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ABSTRACT

In the maritime industry, traditional controllers such as PID are commonly used for ship motion
control. However, recent research has demonstrated the efficacy of Reinforcement Learning methods
in decision-making tasks. Considering the power of Machine Learning methods when dealing with
highly non-linear problems, the use of Reinforcement Learning for ship motion control problems has
started to attract more attention in recent studies. As such, this study proposes a Reinforcement
Learning based controller for ship course-keeping in waves, which can operate under a range of sea
conditions. Instead of directly showing the final version of the controller, we present a weak controller
as a starting point and iteratively improve it through reward shaping. Our final controller outperforms
the baseline LQR we use in terms of yaw error and rudder usage. We finalize the paper by presenting
the behavioral differences of the designed controller and LQR. Our findings demonstrate the potential
of RL for ship motion control, offering a promising alternative to traditional handcrafted methods.

Keywords: Course-keeping; Reinforcement Learning; Soft Actor-Critic; Reward shaping; Artificial
intelligence; Ship motion control.
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NOMENCLATURE

At Action at time t
St State at time t
Rt Reward at time t
A Action space
S State space
R Reward space
π Policy
π∗ The optimal policy
Gt Expected return after time step t [-]
γ Discount factor [-]
H Entropy term [-]
βw Wave direction [deg]
H1/3 Significant wave height [m]

Tp Wave period [s]
δ Rudder angle [deg]

δ̇ Rudder rate [deg/s]
ψ Yaw angle [deg]

ψ̇ Yaw rate [deg/s]

ψ̈ Yaw acceleration [deg/s2]
ψerr Yaw error [deg]
ML Machine Learning
RL Reinforcement Learning
DRL Deep Reinforcement Learning
MDP Markov Decision Process
SAC Soft Actor-Critic
PID Controller Proportional-Integral-Derivative Controller
LQR Linear Quadratic Regulator

1. INTRODUCTION

Reinforcement Learning (RL) is a subbranch of Machine Learning (ML) where the learner (agent)
tries to map a state space to an action space in a way that maximizes some reward. RL has been
successfully applied to a variety of decision-making tasks, ranging from complex board games like
chess (Silver et al., 2017) to integrated circuit design (Wang et al., 2020).

In control problems, RL has shown promise as a model-free approach that does not rely on knowledge
of the system’s dynamics. Instead, it learns how to act through trial-and-error, making it well-suited
for problems with nonlinear or unknown dynamics. Despite these potential benefits, the maritime
industry continues to rely on traditional controllers, such as PID, for ship motion control.

While the use of ML in maritime domain is in its infancy, there are some works in the literature that
investigate the feasibility of RL for ship motion control. Øvereng et al. (2021) tackles the problem
of dynamic positioning using Deep RL (DRL) and shows that their agents can perform in real sea.
Martinsen & Lekkas (2018) demonstrates that DRL agents can be successfully used for path following
and collision avoidance.

Our study proposes an RL-based controller for course-keeping of ships in waves, using the state-of-the-
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Figure 1: Profile and back views of 5415M frigate.

art Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018). We train an RL agent that can operate
under a range of environmental conditions, where wave height, period, and direction may vary. To
evaluate our agent’s performance, we compare it to a Linear Quadratic Regulator (LQR) controller
(Franklin et al., 1994) in terms of yaw error and rudder usage.

Rather than presenting the final agent directly, we start with a weaker version and iteratively improve
it by addressing issues such as excessive actuator usage, overshooting, and steady-state error through
reward shaping. In Section 2, we formally define the problem case, and in Section 3, we provide an
overview of RL and explain the key features of SAC. We then present the design of the initial agent
iteration and discuss the results in Section 4, showing how different issues were addressed through
reward engineering. We also compare the final agent’s performance and behavior with LQR. Finally,
we conclude the paper with Section 5.

2. PROBLEM DEFINITION

The course-keeping problem involves maintaining a ship’s course while minimizing rudder usage. For
this study, we consider a ship operating in an environment with waves of following properties:

� any wave direction βw,

� wave heights within 1.5m ≤ H1/3 ≤ 5.5m and

� wave periods within 8.5s ≤ Tp ≤ 12.5s.

We use the 5415M frigate in our study. It is based on the public bare hull form DTMB 5415 (Simman
2008, n.d.), which has been widely used in previous research. Unlike the bare hull form 5415, 5415M
has appendages such as bilge keels, stabilizers, rudders, propellers, shafts, and supportive struts. Table
1 presents the main particulars of the 5415M frigate, while Figure 1 shows a scaled model of the ship.

Table 1: Main particulars of DTMB 5415M.

Main Particular Value (m)

Lpp 142
Draft aft 6.15
Draft fore 6.15
KG 71.51
GM 1.95
BWL 19.06
kxx 7.62
kyy 35.5
kzz 35.5
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3. REINFORCEMENT LEARNING & CONTROLLER DESIGN

RL is a Machine Learning paradigm that deals with decision-making problems. A learner called the
agent attempts to find an action-taking strategy (referred to as policy) that maximizes some reward.

Markov Decision Processes (MDPs) are a mathematical framework used to formalize Reinforcement
Learning (RL) problems. An MDP consists of an agent, an environment, and their continuous inter-
action. The agent selects an action based on the current state, and the environment responds with a
new state and a reward. The goal of the agent is to learn a policy that maximizes the expected return
of reward over time (Sutton & Barto, 2018). The interaction between the agent and the environment
in an MDP is illustrated in Figure 2.

Figure 2: Visualization of MDP.

To be more precise, the MDP can be described as follows. At each discrete time step t, the environment
(anything outside the agent) can be in any state St ∈ S. The agent observes the state St and chooses
to perform some action At ∈ A. After this interaction, the state transitions from the state St to
some other state St+1 and returns a reward Rt+1 ∈ R(St, At). Through these interactions, the agent
attempts to find some optimal policy π∗ which maximizes the reward return G. Let us define Gt as
the reward return following the time step t. When formulating Gt, instead of summing up all the
reward return after time step t, the concept of discount factor is often used. This allows for the agent
to prioritize immediate rewards more. The discount factor 0 ≤ γ ≤ 1 can be reduced to make the
agent more shortsighted or can be increased to make it more farsighted.

Gt=̇Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
t=0

γtRt+1 (1)

Practically speaking, it is not possible for an RL agent to find a policy that perfectly maximizes the
return. This is why agents try to learn a policy that maximizes the expected return instead. Keeping
this in mind, we could define a simple optimal policy as follows

π∗ = argmax
π

E
τ∼π

[ ∞∑
t=0

γtRt

]
(2)

where τ is the trajectory of state-action pairs.

3.1 Soft Actor-Critic

One of the main challenges of the RL problem is to find a balance between exploration and exploitation.
An agent needs to exploit the information it already knows to be able to choose actions that return
as much reward as possible. However, the agent also needs to explore the state space to be able to
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find actions that return better rewards. Different RL algorithms use different methods in an attempt
to find a good balance between exploration vs. exploitation in order to discover good policies.

One of the main features of the RL algorithm used in this paper, Soft Actor-Critic (SAC), is that it
uses the concept of entropy. Within the context of SAC, the term entropy refers to the randomness
of a policy. By maximizing a trade-off between reward and entropy, SAC tries to make sure that the
agent is following a decent policy while not neglecting exploration. For SAC, the optimal policy can
be formulated through

π∗ = argmax
π

E
τ∼π

[ ∞∑
t=0

γt(Rt + αHt)

]
(3)

where H is the entropy term and α > 0 is the trade-off coefficient. Through H, having a policy with
a relatively high entropy is encouraged. SAC is an algorithm that manages to form a great balance
between exploration vs. exploitation. It is sample-efficient and tolerant to changes in hyperparameters,
which is why it has been chosen for this study.

3.2 Agent Design

When designing an RL agent (assuming that an existing RL algorithm is being used), the main
workload of the design lies in finding a good state space and designing a good reward function. While
one might use experience and intuition as guidance, there is not an algorithm for figuring out the
optimal state space or the reward function for a given problem case. Thus, starting with a simple
reward function and a state space, determining their weaknesses and iterating over them is a key part
of the design process.

3.2.1 Action and State Space

The agent samples it’s actions from the action space. Since for our problem case the agent is only
allowed to use the rudder, the action vectors have chosen to have the following format

At = [nδ̇] (4)

where nδ̇ ∈ [−1, 1] is the rudder rate in percentage.

The state space could be seen as the agent’s perception of the environment. When determining the
state space, it is important to make sure that the information in state vector is sufficient and not
redundant. Additionally, the state vector should not include elements that are unfeasible to obtain in
real-life scenarios. For example, in a simulation environment, the agent could be provided with the
exact sea state information, and intuitively one would expect this information to be extremely useful.
However, it is not easy to figure out the sea state in real-life applications. So sea state should not be
added to the state vector without proposing a reliable method of obtaining it.

Keeping this in mind, the state vector has been chosen as

St = [ψerr, δ, ψ̇, ψ̈] (5)
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where ψerr is the yaw error, δ is the rudder angle, ψ̇ is the yaw rate, and ψ̈ is the yaw acceleration.

3.2.2 Reward Shaping

An agent conceptualizes the desirability of it’s state through reward. So, by engineering a reward
function that encourages good behavior and discourages bad behavior, one could expect to get a well-
performing policy. In this study, we start with a simple reward function and it twice. In this section,
we will only discuss the first iteration of the reward function.

The most straightforward reward function for our problem would be a linear function in which the
yaw error is multiplied with some negative gain. However, we start off with the following absolute
exponential function instead, in which the agent gets the most reward when it has zero yaw error

R = exp(−cψ|ψerr|) (6)

where ψerr ∈ [0, 1] is the yaw error in percentage and cψ is the error scale. cψ can be used for adjusting
the steepness function. The absolute exponential function has been inspired by Meyer et al. (2020),
however we have chosen it for a different reason. Meyer et al. (2020) uses this function because
they argue that having a lower slope when the error is high is more favorable for their problem case.
We instead chose this function because we argue that having a strong gradient around zero error is
helpful when dealing with steady-state error; an issue previous RL-based marine controllers struggled
with (Meyer et al., 2020; Øvereng et al., 2021). As will be seen, the performance difference between
the second agent and the third agent strongly supports this argument. The difference between the
absolute exponential functions and linear functions have been demonstrated through some arbitrary
functions in Figure 3.

Figure 3: Arbitrary linear and absolute exponential functions to demonstrate their differences. 100% yaw error
corresponds to 180 degrees of yaw error.
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4. SIMULATIONS & RESULTS

4.1 Training Setup

For the simulation environment, we use MARIN’s in-house seakeeping and maneuvering software
xSimulation (works similar to Quadvlieg & Rapuc, (2019)). The RL part of the simulations is handled
through MARIN’s MARINRL Python library. The library interfaces Stable Baselines’ SAC agent (Hill
et al., 2018) with xSimulation through a GYM (Brockman et al., 2016) environment, allowing RL-based
controllers to be designed and evaluated easily. The environment setup and SAC hyperparameters
can be seen in Table 2 and 3. Coefficients of each reward function have been tuned through a simple
grid search.

Table 2: The simulation setup.

Parameter Value Unit

Sample time (dt) 0.2 s
Initial rudder angle 0 deg
Initial heading 0 deg
Initial surge velocity 10.29 m/s
H1/3 random m

Tp random s
βw random deg

Table 3: Hyperparameters.

Parameter Value

Optimizer Adam (Kingma & Ba, 2014)
Learning rate 3× 10−4

Discount factor 0.9
Replay buffer size 5× 10−4

Hidden layers 2
Neurons per layer 64
Samples per minibatch 256
Activation function tanh
Target smoothing coefficient 5× 10−3

Target smoothing interval 1
Gradient steps 1

For each reward function, seven agents have been trained for 1500 episodes where one episode length
is 300 seconds and values of wave direction, height and period are randomly chosen.

4.2 Evaluation Method

For each training run, moving window average of rewards over the last 100 episodes has been observed.
The version of the agent that achieves the highest peak in this average has been chosen as the best
performer. These best performing agents then have been evaluated 210 simulations which has waves
with; seven different phases, βw of 0, 45, 90, 135, and 180 degrees, H1/3 of 3 and 5.5 meters, Tp of 8.5,
10.5 and 12.5 seconds. For each wave combination, the agent behaviors have been simulated for 1000
seconds. The results have been evaluated in terms Mean Absolute Error (MAE) of yaw and the total
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rudder usage.

The obtained results also have been compared with an LQR controller. The designed LQR controller
models the yaw response of the ship using a first order Nomoto model (Fossen, 2011). The performance
of LQR’s with different cost tunings have been demonstrated (by fixing the Q and changing R) to see
how the RL agents perform compared to different LQR tunings.

4.3 The First Reward Function

Equation 6 has been used as the first reward function with cψ = 5.

This iteration of agents has not been able to converge to a well-behaving policy. Through the analysis
of simulation results, it has been observed that this iteration of agents uses the rudder excessively
and overshoot the zero error consistently. An example simulation which demonstrates both of these
behaviors can be seen in Figure 4.

Figure 4: Yaw and rudder behavior in time domain for the first reward function demonstrated.

4.4 Fighting Rudder Abuse and Overshoots

Considering the problems in the previous iteration, three new terms have been added to the reward
function. The new reward function can be seen below.

R = Rψ +Rδ +RψRδ̇ +RψRr

Rψ = exp(−cψ|ψerr|)
Rδ = −cδ|δ|
Rδ̇ = −cδ̇|δ̇|
Rψ̇ = −cψ̇|r|

(7)

Here, δ is the rudder angle, δ̇ is the rudder rate, ψ̇ is the yaw rate and cδ, cδ̇ and cψ̇ are the reward

coefficients. The δ, δ̇ and ψ̇ are normalized between zero and one to make the tuning more intuitive.

Rδ and Rδ̇ terms keep the actuator use reasonable whereas the Rψ̇ term, inspired by the D term of
PID, fights overshoots. Rδ and Rψ̇ terms are scaled by the Rψ to reduce the punishment of high δ and

ψ̇ when the error is high. The effects of the punishment terms on the reward have been demonstrated
on Figure 5.

The reward coefficients have been chosen as cδ = 0.1, cδ̇ = 0.3 and cψ̇ = 0.1 and the previous coefficient
has been kept the same. The agents trained with this reward function have been able to learn a policy
that has acceptable performance. However, they were no match to LQR mainly due to a persistent
steady-state error issue which can be seen on an example simulation in Figure 6.
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Figure 5: Effects of punishment on reward with arbitrary coefficients. Rudder rate is punished even when the
error is high whereas the rudder punishment has no visible effect on the reward until the error gets low. Yaw
rate punishment is similar to the rudder punishment.

Figure 6: Yaw and rudder behavior in time domain for the second reward function demonstrated.

4.5 Fixing Steady-state Error

To address the steady-state error, the gradient around zero error has been made even stronger. This
has been achieved by splitting Rψ into two parts for lower and higher errors as follows

Rψ =

{
exp(−cψlow|ψerr|), for ψerr ≤ ψborder

rborder exp(−cψhigh|ψerr − ψborder|), otherwise
(8)

where cψlow and cψhigh determine the steepness of the reward for lower and higher errors, ψborder and
rborder determine where the transition between two functions will occur in the yaw error and reward
axes, respectively. There is only one cψlow that satisfies the condition of two functions touching each
other at ψerr = ψborder and Rt = rborder which can be calculated through

cψlow = − ln(rborder)

ψborder
(9)

whereas cψhigh can be chosen freely.

The coefficients have been chosen as cψhigh = 5, ψborder = 5/180 (5 degrees normalized), rborder = 0.5
and the previous coefficients have been kept the same. The chosen border coefficients effectively makes
sure that the agent is denied 50% of the maximum reward until it achieves at least 5◦ yaw error. The
differences between the new Rψ and the previous Rψ has been demonstrated in Figure 7.
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Figure 7: The new Rψ compared to the previous one.

The agents trained with this reward function have been able to consistently outperform the designed
LQR controller. The average performance of all of these seven agents have been compared to LQR in
Figure 8.

Figure 8: The final agents compared to LQR. Yaw MAE on the left, total the rudder usage on the right. For
the RL agents, the bars show the average performance of all seven trained agents and the error bars show the
standard deviation between different agents.

Figure 9: Comparing different LQR tunings to the RL agents.

Performance of LQRs with different tunings have been compared to RL agents in Figure 9. By
observing LQR #1 in this figure, it can be seen that to be able to reach MAE similar to RL agents,
LQR almost needs twice the rudder usage of RL agents. Through the comparison LQR #3 and RL
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agents, it can be noticed that LQR needs to have a way higher MAE than RL agents to be able to
attempt to beat RL agents in terms of rudder usage.

4.6 Behavioral Differences Between RL and LQR

Figure 10 compares the yaw and rudder behavior of RL and LQR controllers in both the time and
frequency domains in a representative simulation. The frequency domain plot show that the LQR
controller has two dominant frequencies, while the RL agent has only one. The frequencies of both
controllers match around zero-frequency; however, Although the frequencies of both controllers match
around 0 Hz, LQR has an additional higher dominant frequency at around 0.1 Hz, which results in
excessive rudder usage compared to RL, as seen in the middle graph.

Further analysis of simulations, such as the one shown in Figure 10, has revealed that the consistent
higher frequency peaks in the rudder response of LQR match with the wave encounter frequency. As
noted by works such as (Fossen, 2011), a desirable controller should avoid responding to first-order
wave forces, which correspond to encounter frequency, and instead, should try to counteract second-
order slow wave drift forces. The final RL agents were able to learn this behavior without any explicit
programming.

Figure 10: Rudder usage of agents and LQR compared. Yaw at the top, rudder in time domain in the middle,
rudder in frequency domain (t=600s-800s) at the bottom.
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4.7 Overall Comparison of Different Reward Functions

The study demonstrates three iterations of RL agents. Only the reward function has been changed
between the iterations. The behavior of these three iterations have been demonstrated in an example
simulation at Figure 11. The figure also shows the behavior of LQR under the same sea conditions to
be used as a baseline.

The figure clearly demonstrates the weaknesses and strengths of each iteration. The naive design of
the first iteration is seen to cause excessive rudder usage and overshoots. The new terms added in
the second iteration are demonstrated to help the agent learn how to fight these issues. However it
is seen to struggle with steady-state error. The final agent iteration is demonstrated to be able to fix
this issue with further improvements. The LQR’s tendency of having a high frequency periodic rudder
usage can also be seen when it is compared to third agent.

Figure 11: The performance of different agent iterations. The distances have been exaggerated for clarity.

5. CONCLUSIONS

In this study, an RL-based controller has been proposed to maintain a ship’s course under external
disturbances. The potential benefits of using an RL-based controller over a traditional one have
been shown and discussed. The study starts with a weak controller and improves it iteratively to
demonstrate how reward shaping can be used to fight common issues controllers face. The final
iteration of our RL-based controller has been shown to outperform our baseline LQR controller in
terms of yaw error and rudder usage, even after further tuning.

Our study contributes to the emerging field of ML methods in ship motion control and provides
guidance for future research. In particular, future work could explore the use of model-based RL to
improve sample efficiency and investigate the effectiveness of our approach for different ship geometries
and varying speeds. Overall, our results demonstrate the promising potential of RL-based controllers
for ship motion control.
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