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Abstract. The optimization of the dimensioning of constructive designs is constantly evolving. 

FEM, evolutionary, and other various methods are being developed, which are implemented 

with algorithms in computer simulations of building models. The problem with these methods 

is solving large differential equations, which is inconceivable without computers and large 

memories. The Ritter-Križaić (RK) iteration method works for both straight and oblique 

networks with one side, and it can even be used instead of trigonometric and FEM equations. 

It does this by adding the geometric properties of the networks and outside actions to the 

directional equations. By creating straightforward monograms of RK-FEM technology with 

straightforward differential or subspace equations that are simple to calculate by hand or draw 

with Mathcad tools, the RK-FEM loop enables COD to define various types of trusses and even 

other supports. RK-FEM COD is therefore used to create simulation games that explain many 

logical phenomena in the design of external and internal actions of beam supports, which can 

be compared to a spider thread or an ice plate structure as an RK string and even to the moon.  
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1 INTRODUCTION 

All truss constructions are structural systems consisting of interconnected elements (chords 

and diagonals) that generate only axial forces due to external loads. Truss structures are created 

by optimizing [1,2] the use of materials. In optimizing the design of structural systems today, 

FEM [3] and evolution various other methods [4,5,6] are used to create algorithms that are 

implemented in computer simulations of structural models. The calculation of plane truss 

models is easy to solve with the first Ritter method. However, it involves many routine 

calculations for different dimensions. Therefore, a new calculation must be performed for each 

change. To solve this problem of routine calculations, mathematical and algorithmic models 

are created and existing methods are used. The combination and consolidation of these 

structures leads to a new, seemingly complicated but simple method that is easily supported by 

computers in software loops. By converting the geometric properties of structural truss systems 

into line equations, formulas are obtained that even replace trigonometric equations. The 

contribution of the work is the definition of iterative mathematical models of truss or lattice 

girders with simple plane equations or substantial equations. The aim of the work is the simple 

and fast definition of internal actions and, conversely, the creation of external actions based on 

a constant model that allows the interpretation of monograms for all engineers, including non-

experts. 

2 STATIC METHODS OF TRUSSES  

2.1 Classical methods 

   The classical mathematical methods for calculating planar structures are based on the 

analytic-graphic principle. Using the method of joints and sections, the first Ritter method 

defines equilibrium states of intersecting structural elements by balancing actions in beam 

members with a certain number of members. By the method of nodal isolation, both analytically 

and graphically, the Maxwell-Cremona force diagram releases nodes, and the statics in the 

members are determined by the equilibrium sum of all actions at the node (Fig. 1), where, of 

course, reactions are first defined as in the classical beam member. The method of cutting 

through three members using the Ritter method (Eg. 1) eliminates two members with a common 

moment point, allowing the definition of an equation with a single unknown. 

 
Figure 1: Ritter's method of section and analytical calculation [7]. 

   In a planar system, all actions can be most easily reduced to the axes of the xy coordinate 

system, which leads to two scalar equations in which the sum of the forces and moments is 

equal to 0 for a balanced static action. 

                                                                             ∑ 𝐹𝑥𝑖,𝑦𝑖
𝑛
𝑖=1 , 𝑀𝑥𝑖,𝑦𝑖 = 0                                                 (1) 
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2.2 Displacement methods 

   When the truss is loaded, its bars deform, which leads to a change in its length. Since these 

bars are connected to each other at nodal points, the nodal points of the truss also shift. 

Therefore, the determination of these displacements is based on drawing a displacement 

diagram from the known length changes of the bars (Δl) and the displacements of the 

neighboring nodes. The drawing method is defined by the Williot displacement diagram (Fig. 

2). 

 
Figure 2: The displacement of nodes and the displacement of members (bars) = displacement [8] 

 

   The equation for the elongation of the member is obtained from the modulus of elasticity, 

which is the tangent of the angle of stress and strain, and by extracting the displacement Δ𝑙 (Eg. 

2).  
 

                𝛥𝑙 = 𝑢1 =
𝑁𝑙1

𝐸𝐴
=

𝑁

𝐸𝐴/𝑙1
=

𝑢1

𝑙1/𝑙1
=

𝜀

𝑙1
= 𝜀 =

𝑢1

𝑙1
=

𝜀

𝑙1
=

𝑢1

𝑙1/𝑙1
=

𝑀
𝐸𝑊

𝑙1

=
𝑀

𝐸𝐼
= 𝑢1 = 𝛥𝑙                   (2) 

2.3 Finite Element Methods (FEM) 

   The calculation using the Finite Element Method (FEM) is computer-supported and 

graphically represented with the simulation of internal actions (Fig. 3). 
 

 
Figure 3: FEM graphics [9,10] 

3 RITTER-KRIŽAIĆ METHOD 

3.1 Members and forces converted into equations of lines 

   By substituting the geometric characteristics of the building system and the forces as external 

actions into line equations [11], various valuable data are obtained. In other words, formulas 

are derived that even replace trigonometric formulas. By simply disassembling the force using 

linear equations on the local axis and defining the intersection points with a simple system of 

linear equations, the components of the model are obtained, which are defined using inclination 

coefficients (Fig. 4), (Eq. 3,4). 
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 P
 Px

 Py

 
Figure 4: The force components defined by the equation of the line 

 

Solving the system of linear equations, we obtain the coordinates T22, or differentials Δx and 

Δy, as well as the magnitudes of the forces Px and Py 
 

𝑥 = −
𝑎𝑃

1+𝑎2 = ∆𝑥  ; 𝑦 =
𝑃

1+𝑎2 = ∆𝑦                                                        (3) 

 
So, the distance between the points of force P and the force Px is 

 

𝑃𝑥 = 𝑑(𝑇11, 𝑇22) = √∆𝑥2 + ∆𝑦2 = 𝑎𝑃/√1 + 𝑎2                (4) 

 

Which are also replacements for trigonometric equations with quadratic equations expressed 

using the slope coefficient of the line. From this, it is evident that for a unit force P or vector, 

the mathematical trigonometric expression is sin(𝛼) = 𝑎/√1 + 𝑎2  and cos(𝛼) = 1/√1 + 𝑎2 . 

3.2 Iterative element of a single-pitched truss 

   By applying Ritter's method and substituting trigonometric functions with the slope 

coefficient of linear functions, you obtain the required dimensions of the truss system for its 

structural design. The system only allows the substitution of known trigonometric equations. 

However, the process is still partial. To make the process iterative, i.e. to speed it up, the truss 

problem is solved by defining all distances of the nodes and members from the iterative model 

element of the truss system (Fig. 5). 

c

P/2

 
c
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a

loy *
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2

2 

 
Fig. 5. Representation of forces and nodes in the iterative model of a single-pitched truss 

 

The elements of the iterative model are: 

• n - ordinal number of nodes or members 

• c - spacing of nodes along the x-axis 

• e - total number of iterative elements 

• a1, a2 - slope coefficient of the bottom and top chord 

• q, P – load. 
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3.3 Defining the forces in the members using force geometry and systems 

   Using the well-known Ritter method for the static design of truss structures defined by the 

iterative model, the infinitesimal Ritter-Križaić method is derived as a function of the 

coefficients of the line equations. All force quantities in the members are obtained from the 

iterative model using the equilibrium equation of the moment sum at the bottom node. By 

inserting distances and loads into the known Ritter and Culmann equations using five 

components of the iterative model, the Ritter-Križaić formula is obtained for the bottom and 

top chords, verticals and diagonals in the truss of the mentioned model, where each iterative 

element has a diagonal. The truss is inclined on one side with a flat bottom chord and an inclined 

top chord. The geometric properties are expressed by inclination coefficients (Eq. 5,6). 
 

ℎ𝑛𝑖 = (𝑎1 − 𝑎0)𝑛 𝑐                      (5) 

𝑙𝑜𝑘𝑛𝑖 = cos(𝑎𝑡𝑎𝑛(𝑎1 − 𝑎0)) (𝑛 − 1) 𝑐 (𝑎1 − 𝑎0)       (6) 

  

The final static equation for a truss member with a flat bottom chord, with given variables for 

the slope coefficients as 0 and 𝑎1, along with the static reactions for a simple beam, is as 

follows: 

Bottom chord NDi (Eq. 7,8) 

𝑁𝐷𝑖0 = 1/ℎ𝑛𝑖0(𝐴(𝑛 − 1)𝑐 − ∑ 𝑃𝑖𝑐𝑛−1
𝑖=0                    (7) 

𝑁𝐷𝑖 = 1/ℎ𝑛𝑖(𝐴𝑛𝑐 − ∑ 𝑃𝑖𝑐𝑛
𝑖=0                        (8) 

Top chord NGi (Eq. 9) 

𝑁𝐺𝑖 = −1/𝑙𝑜𝑘𝑛𝑖(𝐴(𝑛 − 1)𝑐 − ∑ 𝑃𝑖𝑐𝑛−1
𝑖=0            (9) 

Vertical member NVi (Eq. 10,11) 
𝑁𝑉𝑖0 = −𝐴 + 𝑖𝑃                                (10) 
𝑁𝑉𝑖 = 𝑁𝐾𝑖𝑉                                               (11) 

I For the diagonal member NKi  (Eq. 12,13,14) 

𝑁𝐾𝑖𝐻 = 𝑁𝐷𝑖 − 𝑁𝐷𝑖0                    (12) 
𝑁𝐾𝑖𝑉 = 𝑁𝐾𝑖𝐻∆𝑎             (13) 

𝑁𝐾𝑖 = √𝑁𝐾𝑖𝐻
2 + 𝑁𝐾𝑖𝑉

2                   (14) 

The initial element has a small difference, so it supplements the iterative algorithm at the 

beginning of the loop. 

4 RITTER-KRIŽAIĆ – FEM COD METHOD 

The results (Fig. 6) with variable and constant truss elements define new values that behave 

variably, or functionally. Thus, the external action on the members is defined by a differential 

equation, and all member forces are functions of a, n, c, and RA (Eq. 15). 
 

𝑁𝐷𝑖; 𝑁𝐺𝑖 , 𝑁𝐾𝑖 = 𝑓(𝑎, 𝑛, 𝑐, 𝑅𝐴)             (15) 
 

   By defining constants for n, c, and a and iterating the force for 1 unit increment or the 

numerator i, the RA is differentiated, and the differential iteration equation (Eq. 16) is defined 

based on the method of dynamic structural programming (Eq. 17,18,19) from areas operations 

research. 
NGi(Pi+1) = f (NGi,  + y')                                                 (16) 

𝑓𝑛(𝑆𝑛) = 𝑚𝑎𝑥0≤𝑥𝑛≤𝑆(𝑔𝑛(𝑥𝑛) + 𝑓𝑛−1(𝑆 − 𝑥𝑛))                             (17) 
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𝑓𝑛+1(𝑆𝑛) = 𝑓𝑛(𝑆𝑛)                              (18) 

𝑓𝑛+1(𝑁𝐺 , 𝑁𝐷 , 𝑁𝐾 , 𝑁𝑉) = 𝑓𝑛(𝑁𝐺 , 𝑁𝐷 , 𝑁𝐾 , 𝑁𝑉)                          (19) 

 

The displayed model is for x equal to 10, meaning there are 10 iterative elements in the truss 

model. For the initial iteration, the equations are ND0, i.e. the 0th element, while the rest form 

an infinite series with the i-th element. 

 
 

Figure 6. The result and code for RK-FEM technology 

5 VECTOR SURFACES RK-FEM COD METHOD 

   The results with variable and constant trus construction elements define new discrete values 

that behave variably or functionally. This defines the differential equation for the external action 

on the members, and all member forces are functions of a, n, c, and RA. By searching for these 

partial curves from the RK-FEM truss calculation technology. 

5.1 NGi 

   For a constant 𝑙, where y = 10, a1 = 1, a0 = 0 and P =1 , a partial straight-line curve is defined 

from the results of the member forces in the chord, in sequential order, with a simulated increase 

in the force P by 1 per unit length of the truss, up to 10. This results in a series of observable 

lines defined by the least squares Gaussian method for quadratic  (Eq. 20,21,22,23) or linear 

curves, or a series of differential equations. 

𝑥 =

[
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10]

 
 
 
 
 
 
 
 
 

𝑦 =

[
 
 
 
 
 
 
 
 
 
−6.364
−6.364
−5.657
−4.95
−4.24
−3.82
−2.121
−1.414
−1.707

0 ]
 
 
 
 
 
 
 
 
 

𝑏 = [
𝑏1
𝑏2
𝑏3

] 𝑏1 = ∑ 𝑥𝑛
𝑥=1 , 𝑏2 = ∑ 𝑥𝑦𝑛

𝑥=1 , 𝑏3 = ∑ 𝑥2𝑦𝑛
𝑥=1      (20)  

 [

𝑛 ∑ 𝑥𝑛
𝑥=1 ∑ 𝑥2𝑛

𝑥=1

∑ 𝑥𝑛
𝑥=1 ∑ 𝑥2𝑛

𝑥=1 ∑ 𝑥3𝑛
𝑥=1

∑ 𝑥2𝑛
𝑥=1 ∑ 𝑥3𝑛

𝑥=1 ∑ 𝑥4𝑛
𝑥=1

]x[

𝑋1

𝑋2

𝑋3

] = [
𝑏1
𝑏2
𝑏3

]                    (21) 

𝑋 = 𝑏𝐴−1, 𝑋 = [
−7.142
0.492
0.016

], 𝑎𝑖 = 𝑋𝑖                    (22)  

𝑁𝐺(𝑙10,𝑃1,𝑎1) =
𝛥𝑁𝐺(𝑙10,𝑃1,𝑎1)

𝛥𝑥
= 𝑎1 + 𝑎2𝑥 + 𝑎3𝑥

2              (23) 

 
The partial curve with constant 𝑃 yields the equation (Eq. 24). 
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𝑁𝐺𝑖−𝑐𝑜𝑛(𝑙10,𝑃1,𝑎1) = 𝑓𝑥 = 𝑦′ = −7.142 + 0.492𝑥 − 0.016𝑥2          (24) 
 

   By iterating 𝑃 for 1 on the plane level, a differentiated curve 𝑓𝑥𝑖 is obtained (Fig. 7) (Eq. 
25,26,27,28). 

 
Figure 7. The partials write linearize by reducing the force 𝑃 to the plane level 

 

   The definition of the link between the finite increments on the planes defines the increments 

of the function as a function of 𝑃, leading to equations with two variables 𝑁𝐺𝑖=f(𝑥,𝑃). 

 
               𝑁𝐺𝑖 = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑥2;                                        (25) 

𝑁𝐺𝑖 = −7.142 + 0.492𝑥 + 0.016𝑥2;                          (26) 

𝑁𝐺𝑖 = −14.284 + 0.984 𝑥 + 0.032𝑥2;          (27) 
𝑁𝐺𝑖 = −21.425 + 1.475𝑥 + 0.048𝑥2;         (28) 
𝑁𝐺𝑖 = −28.567 + 1.967 𝑥 + 0.064𝑥2;         (29) 

 

   By connecting the coefficients 𝑎1𝑖 into lines and 𝑎2𝑖 and 𝑎3𝑖 and deleting 𝑎3𝑖 due to its small 

value, a formula is created with two variables 𝑁𝐺𝑖=𝑓(𝑥,𝑃), resulting in a plane (Fig. 8a), (Eq. 

30,31,32,33). 
 𝑎1 = −7.142 𝑃           (30) 
 𝑎2 = 0.492 𝑃            (31)  
𝑁𝐺𝑖 = 𝑎1 + 𝑎2𝑥               (32) 
𝑁𝐺𝑖(𝑥,𝑃) = −7.142 𝑃 + 0.492 𝑃 𝑥         (33) 

 
   The equalization of values is evident, so the spatial equation replaces the Ritter calculation 

for the given example of a truss. By checking for larger values of 𝑃 and 𝑥, an invisible state is 

defined, and the upper equation is suitable for the specified model. Thus, generally, for each 

truss case, a new equation is defined. The Gaussian method does not provide accurate data for 

irregular numerous variables 𝑥x, so the equation of the line for given forces in the truss members 

is manually defined. The line on the plane with constant 𝑁 and 𝑃, constant - model for 𝑥=10 

yields (Eq. 34). 
𝑁𝑃(𝑃, 𝑥 − 𝑐𝑜𝑛) = 6.5 𝑃          (34) 

  

   The line on the plane with constant 𝑁 and 𝑥 - constant 𝑃1 model for 𝑥=10 yields (Fig. 8b). 

From the data points T1,2,3 (10,50,70,100) for 𝑥, i.e., length, and for unit increase in force 𝑃, 

the value of force 𝑃 is respectively -6.63, -34.65, -48.79, and -70. Based on the equation of the 

line with two points, it is defined as follows (Eq. 35,36,37). 
 

𝑦 − 𝑦1 = (𝑥 − 𝑥1)(𝑦2 − 𝑦1)/(𝑥2 − 𝑥1)                        (35) 
𝑁𝐺𝑖 = −0,7𝑥                      (36) 

 

The value of 𝑁 increases multiplicatively by the force 𝑃, so 𝑎 or 𝑃 is inserted into the formula. 
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𝑁𝐺𝑖 = −0,7𝑃𝑥                        (37) 

 
Fig. 8.a) He spatial curve of compressive force NGi ; 8.b) RK-FEM tehnology (NG(x,P,a); a = const.) 

 

   To define all trusses, equations are created as functions of 𝑎1. By changing the height of the 

beam defined by 𝑎1, the model of 10m is affected. From the given data, it can be discerned that 

increasing the beam height reduces the load on the beam, which is in conflict with the 

breakdown of the external force, which has an inverse value relative to 𝑎1. By changing the 

span, results are obtained that iteratively transmit forces inversely from the largest model to the 

smallest, depending on the number of elements.  

   By partially viewing the spatial equation linearly, we obtain the equation (𝑥,) and 𝑓(𝑃,𝑎). 

So it is for (𝑃,𝑎) for 𝑥 = 5, 10, 15 m (Eq. 38). 

 

𝑁𝐺𝑖𝑎 = −7 + 0.81𝑎; −14.2 + 1.07𝑎; −20.84 + 2.38𝑎      (38) 

 

Connecting 𝑎 and 𝑏 into formulas creates a plane (Eq. 39,40,41,42,43). 
 

 𝑎1 = −0.179 − 6.924𝑃          (39) 

 𝑎2 = −0.15 + 0.785 𝑃        (40) 

𝑁𝐺𝑖 = 𝑎1 + 𝑎2𝑥              (41) 

𝑁𝐺𝑖(𝑎,𝑃) = −6.924 𝑃 + 0.785 𝑃 𝑎       (42) 

𝑁𝐺𝑖(𝑎,𝑃) = −7 𝑃 + 0.8 𝑃 𝑎        (43) 

 

For N f(x,a) for x=5,10,15 m (Eq. 44). 

 
𝑁𝐺𝑖𝑎 = 0 − 2.89𝑎;  0.462 − 6.719𝑎;  10.8 + 1.26𝑎        (44) 

 

Connecting 𝑎 and 𝑏 into formulas creates a plane (Eq. 45,46,47,48). 

 
 𝑎1 = 7.4 − 5.44𝑥                       (45) 

 𝑎2 = −6.75 + 2𝑥                             (46) 

𝑁𝐺𝑖 = 𝑎1 + 𝑎2𝑥                           (47) 

𝑁𝐺𝑖(𝑎,𝑃) = 7.4 − 5.44𝑥 + 6.75𝑎 + 2𝑎𝑥                              (48) 

 

The sum of both N f(pa and xa) results in (Eq. 49). 

 
𝑁𝐺𝑖(𝑎,𝑃,𝑥) = −0.4 − 5.44𝑥 + 6.75𝑎 + 0.8𝑎𝑃 + 2𝑎𝑥      (49) 

 

   By simulating the models l15m and l10m with differentiated increases in the slope coefficient 

(a) and force P per unit value (1, 2, 3), iterative equations are defined. These are defined through 
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two points of the curve reduction direction for l15, 𝑎𝑖, a=1 (Eq. 50,51), and a=2 (Eq. 52,53), and 

a=3 (Eq. 54,55). 

𝑦1 = −
10

15
𝑥;  𝑦2 = −

20

15
𝑥 ; 𝑦3 = −

30

15
𝑥;       (50) 

 

Gaussian elimination applied to these three equations yields 
𝑎1 = −0.65𝑃          (51) 

𝑦2 = −
8

15
𝑥;  𝑦2 = −

16

15
𝑥 ; 𝑦3 = −

23.5

15
𝑥;      (52) 

 

Gaussian elimination applied to these three equations yields 
𝑎2 = −0.507𝑃         (53) 

𝑦3 = −
7.4

15
𝑥;  𝑦2 = −

15

15
𝑥 ; 𝑦3 = −

22

15
𝑥;      (54) 

 

Gaussian elimination applied to these three equations (𝑦𝑖) yields 
𝑎3 = −0.5𝑃          (55) 

 

Gaussian elimination applied to these three equations (𝑎𝑖) yields (Eq. 56), 
𝑌(𝑎𝑖, 𝑃) = −0.68 + 0.066 𝑎𝑃        (56) 

 

   This process iterates for 𝑙10, 𝑎𝑖 and then Gaussian elimination is applied to these three 

equations (𝑎𝑖) to obtain (Eq. 57). 
𝑌(𝑎𝑖, 𝑃) = −0.7 + 0.085 𝑎𝑃        (57) 

 

   Using Gaussian elimination for these three equations (Yi), we obtain 𝑎1 and 𝑎2 for the 

equation 𝑦=𝑎1+𝑎2𝑥 (Eq. 58,59). 

𝑎1 = 𝑓 − (0,68 𝑖 −  0,7) =  −0.7 +
0.02

5
 𝑎𝑃      (58) 

𝑎2 = 𝑓(0,066 𝑖 0,085) =  1.23 +
0.19

5
 𝑎𝑃      (59) 

 

   By substituting the coefficients into the NG equation, y yields the function of the decline of 

NGa(x,P) with respect to the variable a (Eq. 60). 

 
𝑁𝐺𝑎(𝑎, 𝑥, 𝑃) = −0.7 + 0.085 𝑎𝑃                                                   (60) 

The final spatial curve for all positions in space amounts to (Eq. 61,62). 

 
𝑁𝐺(𝑎, 𝑥, 𝑃) = 𝑁𝐺(𝑎1, 𝑥, 𝑃) − 𝑁𝐺𝑎(𝑎, 𝑥, 𝑃)      (61) 

𝑁𝐺(𝑎, 𝑥, 𝑃) = −0.7𝑃𝑥 + (−0.7 +
0.02

5
𝑥 + (1.23 +

0.19

5
𝑥)𝑎𝑃     (62) 

5.2 NDi , NKi , NVi 

For constant 1, 𝑎1 and 𝑎0, a partial straight-line curve is defined from the results of the member 

forces in the chord, in sequential order, which with a simulated increase in the force value 𝑃 by 

1, yields a series of observable lines defined by the least squares Gaussian method for quadratic 

or linear curves (Eq. 63). 
𝑁𝐷𝑖 = −0.5𝑥 + 5; −1𝑥 + 10 ;−1.5𝑥 + 15        (63) 

 

Connecting 𝑎 and 𝑏 into formulas creates a plane (Eq. 60) and for diagonal and vertical actions, 
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it is defined (Eq. 64,65,66,67,68,69)  (Fig. 9) 

 
 𝑎1 = 5 𝑃             (64) 

 𝑎2 = −0.5 𝑃                            (65) 

 𝑁𝐷𝑖 = 𝑎1 + 𝑎2𝑥                          (66) 

𝑁𝐷𝑖 = 5 𝑃 − 0.5 𝑃𝑥                      (67) 

𝑁𝐾𝑖 = −0.406 𝑃 + 0.661 𝑃 𝑥 − 0.008 𝑃 𝑥2      (68) 

𝑁𝑉𝑖 = 0.45 𝑃 − 0.652 𝑃 𝑥 + 0.011 𝑃 𝑥2      (69) 

  
Figure 9. RK-FEM tehnology (ND,K,V (x,P,a); a = const.) 

 

The first page has to include the Editorial Heading, as shown in the first page of these 

instructions. Successive pages will include the name of the authors. 

6 CONCLUSION 

   This model was created by iterating the idea procedure of the first simpler model truss 

construction with a flat bottom chord with a1 = 0 to a model with a1 > 0. The only difference 

is that it is extended by a constant that defines the directional coefficient of the truss structure. 

Only by changing some components of the equations, i.e. the direction coefficient of the lines, 

we obtain n dimensions of a represented model of the truss structure as a beam-static system. 

To define other types of double-roof, gable-roof and other models, it is necessary to define an 

iteration model very similar to the above procedure. Well, every designer can also become a 

programmer, because Mathcad is sufficient for quick calculations. By defining the objective 

function based on different iteration models and simulations with techno-economic parameters, 

further optimization of the system is possible. When defining the direction coefficient, i.e. the 

tangent of the angle by a differential, we also enter the field of infinitesimal methodology, i.e. 

the field of differential calculus. If we further define the angle of rotation on the iterative model, 

we obtain the curvature of the lattice constructions. The iterative definition of curvature leads 

to the iterative formula for the curvature of curves when x→0 and a→0. 

A single roof truss can be solved with the defined system, while other models require a new 

iteration element or an extension of the given RK-FEM model. The RK-FEM surface vector 

has the disadvantage that it must be created for each a1, since only a few data could be read in 

the forest of the part a1 reduced to the surface plane. It is also recommended to define the path 

to the megaprojects, i.e. to the spatial domain when x→ ∞ because a larger iteration element 

in km is defined in a few minutes, while a small element already has problems with processor 

speed. When solutions simulations a→0 is defined spider web which is obtained, i.e. cable 

replaced with truss construction calculations RK∞ space technology [12]. Which can be an 

introduction to AI systems [13] with frequency observation of grid-cable systems [14,15].  
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