mises plasticity model, indicating the need for further exploration into more complex
plasticity models and 3D problem settings.

One of the main challenges lies in the nonlinear finite element analysis which, in the case of
plasticity, leads to path-dependent solutions [12]. Consequently, the associated sensitivity anal-
ysis also becomes path-dependent, thus requiring an incremental (explicit scheme) procedure
[13, 1]. Moreover, different plasticity models might require different implementations and solu-
tion algorithms [12]. These inherent challenges impose significant constraints on the integration
of diverse plasticity models into topology optimization algorithms. For this reason, a limited
number of studies address material nonlinearities, and the majority of them focus on von Mises
plasticity with linear isotropic hardening.

For this reason, a flexible topology optimization framework called ParaLeSTO-COMSOL [14]
is developed to handle different plasticity models with little to no changes to the code imple-
mentation. In this framework, automatic differentiation techniques are leveraged to streamline
sensitivity analysis and facilitate the exploration of diverse plasticity parameters.

2 ELASTOPLASTIC MATERIAL MODELS

Plastic material models are used in engineering to describe the behavior of materials under
plastic deformation, where they undergo permanent changes in shape or size when subjected to
stress [12]. Usually, a yield criterion is used to define the stress condition under which plastic
deformation occurs. Stress paths inside the yield surface result in purely recoverable deforma-
tions (elastic behavior), while paths intersecting the yield surface produces both recoverable and
permanent deformations (plastic strains). In this work, we focus on the metal plasticity under
the von Mises criterion [12], whose yield surface Fy takes the form of

Fy = σe − σy ≤ 0 (1)

σe =

√
3

2
dev(σ) : dev(σ) (2)

ε̇pe =

√
3

2
dev(ε̇p) : dev(ε̇p) (3)

where σe is the effective or von Mises stress, σy is the yield stress, ε̇pe is the effective plastic
strain rate, dev(·) is the deviatoric operator, σ is the stress tensor, and ε̇p is the plastic strain
tensor increment.

The plastic strain tensor increment is computed using the associated flow rule [12]:

ε̇p = λ
∂σe
∂σ

(4)

where λ is the plastic multiplier such that λ ≥ 0 and λFy = 0.
The yield stress σy [12] is defined as

σy = σy,0 + σh (5)
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Figure 1: Example of different plastic behaviors.

where σy,0 is the initial yield stress, and σh is the hardening function that depends on the
effective plastic strain εpe. In case of perfect plasticity, the yield stress remains constant (σh = 0).
Otherwise, the hardening function is defined according to the particular isotropic hardening law
(Fig 1). For instance, the linear isotropic hardening function [12] is defined as

σh(εpe) = Hεpe (6)

where H is the hardening modulus that regulates the slope of the stress-strain curve after the
yield point.

For elastoplastic materials, we define the total elastic strain energy [12] of the system as:

Ws =

∫
Ω

∫ T

0
σ : ε̇dtΩ (7)

In the same way, the expression for the plastic dissipation energy [12] is:

Wp =

∫
Ω

∫ T

0
σ : ε̇pdtΩ (8)

3 LEVEL-SET TOPOLOGY OPTIMIZATION

The optimization problem aims at maximizing the total strain energy Ws of the system
subject to a prescribed displacement

maxΩ Ws

s.t. R(u) = 0

V ≤ Vmax

(9)

where V represents the volume of the structure, Vmax is the maximum volume, and R is the
nonlinear state equation. In this work, a maximum volume fraction of 30% is used.

Problem (9) is solved iteratively using a level-set topology optimization algorithm [15, 16].
The material properties of the structure are interpolated using the ersatz material interpolation
with a linear interpolation scheme [16, 17]. Using the level-set method [18], the structure under
optimization, denoted by Ω, is defined as the zero-level of an implicit function Φ(x):

Φ (x) ≥ 0, x ∈ Ω

Φ (x) = 0, x ∈ ∂Ω

Φ (x) < 0, x /∈ Ω

(10)
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Figure 2: Implicit representation of a two-dimensional shape (right) using a level-set function (left).

At each iteration, the boundary ∂Ω is updated using the level-set equation [18]:

∂Φ(x)

∂t
+ |∇Φ(x)|Vn(x) = 0 (11)

where t denotes pseudo-time, and Vn represents the normal velocity field obtained solving the
sub-optimization problem [15, 16].

At each iteration, the sub-optimization problem is defined using the sensitivities of the cost
function and the constraints [15, 16]. The sensitivity of a generic function J with respect to a
boundary point i is defined through the discrete adjoint method [19]:

dJ

dΩi
=

Ne∑
j=1

∂J

∂ρj

∂ρj
∂Ωi

(12)

where Ne is the number of finite elements used in the discretization grid and ρj is the density
of element j. The partial derivatives ∂J/∂ρj are evaluated using the reverse mode automatic
differentiation method embedded in COMSOL, as explained on the Optimization Module User’s
Guide.

The complete optimization loop (Fig. 3) is implemented using the open-source code ParaLeSTO-
COMSOL. More details regarding the code can be found in [20, 14].

Figure 3: Level-set topology optimization loop [20]. The finite element analysis and the sensitivity
computation (blue) are executed using COMSOL. The level-set operations (yellow) and the optimization
steps (green) are carried out in MATLAB.
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4 NUMERICAL EXAMPLES

The numerical examples are used to investigate the effects of different plasticity parameters
and models on the optimal layout. The problem settings and the initial conditions are shown in
Fig. 4. The prescribed displacement is applied downward on the green regions, whereas the red
regions represent the clamped boundary conditions.

Figure 4: Problem settings and initial conditions for the 2d (left) and 3d (right) numerical examples.
The clamp is indicated by the red region, whereas the prescribed displacement is applied downward on
the green part.

If not otherwise specified, the material properties are listed in Tab. 1.

Value Unit

Young’s modulus 72 GPa
Poisson’s coefficients 0.3 -
Initial yield stress 125 MPa
Isotropic hardening modulus 573 MPa

Table 1: Default material properties used in the examples.

4.1 2D L-beam problem

The first numerical example is a 2-dimensional L-beam structure. The design domain (1.0m×
1.0m) is discretized using a 100 × 100 structured grid with linear square elements. The plane
strain approximation is used, with a thickness of 0.01m. The problem settings are shown in
Fig. 4.

The optimization problem (9) is solved first using the linear elastic material model, and then
using the von Mises plasticity with linear isotropic hardening (Eq. (6)). The optimal results are
shown in Fig. 5.

The performances of both structures are then evaluated using the plastic material model to
obtain the von Mises stress distribution (Fig. 6).

The layout optimized using the plasticity model has a less stress variation compared to the
one optimized for elasticity. This results in a 38.5% higher strain energy and in a 13.6% lower
plastic dissipation (Tab. 2). On the other hand, the structure optimized for elasticity performs
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Figure 5: Optimal layouts obtained from Fig. 4 using linear elasticity (left) and von Mises plasticity
with linear isotropic hardening (right).

Figure 6: Evaluation using the plastic material model of the structures in Fig. 5. The figures show the
von Mises stress distribution (MPa).

better than the plasticity one when we evaluate them using the linear elastic material (Tab. 2),
with a 4.5% higher strain energy.

Elastic optimization Plastic optimization

Elastic response Ws = 0.92 kJ Ws = 0.88 kJ

Plastic response
Ws = 0.26 kJ Ws = 0.36 kJ
Wp = 0.44 kJ Wp = 0.38 kJ

Table 2: Strain energy cross validation of the optimal layouts in Fig. 5.

4.2 3D L-beam problem

In the second example, we consider the 3-dimensional L-beam structure shown in Fig. 4. The
design domain (1.0m× 1.0m× 0.2m) is discretized using a 50× 50× 10 structured grid made
of linear cube elements. A prescribed vertical displacement of 0.02m is used. Starting from the
structure in Fig. 4, the optimization problem (9) is solved using the elasticity model and the
von Mises plasticity with linear isotropic hardening.
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Figure 7: Optimal layouts obtained from Fig. 4 using the linear elasticity (left) and the von Mises
plasticity with linear isotropic hardening (right).

The main geometric differences between the two optimal results (Fig. 7) are the supporting
features that appear in the region of the corner. To evaluate the effect of these features, the two
structures are evaluated using the plasticity material model with different prescribed displace-
ments. In this way, the loading curves of strain energy, plastic dissipation, and reaction force
are reconstructed. In the elastic region (green background), the responses of the two structures
are similar. On the other hand, as the material enters the plastic region (red background), the
two responses become different. In particular, at the maximum displacement, the strain energy
is 23.3% higher, the plastic dissipation is 11.5% lower, and the reaction force is 18.2% higher.

Figure 8: Loading curves of the structures in Fig. 7. The strain energy, the plastic dissipation, and the
reaction force are evaluated. The material behavior changes from mostly elastic (green background) to
mostly plastic (red background) as the prescribed displacement increases.

4.3 Effect of the hardening modulus

In the third example, we examine how the optimal result varies with different values of the
linear hardening modulus. This modulus controls the slope of the stress-strain curve after the
yielding point.

The same problem settings of Sec. 4.2 are used. Problem (9) is solved using different values
of H, and Fig. 9 shows the optimal results obtained with H = 720MPa and H = 36000MPa.
From Fig. 9 we observe that a higher hardening modulus results in thinner supporting features.
This is because materials with higher hardening modulus can withstand greater stress before
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Figure 9: Optimal layouts obtained with H = 720MPa (left) and H = 36000MPa (right).

undergoing significant plastic deformation.

4.4 Effect of the initial yield stress

The fourth example is used to investigate how the optimal result changes when using different
values for the initial yield stress σy,0. This parameter controls the size of the elastic region of
the material.

Figure 10: Optimal layouts obtained with σy,0 = 100MPa (left) and σy,0 = 250MPa (right).

The same problem settings of Sec. 4.2 are used. The optimal results obtained with σy,0 =
100MPa and σy,0 = 250MPa are shown in Fig. 10. As the initial yield stress of the material
increases, the supporting features disappear, and the elastoplastic solution tends to the elastic
solution. Higher initial yield stress indicates that the material can endure higher loads before
yielding, thus reducing the necessity for elastoplastic considerations in design.

4.5 Linear vs. exponential isotropic hardening

With the last example, we compare the results obtained using the linear (Eq. (6)) and the
exponential (Eq. (13)) isotropic hardening models. The exponential hardening function is defined
using the Voce model [12]:

σh(εpe) = σsat(1− e−βεpe) (13)
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where β = 103 and σsat is equal toH/β in order for the two hardening functions in Fig. 11 to have
the same slope at the yield point (εep = 0). In this example, the parameters H = 36000MPa
and σy,0 = 125MPa are used.

Figure 11: Linear and exponential hardening functions.

The optimization is performed using two different prescribed displacements (Fig. 11). The
first one (d = 0.01m) generates small plastic strains for which the two hardening curves have
similar values. On the other hand, the second displacement (d = 0.02m) produces larger plastic
strains for which the difference between the two curves are more substantial. The optimal
results are collected in Tab. 3, while Fig. 12 shows the optimal layout obtained using the greater
displacement.

Figure 12: Optimal layouts obtained using the linear (left) and the exponential (right) isotropic hard-
ening curves.

The results obtained using small displacements are similar, as shown in the first row of Tab. 3.
This similarity arises because small displacements induce minor plastic strains, making the two
hardening functions comparable. In contrast, the large displacements lead to significant plastic
strains, highlighting the differences between the hardening functions. Therefore, the difference
in the optimal result is more significant in the second row of Tab. 3.

The magnitude of the hardening function, which describes how the material’s resistance to
plastic deformation increases, is more relevant than its specific shape. This implies that the

9
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Linear hardening Exponential hardening

Small displacement (d = 0.01m)
Ws = 3.94 kJ Ws = 3.90 kJ
Wp = 0.43 kJ Wp = 0.37 kJ

Large displacement (d = 0.02m)
Ws = 9.02 kJ Ws = 7.78 kJ
Wp = 6.43 kJ Wp = 6.86 kJ

Table 3: Optimal results obtained using the linear and the exponential hardening curves with two
prescribed displacements. The values of the optimal strain energy Ws and plastic dissipation Wp are
show.

overall ability of the material to harden under stress is more critical in determining structural
performance than the detailed characteristics of how this hardening occurs.

5 CONCLUSIONS

The performance evaluation of topologically optimized structures for elastoplasticity reveals
that purely elastic solutions exhibit suboptimal performance when assessed against elastoplastic
models. A significant advantage of elastoplastic solutions is their ability to incorporate sup-
porting features that mitigate plastic strains, enhancing the robustness and resilience of the
design.

The developed ParaLeSTO-COMSOL framework effectively handles various plasticity models
with minimal implementation changes. Using this framework, key parameters influencing the
optimal layouts, such as hardening modulus, initial yield stress, and the magnitude of the
hardening function, have been investigated.

Future research should focus on developing advanced materials with tailored properties and
examining the effects of dynamic conditions and temperature variations. This approach will
provide a more comprehensive understanding of material behavior in the context of topology
optimization.
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