
The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024

3–7 June 2024, Lisboa, Portugal

LIMIT ANALYSIS OF MASONRY STRUCTURES: UPPER
BOUND APPROACH BASED ON HOMOGENIZATION

AND LOCAL MESH REFINEMENT

NICOLA GRILLANDA1 AND VINCENZO MALLARDO2

1 Department of Architecture
University of Ferrara

Via Quartieri 8, 44121 Ferrara, Italy
e-mail: nicola.grillanda@unife.it

Department of Architecture
University of Ferrara

Via Quartieri 8, 44121 Ferrara, Italy
e-mail: vincenzo.mallardo@unife.it

Key words: Upper bound limit analysis, Masonry structures, Homogenization, Local mesh
refinement

Summary. We present an upper bound limit analysis tool for plane stress problems in masonry.
A given masonry construction is discretized into planar rigid-perfectly plastic finite elements,
whose kinematics is described by rigid body velocities and plastic strain rates. To properly
represent the collapse behaviour of the heterogeneous masonry material, the plastic strain rates
must follow the homogenized kinematic conditions derived for running bond masonry textures.
For a given load configuration, a rigid-plastic limit analysis problem can be defined and solved
to find a mechanism and an associated collapse load. Local mesh refinement is finally applied
to optimize the representation of the mechanism and minimize the collapse load.

1 INTRODUCTION

Masonry structures constitute a large part of the historical heritage. The interest in devel-
oping new computational tools for the study and the preservation of such constructions is still
high [1, 2, 3] and several numerical tools have been proposed during the years [4, 5, 6]. After
recent earthquakes, the interest in computational tools that can efficiently reproduce the col-
lapse behaviour of masonry structures, such as limit analysis methods based on the kinematic
theorem, has increased [7, 8].

Any numerical method conceived to assess masonry constructions must take into account the
main non-linearities of masonry, which are negligible elastic deformation, almost null resistance
in tension compared with a good compressive strength and shear strength [9]. Limit analysis
tools are often applied by idealizing masonry as a no-tension material, in agreement with Hey-
man’s studies (1969) [10]. Later, some heterogeneous limit analysis methods were presented.
In these approaches, each brick composing the masonry material is modeled as an independent
element and mortar joints are reduced to frictional zero-thickness interfaces. Such strategy is
popular, since it allows an accurate reproduction of the structural behaviour, see [11, 12]. Oth-
erwise, homogenization-based methods were presented to avoid the heterogeneous modelling
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strategy [13, 14, 15]. Homogenization allows representing masonry as an equivalent homoge-
neous material, where all potential failure modes are represented with respect of the associated
flow rule. The use of homogenization can be advantageous, since it allows for computationally
cheap models even in case of complex and large structures maintaining the reliability of the
obtained results.

What is presented in this work is an upper bound limit analysis model for plane-stress ma-
sonry problems. This is obtained from the conjunction of homogenization theory by de Buhan
& de Felice [16], rigid-plastic limit analysis [17], and a local mesh refinement strategy. Once de-
fined a discretization into triangular finite elements for a given structure, the kinematics of each
element is described by rigid body velocities and plastic strain rates. Plastic strain rates must
satisfy homogenized kinematic conditions derived from the application of associative flow rule
to the reference volume element (RVE): this ensure that the actual masonry texture is properly
taken into account. Then, an upper bound limit analysis problem is formulated in agreement
with the kinematic theorem of limit analysis. Finally, a local mesh refinement strategy is ap-
plied to optimize the mechanism representation and minimize any intrinsic overestimation of the
collapse load. The theoretical formulation is here presented, together with a simple numerical
application.

2 HOMOGENIZATION MODEL

By following the classic homogenization model proposed by de Buhan & de Felice [16] for
single-leaf running bond masonry, the representative volume element (RVE) can be identified by
simply considering four adjacent bricks. Each brick is assumed as a rigid and infinitely resistant
block. Mortar joints are reduced to zero-thickness frictional interfaces. This allows describing
the kinematics of the RVE through 4 parameters only, i.e. the three strain rates constituting the
2D strain rate tensor (ϵ11, ϵ22, ϵ12) and the in-plane rotation rate ω3. A graphic representation
of the contribution of each strain rate on the RVE is depicted in Figure 1.

Figure 1: Reference volume element (RVE) and graphic representation of strains rates.
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Eq 1 can be easily used to compute the velocity jump along the joints. Considering for
instance the j-th joint belonging to the boundary of the i-th and the k-th brick, the velocity
jump is constant along the joint and is computed as:

∆vj = vGi→P − vGk→P = (E−Ω)
(
yGi − yGk

)
(2)

The velocity jumps along all the joints must respect the flow rule imposed in agreement with
the Mohr-Coulomb frictional behaviour. Therefore, it must be imposed that:

∆vjn ≥ µ
∣∣∆vjs

∣∣ , for j = 1...5 (3)

where µ is the friction coefficient, ∆vjn and ∆vjs denote the normal and tangential component
of the velocity jump. By expressing Eq 3 in terms of strain rates, the following inequalities are
obtained:

µ

2
|2 ϵ12 − ϵ11 β + 2ω3| ≤ ϵ22 −

ϵ12 β

2
+

ω3 β

2
(4a)

µ

2
|2 ϵ12 + ϵ11 β + 2ω3| ≤ ϵ22 +

ϵ12 β

2
− ω3 β

2
(4b)

µ |ϵ12 − ω3| ≤ ϵ11 (4c)

where β is the basis-height ratio of the brick. Eqs 4 constitute the plastic flow rule expressed
in terms of plastic strain rates, thus suitable for application in the limit analysis of a rigid-plastic
homogeneous material equivalent to masonry. In turn, the internal power per unit area can be
derived as follows:

PΓ
int =

t

ab

5∑
j=1

c
∣∣∆vjs

∣∣ = t

ab

5∑
j=1

c
∆vjn
µ

=
ct (ϵ11 + ϵ22)

µ
(5)

where t is the thickness of the bricks and c is the cohesion. It can be observed that the internal
power does not depend on the shear strain rate ϵ12. Note also that for the case of dry joints
masonry the internal power is null.

3 LIMIT ANALYSIS FORMULATION

We can consider now a planar domain D ∈ R2 in the reference system Ox1x2. A discretization
into N triangular finite elements is performed: each element is a constant strain element with
rigid-perfectly plastic behaviour. Therefore, the degrees of freedom associated to the i-th element
having centroid Gi : xGi = [xGi

1 , xGi
2 ]T are the translational rigid velocities of the centroid

vGi = [vGi
1 , vGi

2 ]T, the in-plane rigid rotation ϕi
3, the plastic strain rates ϵi = [ϵi11, ϵ

i
22, ϵ

i
12]

T and
the plastic micro-rotation ωi

3. The kinematics of any point P : xP = [xP1 , x
P
2 ]

T belonging to the
i-th element is therefore expressed as follows:

vGi→Pj = vGi +Ωi
(
xPj − xGi

)
+Ei

(
xPj − xGi

)
(6)

where Ei and Ωi are the strain rates tensor and rotation tensor for the i-th element.
Having maintained the assumption of small displacements, the element kinematics is ex-

pressed as linear combination between the degrees of freedom. This allows to express the overall
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kinematic limit analysis problem as a linear programming (LP) problem. By assembling the
degrees of freedom of the N elements in the global vectors v, ϕ, ϵ, ω, the following LP problem
can be formulated:

minimize λ = −fTD
[
v ϕ ϵ

]T
+wTϵ (7a)

subject to C
[
v ϕ ϵ

]T
= 0 (7b)

Afix

[
v ϕ ϵ

]T
= 0 (7c)

P
[
ϵ ω

]T ≤ 0 (7d)

fTL
[
v ϕ ϵ

]T
= 1 (7e)

where λ is the load factor, fD is the vector of permanent loads (dead loads) and fL is the vector
of the loads which depend on λ (live loads), and finally w is the internal power vector. Within
the problem 7, 7a is the objective function obtained by applying the principle of virtual powers,
7b are the node compatibility constraints, 7c are the geometric constraints, 7d is the plastic
flow rule obtained by expressing Eq 4 in matrix form, and 7e is the normalization of the power
associated to live loads.

The LP problem 7 can be easily solved by using modern optimization software, such as
MOSEK [18], and provides a load factor and an associated mechanism, the latter composed of
rigid body motion and plastic strain rates.

4 LOCAL MESH REFINEMENT

According to the kinematic theorem of limit analysis, the load factor obtained from 7 con-
stitutes an upper bound of the actual collapse load. The overestimation of the load-bearing
capacity is also affected by the adopted mesh, since the plastic strain rates are constant within
the element. To reduce such mesh dependencies, a local mesh refinement procedure is followed.

The procedure is simple. Once the LP problem has been solved for the initial mesh and
a first load factor has been found, the mesh is refined only in the regions presenting plastic
strain rates. In other words, elements presenting only rigid body motion do not require any
refinement. A criterion based on the L2-norm of plastic strain rates is used to automatically
drive the refinement. In particular, the i-th element is refined into 4 new triangular elements
having equal area only if the following condition is satisfied:

ηi ≥ ξ
N∑
j=1

ηj (8)

where ξ is a tolerance parameter and η is the L2-norm of plastic strain rates so defined:

ηi = Ai

∣∣∣∣ϵi∣∣∣∣ (9)

where Ai is the area of the element. Moreover, to avoid hanging nodes in the refined mesh,
elements adjacent to those satisfying Eq 8 must be also subdivided accordingly.

This procedure allows to easily built a new mesh with higher density in the plasticized
regions. The LP problem can be defined again considering the new mesh and another load
factor is computed. The local mesh refinement is iteratively applied until the convergence of the
load factors is found.
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5 APPLICATION TO A SQUARE WALL

The presented homogenized rigid-plastic limit analysis is now applied to a simple numerical
example regarding a square wall fixed at the bottom edge and subjected to in-plane horizontal
load. Such example was first proposed in [19] and then analysed in [20] via associative and
non-associative limit analysis. The wall is composed of running bond masonry texture with
bricks having basis-height ratio equal to 3: a total of 48 rows has been considered. The live load
condition is a horizontal load proportional to the self-weight. The friction coefficient is equal
to 0.75 whereas cohesion is assumed null, thus representing a dry joints masonry. In this way,
the load factor is not affected by thickness and unit weight of the material. The load factors
obtained in [20] via associated and non-associated limit analysis were equal to 0.5450 and 0.5396
respectively. Such example is here studied by means of the proposed approach. Results have
been compared with those published in [20] in terms of load factor and mechanism, see Figure
2.

By comparing the homogenized rigid-plastic outcome from iteration 0, i.e. initial mesh, to
iteration 4, refined mesh, it is evident that load factor and the corresponding mechanism suffer
some mesh dependency effects that can be minimized through local mesh refinement. The load
factor associated to the initial mesh is equal to 0.6148, which is 12.7% higher than the value
obtained via associative rigid block limit analysis. On the contrary, a 0.5034 load factor has
been found after mesh refinement. Such value is 6.7% lower than the one obtained via non-
associative rigid block limit analysis. Also, the solution at the last iteration was obtained in
29 seconds using a PC equipped with an Intel Core I7-1165G7 processor and 16Gb RAM. For
such case, it can be stated that the collapse behaviour has been properly reproduced via the
presented homogenized rigid-plastic limit analysis approach. Moreover, this approach seems
able to provide conservative results even in comparison with non-associative rigid block limit
analysis.

6 CONCLUSIONS

In this work, an rigid-plastic limit analysis model enriched with homogenization and local
mesh refinement is presented. Homogenization is applied on the classic running bond texture
to derive the kinematic conditions expressing internal power and flow rule in terms of plastic
strains. A rigid-plastic limit analysis model, where each element can present rigid body motion
and plastic strain rates, is then applied. Finally, the initial mesh is iteratively refined until the
convergence of the load factor values is obtained. The use of homogenization allows avoiding the
modelling of each element constituting the masonry material. Then, the local mesh refinement
techniques permits minimizing any mesh dependency effect and reducing the overestimation of
the load bearing capacity. Safe results have been obtained in comparison with traditional hetero-
geneous limit analysis models, including also models relying on non-associative approaches. Next
applications will involve larger and geometrically more complex examples, as well as masonry
composed of different textures, and extensions to fully three-dimensional approaches.
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Figure 2: Lourenço wall: (a) non-associative rigid-block mechanism (from [20]), (b) comparison of load
factors obtained via presented approach and rigid block limit analysis in [20], (c, d) initial and refined
mesh in homogenized rigid-plastic limit analysis, (e, f) rigid plastic mechanisms with initial and refined
mesh. The colour map in (e, f) denotes the normalized principal plastic strain rate.
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