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Summary. We consider the problem of determining inclusions in layered media from noisy
measurements of wave fields on the surface. For inclusions governed by a small number of
parameters, we define the posterior probability of the parameter set by means of the finite
dimensional Bayes’s formula. We determine the maximum a posteriori approximation (MAP)
of the inclusions by optimizing constrained functionals involving the measurements, the avail-
able a priori information and parameter dependent solutions of wave equation constraints with
changing discontinuities which we approximate with adaptive finite element meshes. A Laplace
approximation of the posterior probability about the MAP point provides basic uncertainty
estimates. Markov Chain Monte Carlo (MCMC) studies allow us to quantify uncertainty in
the distribution of inclusion parameters in more detail, including multimodality and asymmetry
effects. However, the higher computational cost of this approach forces the use of coarse solvers
defined in prefixed meshes. While we find reasonable agreement between the MAP estimates
obtained in both ways, MCMC sampling unveils multimodal distributions affected by the prior
knowledge and the noise to signal ratio.

1 INTRODUCTION

Noninvasive imaging techniques to study the subsurface of Earth often resort to elastic waves
generated by man-made vibrations or explosions [11]. Figure 1 illustrates a typical imaging
set-up. A grid of equispaced sources emits waves that propagate under the surface, interact
with the structures encountered, are reflected and recorded at a grid of receivers located on the
surface. Full waveform inversion techniques exploit the entire content of the recorded waves to
extract parameters characterizing unknown properties of the medium [13]. Here, we assume we
have characterized a basic layered structure by other techniques, for instance, classical seismic
reflection or depth migration [11, 12]. Our goal is to refine the characterization of localized inclu-
sions of different materials in the layers with quantified uncertainty. A variety of deterministic
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Figure 1: Schematic visualization of the imaging set-up. Circles represent sources while crosses represent
receivers where wave signals are recorded.

approaches can be employed to approximate such inclusions [4, 6, 8], resorting to optimization
of constrained cost functionals with total variation, Tikhonov or iterative Gauss-Newton regu-
larizations. To quantify uncertainty we devise a finite dimensional Bayesian inverse formulation,
assuming that the inclusions are characterized by a few parameters representing their material
constants and geometry [2]. In our context, this approach is simpler than high dimensional
Bayesian formulations [12] aiming to characterize the wave speed of each point of a mesh cover-
ing the whole region under study. It allows us to resort to FEM techniques using either adaptive
or fixed meshes and investigate the influence of the choice on the results.

2 OBSERVATION OPERATOR

Measurements are related to a mathematical model of wave propagation through an obser-
vation operator. We consider a scalar model of longitudinal wave propagation

ρν(x)utt = div[(λν(x) + 2µν(x))∇u] + ρ(x)f, x ∈ R, t > 0,

∇u · n = 0, x ∈ Σ, t > 0,

u(0,x) = 0, ut(0,x) = 0, x ∈ R,

(1)

where u represents the displacement generated by the force f induced by the source points.
R represents the layered subsurface and Σ the upper surface where sources are located. The
layered region R contains inclusions Ων defined by parameter sets ν, which modify the local
properties of densities and elastic constants:

ρν =

{
ρ, x ∈ R \ Ων ,
ρi, x ∈ Ων ,

(2)

vν =

{
v, x ∈ R \ Ων ,
vi, x ∈ Ων ,

(3)

where the local wave speed v is related to the elastic constants and the density by (λ + 2µ) =
ρv2. The observation operator assigns to each inclusion the value of the solution uν of (1)-(3)
measured at the receivers rj , j = 1, . . . , J, during a sequence of times tm, m = 1, . . . ,M :

U : RP −→ RD

ν −→ (uν(rj , tm))j=1,...,J,m=1,...,M .
(4)
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Notice that we can define the value of uν at specific points only when the solution uν of (1-3)
is smooth enough, see [1] for details. Otherwise, we need to consider alternative observation
operators.

If νtrue are the true parameters defining an observed inclusion, we expect the measurements
to be related to the synthetically observed values

d = U(νtrue) + η, (5)

where η represents a random Gaussian noise term with covariance Γn.

3 BAYESIAN INVERSE PROBLEM

Given inclusions characterized by parameters ν = (ν1, . . . , νM ) and measurements d, the
posterior probability density p(ν|d) of having an inclusion defined by parameters ν given data
d is characterized by Bayes’s theorem [9]

ppt(ν|d) = p(d|ν)ppr(ν)
p(d)

, (6)

where ppr(ν) is the prior density of the parameters (which embodies expert knowledge on them)
and p(d|ν) is the conditional probability (or likelihood) of recording measurements d given
parameters ν. The density p(d) is a normalizing factor. The posterior density ppt(ν|d) itself is
the solution of the inverse Bayesian problem.

For the specific problem under study, we define prior densities and likelihoods as follows:

ppr(ν) = C

{
1

(2π)P/2
1√
|Γpr|

exp
(
−1

2(ν − ν0)
tΓ−1

pr (ν − ν0)
)
, ν ∈ P,

0, ν /∈ P,
(7)

p(d|ν) = 1

(2π)D/2
√
|Γn|

exp

(
−1

2
(U(ν)− d)tΓ−1

n (U(ν)− d)

)
, (8)

where t denotes transpose. The set P includes constraints on the parameters ν. We fix P =
length(ν) and D = length(d). C > 0 is a normalization constant. The vector ν0 and the
matrix Γpr represent the mean and the covariance for the prior distribution, while Γn is the
covariance matrix for the likelihood and U(ν) stands for the observation operator associated to
the propagation model (1)-(3).

The full characterization of a posterior probability is a challenging task. Preliminary informa-
tion is obtained from the set of parameters νmap at which the posterior probability (6) attains a
global maximum, the so-called MAP (maximum a posteriori) estimate. Scaling out normalizing
constants, the posterior probability to be maximized is

ppt(ν|d) ∼ exp

(
−1

2
(ν − ν0)

tΓ−1
pr (ν − ν0)−

1

2
(U(ν)− d)tΓ−1

n (U(ν)− d)

)
(9)

for ν ∈ P.

4 APPROXIMATE BAYESIAN INVERSE PROBLEM

Computational Bayesian formulations employ discretizations of the observation operator U.
We truncate the region R to obtain a bounded computational region R′, on whose artificial
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boundaries we enforce non-reflecting boundary conditions [5]. Since the fields vν and ρν are
discontinuous we resort to finite elements to approximate solutions of the resulting wave problem.
Given a mesh Tν adapted to the domain Ων (domain decomposition) and a finite element space

V
(N)
ν ⊂ H1(R′), semi-discrete approximations seek u

(N)
ν (t) =

∑N
n=1 an(t)ϕν,n ∈ V

(N)
ν satisfying∫

R′
ρν(x)u

(N)
ν,tt(x, t)w(x) dx+

∫
R′

ρν(x)vν(x)
2∇u

(N)
ν (x, t)∇w(x) dx

+

∫
∂R′−Σ

ρν(x)vν(x)u
(N)
ν,t (x, t)w(x) dSx =

∫
R′

ρν(x)f(t,x)w(x) dx,

u
(N)
ν (0) = u

(N)
ν,t (0) = 0,

(10)

for all w ∈ V
(N)
ν . Given a temporal grid tk = k δt, k = 0, . . . ,K, we the discretize the time

derivatives using centered differences for u
(N)
ν,tt and backward (or centered) differences for u

(N)
ν,t .

We construct an approximation u
(N),k
ν =

∑N
n=1 a

k
nϕν,n, k = 0, . . . ,K, by solving a recurrence

N∑
n=1

Bν;j,na
k+1
n =

N∑
n=1

Bν;j,n(2a
k
n − ak−1

n )− δt2
N∑

n=1

Cν;j,na
k
n

− δt

N∑
n=1

Eν;j,n(a
k
n − ak−1

n ) + δt2hkν;j , j = 1, . . . , N,

(11)

for k ≥ 1 starting from a0n = 0 and a1n = 0, n = 1, . . . , N , see [1] for details. The step δt is
chosen small enough to guarantee a CFL condition.

For simplicity, we assume that the recording times tm are a subset of the discretization times
tk. The approximate observation operator is

Uap : RP −→ RD

ν −→ (u
(N)
ν (rj , tm))j=1,...,J,m=1,...,M .

(12)

The posterior probability under study becomes

pappt (ν|d) ∼ exp

(
−1

2
(ν − ν0)

tΓ−1
pr (ν − ν0)−

1

2
(Uap(ν)− d)tΓ−1

n (Uap(ν)− d)

)
(13)

for ν ∈ P, zero otherwise.

5 MAXIMUM A POSTERIORI APPROXIMATION

The set of parameters νap
map at which the posterior distribution (13) attains a global maximum

provides an approximation to the MAP point. To find νap
map we minimize the cost functional

Jap(ν) =
1

2
(ν − ν0)

tΓ−1
pr (ν − ν0) +

1

2
(Uap(ν)− d)tΓ−1

n (Uap(ν)− d) (14)

when ν ∈ P and Uap(ν) is the observation operator (12). The prior information encoded in ν0

and Γpr acts as a regularizing term with convexifying effects. We resort to iterative Levenberg-
Marquardt type algorithms [10] that set νk+1 = νk + ξk+1 where ξk+1 is the solution of(

H(νk) + ωk diag(H(νk))
)
ξk+1 = −g(νk), (15)
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(a) (b) (c)

Figure 2: For the imaging set up depicted in Figure 1 and data corrupted by 10% noise: (a) MAP
estimate of the inclusion shape versus true shape, (b) histograms for the density and wave speed within
the inclusion, obtained by adaptive optimization and Laplace approximation.

H(ν) and g(ν) being the Hessian and the gradient of the cost Jap(ν). The small parameter
ωk > 0 is adjusted to guarantee a decrease in the cost. In practice, we replace H(ν) by the
Gauss-Newton part of the Hessian HGN(ν) neglecting second order derivatives. Through the
optimization procedure, the inclusions Ωνk considered when solving (11) to obtain Uap(νk)
change. We use adaptive meshes, with elements entirely included in Ωνk and Ωνk ⊂ R′, sharing
vertices on ∂Ωνk , see [1] for details. The use of adaptive meshes allows us to resort to auto-
matic differentiation to calculate the derivatives of the cost functional, see [1]. In simple tests,
convergence is achieved in less than 50 steps.

5.1 MAP POINT BASED UNCERTAINTY ESTIMATES

Linearizing the approximate posterior density about νap
map, we obtain a multivariate Gaussian

distribution N (νmapap ,Γpt) approximation with covariance

Γpt = (FtΓ−1
n F+ Γ−1

pr )
−1. (16)

This constitutes the so-called Laplace approximation of a posterior probability [9]. We obtain
basic uncertainty estimates on the true inclusion parameters drawing samples of N (νmapap ,Γpt)
by the relation

ν = νap
map + Γ

1/2
pt n, (17)

where n is a standard normal randomly generated vector (iid). Here F is the matrix with

ℓth-column ∂Uap
ν

∂νℓ
(rj , tn), j = 1, ..., J , n = 1, ..., N evaluated at νap

map.
Figure 2 visualizes uncertainty about inclusion parameters obtained from 10000 samples

employing synthetic data generated solving (11) for the imaging set-up depicted in Figure 1
and adding 10% noise. The computational region is a rectangle of 3 Km width and 3 Km
depth. We locate 51 receivers in the central part of the surface, spaced 200 m, and intercalate
between them 50 sources xj , spaced 200 m. Each source generates a force term of the form

fj(x, t) =
0.1

(πκ)n/2 (1 − 2π2(fM t)2)e−π2(fM t)2 exp(− |x−xj |2
106κ

) N with n = 2, κ = 0.04, fM = 2 Hz.

The total force is the superposition of all. Adaptive FEM meshes have a minimum step 400 m.
The time step for the numerical solver is 10−3s. Data are recorded at the receivers each 0.1s up
to a time 2.5s. Parameter values for the layered background and the true inclusion are displayed
in Table 1.
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Table 1: Parameter values for the imaged layered geometry

Layers 1 2 3 4 5 Inclusion

ρ 2000 2500 2490 2490 2600 2100 kg/m3

v 1500 2500 2800 3300 3100 4400 m/s

6 MARKOV CHAIN MONTE CARLO BASED UNCERTAINTY ESTIMATES

The unnormalized posterior distribution (13) can be directly sampled using affine invariant
Markov Chain Monte Carlo samplers. Following [7], we create W chains as follows:

• Set k = 0, a∼2 and choose number of chains W . Set sample parameter space X = RP .

• Draw ν0
1, . . . ,ν

0
W ∈ X with probability ppr.

• From k = 0 to k = Kmax

– Generate a permutation σ of (1, . . . , P ) without fixed elements.

– For w = 1, . . . ,W

∗ Draw zw from g(s) = s−1/2 if s ∈ [a−1, a], 0 otherwise.

∗ Set νprop,w = νk
σ(w) + zw(ν

k
w − νk

σ(w)).

∗ Calculate the acceptance probability α = min
(
1, zP−1

w
pappt (νprop,w)

pappt (ν
k
w)

)
.

∗ Draw u with uniform probability U(0, 1).

∗ If u < α, νk+1
w = νprop,w, otherwise νk+1

w = νk
w.

– Set k = k + 1.

• Final samples from pappt : ν
0
1,ν

0
2, . . . ,ν

0
W , . . . , νKmax

1 ,νKmax
2 , . . . ,νKmax

W .

This algorithm needs W > 2P to properly sample the target distribution and can be parallelized
[3, 7]. A first block formed by B samples is discarded on account of a burn-in period. To
evaluate pappt given by (13) we need to calculate Uap given by (12). This is done here solving
(11). Typically, a few million samples may be required to properly characterize pappt . Thus, the

use of adaptive meshes that change with each proposed set of parameters νk is unaffordable. We
are forced to employ fixed meshes T and finite element spaces V (N) for all proposed inclusions
Ωνk , which reduces the quality of the numerical solver.

Figure 3 visualizes uncertainty about inclusion parameters obtained from 100.000 samples
generated this way. Comparing to Figure 2, we observe a number of differences caused by the
presence of secondary modes in addition to the main mode associated to νap

map. The meaning of
the additional modes and how we can vary the design of the imaging set-up to eliminate them
deserves further study, see [1].

7 CONCLUSIONS

- Uncertainty quantification in inverse scattering problems that employ time dependent in-
cident waves leads to solving optimization problems with time dependent wave constraints
and variable discontinuities arising at the boundary of the scatterers.
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(a) (b) (c)

Figure 3: For the imaging set up depicted in Figure 1 and data corrupted by 10% noise: (a) MAP
estimate of the inclusion shape versus true shape and contour plot of the probability of belonging to the
inclusion, (b)-(c) histograms for the density and wave speed within the inclusion, obtained by MCMC
sampling with a fixed FEM mesh.

- For scatterers governed by low dimensional parameter sets, adaptive FEM schemes and
automatic differentiation are the basis of effective optimization approaches and basic un-
certainty estimates.

- The use of detailed Markov Chain Monte Carlo samplers is possible resorting to coarse
FEM solvers defined on fixed meshes, however, the interpretation of the results faces
additional uncertainty due multimodality.
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