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Summary. Accurate prediction of aerodynamic pressure distributions is essential for efficient
aircraft design, but the computational demands of high-fidelity computational fluid dynamics
(CFD) simulations are a significant challenge. Recent advances in machine learning have in-
troduced surrogate models that combine dimensionality reduction with regression techniques to
address such a challenge. We propose a surrogate model that integrates β-Variational Autoen-
coders (β-VAEs) with Gaussian Process Regression (GPR) to predict pressure distributions on a
wing under transonic flight conditions. The β-VAE model effectively reduces the dimensionality
of complex aerodynamic data while preserving critical flow features. We investigate the impact
of the latent space dimension and the hyperparameter β on the performance and interpretability
of the surrogate model. The resulting latent space is used to train a GPR model that maps
flight conditions, such as Mach number and angle of attack, to the latent space coordinates. This
approach enables accurate predictions of aerodynamic pressure distributions over a wide range
of flight conditions. Our findings demonstrate that β-VAEs offer a robust and efficient solution
for aerodynamic surrogate modeling, reducing the number of required CFD simulations.
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1 INTRODUCTION

Accurate prediction of aerodynamic coefficients remains a critical challenge in aeronautics,
particularly due to the computational expense associated with high-fidelity Computational Fluid
Dynamics (CFD) simulations [1]. To address this matter, there is growing interest in surrogate
modeling approaches that offer a computationally efficient alternative [2].

Traditional aerodynamic surrogate models often employ dimensionality reduction techniques
such as Principal Component Analysis (PCA) or Proper Orthogonal Decomposition (POD) to
distill high-dimensional data into a manageable number of dimensions. Although effective in
many cases, these linear methods struggle to capture the inherent nonlinear complexities of
aerodynamic flows, particularly in transonic regimes where sharp discontinuities such as shock
waves occur [3, 4].

To overcome these limitations, manifold learning techniques such as Isomap and Local Lin-
ear Embedding (LLE) have been explored, aiming to identify the manifold on which the input
data reside. These methods have shown the potential to improve surrogate models by captur-
ing nonlinear structures, though they require additional regression algorithms to decode the
low-dimensional representation to the original space [5, 6, 7]. Despite their promise, manifold
learning remains underutilized in aeronautics. More recently, the advances in neural networks
provide a promising framework for developing surrogate models that address the limitations of
previous approaches [8, 9, e.g.]. In particular, auto-encoder (AE) architectures have emerged
as powerful tools for managing large-scale aerodynamic data, offering nonlinear transformations
that reduce dimensionality while preserving critical flow features [10, 11]. Among these, Vari-
ational Autoencoders (VAEs) have gained attention for their ability to encode fluid dynamics
into low-dimensional latent spaces with a probabilistic approach [12, 13]. VAEs are a Machine
Learning (ML) architecture that learns a probabilistic representation of the input data by en-
coding them into a lower-dimensional latent space and then reconstructing it [14]. VAEs offer
a probabilistic approach to reduce dimensionality, providing a more refined latent space repre-
sentation than PCA or POD. However, a key challenge with VAEs is the lack of orthogonality
in the latent space, which can lead to entangled features, complicating interpretation.

A notable variant of VAEs, the β-Variational Autoencoder (β-VAE), introduces a regular-
ization term that balances reconstruction accuracy with latent space disentanglement, leading
to more interpretable and physically meaningful representations [15, 16]. Recent studies have
demonstrated the potential of β-VAEs in capturing the most energetic modes of turbulent flows,
indicating their suitability for developing robust and interpretable surrogate models [17, 18].

This paper focuses on leveraging β-VAEs for surrogate modeling of aerodynamic pressure
distributions. By using β-VAEs, we aim to provide a more effective and interpretable method for
reducing the dimensionality of aerodynamic data. Then, through the mapping of physical labels
with the latent space coordinates using a Gaussian process regression (GPR) model, we build
a complete pipeline for predicting pressure fields, thus enhancing the accuracy and efficiency of
aerodynamic predictions while accommodating the nonlinear nature of flow phenomena.

2 DATABASE

This study utilizes a dataset from the GARTEUR AD/AG60 research project, featuring
Reynolds-Averaged Navier-Stokes (RANS) simulations of the XRF1 aircraft model, developed by
Airbus™ to demonstrate advanced technologies for long-range, wide-body aircraft. The data set
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Figure 1: (a) Flight envelope with the tested flight conditions split into training set ( ) and test set
( ). (b) Example of Cp distribution on the wing for (α,M) = (9.25◦, 0.7). Three planes are highlighted
at wingspan percentages η = 0.1, 0.5, 0.9 ( ).

consists of 435 simulations computed with the DLR TAU solver[19], focused on the distributions
of the pressure coefficient (Cp) on the wing under various flight conditions. The simulations
maintain a fixed Reynolds number (Re = 2.5 × 107), with Mach numbers ranging from 0.5 to
0.96 and angles of attack (α) from 0◦ to 11.5◦ (see Figure 1a). The focus is on the upper surface
of the wing, where significant aerodynamic effects occur under a fixed load factor of nz = 2.5g,
simulating extreme conditions that lead to notable wing deformation.

The dataset splits into a training set (305 cases, 70%) and a test set (130 cases, 30%). The
training set is used to develop the β-VAE and GPR models, while the test set evaluates their
predictive performance. The test cases cover a range of complexities, including scenarios of low
(α1,M1 = 2.0◦, 0.504), intermediate (α2,M2 = 5.75◦, 0.704), and high (α3,M3 = 9.75◦, 0.904)
aerodynamic challenges, such as shockwaves on the upper wing surface.

Each Cp distribution is represented on an unstructured mesh with q = 49, 574 points, mak-
ing it a high-dimensional data point in Rq. The encoder network reduces this dimensionality
by encoding the data into a low-dimensional latent space, which the decoder then reconstructs
to its original dimensionality. Once trained, the GPR model is used to map the flight condi-
tion parameters (the couples [α,M ]) with the latent space, enabling the prediction of untested
flight conditions. Hereinafter, we use Cp, C̃p, and Ĉp to denote individual samples, β-VAE
reconstructions, and surrogate predictions, respectively.

3 FRAMEWORK

This section outlines the methodologies used to develop the proposed surrogate model. We
begin by detailing the concept and architecture of the β -VAE, followed by a description of the
GPR model used to map flight conditions to the latent space coordinates. Finally, we present
the overall structure of the surrogate model, integrating these techniques to predict pressure
distributions based on given flight conditions.
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3.1 β-variational autoencoder

VAEs [14] are designed to derive meaningful, low-dimensional representations from high-
dimensional data. They achieve this by compressing the input data into a lower-dimensional
latent space through an encoder network and then reconstructing the input from this latent space
using a decoder network. Let zi represent the i-th component of the latent vector Z ∈ Z, where
Z ⊂ Rd is the latent space with dimensionality d. The encoder maps input data x ∈ X ⊂ Rq to
this latent space, whereas the decoder reconstructs the data from the latent space.

VAEs include probabilistic modeling by forcing the latent variables to follow a predefined
prior distribution, usually a standard Gaussian distribution. This feature provides some control
over the properties of the latent space. Thus, each input observation is modeled in terms of a
mean µ and a standard deviation σ. Considering this, the VAE loss function not only accounts
for the reconstruction loss but also the divergence between the learned and prior distributions
using the Kullback–Leibler divergence loss LKL. Being x̃ denotes the VAE reconstruction, the
loss expressions reads

L(x) = ∥x− x̃∥22︸ ︷︷ ︸
Lrec

− 1

2

d∑
i=1

(
1 + log(σ2

i )− µ2
i − σ2

i

)
︸ ︷︷ ︸

LKL

. (1)

β-VAEs, as proposed by [15], introduce a hyperparameter β to control the trade-off between
reconstruction accuracy and the disentanglement of latent variables. Higher β values promote
more disentangled representations at the cost of increased reconstruction error:

L(x) = Lrec − βLKL. (2)

In this study, β-VAEs are employed to map pressure distribution fields, leveraging their
enhanced nonlinear dimensionality reduction capabilities compared to classical linear methods.

3.2 Gaussian Process Regression

The surrogate developed in this work uses GPR to model the relationship between flight
conditions and the latent variables derived from the β-VAE. GPR is well-suited for this task due
to its ability to perform nonlinear regression with high accuracy and flexibility. For a detailed
mathematical analysis, readers are referred to comprehensive literature on the topic [20, 21, 22].

In the context of this work, flight conditions are used as input data to predict latent space
variables. The kernel choice for GPR combines a linear kernel and a Matérn 3/2 kernel. The
former captures direct linear relationships, while the latter addresses nonlinearities, providing
a comprehensive model for complex dependencies in the data. This combination enhances the
model’s predictive performance, allowing it to effectively map flight conditions to the latent
space and ensure robust predictions.

3.3 Surrogate modeling for efficient aerodynamic data prediction

The proposed surrogate model combines the specified ML techniques to establish a solid
pipeline to predict pressure fields based on flight conditions. The schematic of the data flow
through the β-VAE+GPR model is depicted in Figure 2.
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Figure 2: Schematic of the model workflow. Pressure fields are encoded into a latent space, computing
the associated mean and standard deviation. The latent vectors are then reconstructed using the de-
coder, yielding the β-VAE reconstruction. Once trained, the regression model links the flight condition
parameters with the latent space coordinates.

Table 1: β−VAE characteristics.

Optimizer Adam

Layers type Fully connected

Activation type ELU

Hidden layers 10

Encoder 1024-512-256-128-64

Decoder 64-128-256-512-1024

Input size 49,574

No. of parameters 102,974,122

During the training stage, pressure distributions are fed to the encoder network to obtain their
low-dimensional representation. This yields a mean and a standard deviation per each latent
dimension. Then, the decoder takes these parameters and transforms them into the original
pressure fields, aiming to minimize Equation 2. When this phase is completed, the parameters
of the networks are frozen and the GPR model is trained to discover a relationship between the
flight conditions and the means, resulting in a direct pipeline for Cp prediction.

The β-VAE architecture, detailed in Table 1, uses a multilayer perceptron (MLP) for both
the encoder and decoder due to the absence of mesh connectivity in the dataset. This implies a
large amount of trainable parameters, considering the vast input size of the data.

4 MODEL ANALYSIS

Although β-VAEs are effective for dimensionality reduction into latent spaces, optimizing
their performance involves several challenges. These include selecting the ideal architecture
for the encoder and decoder, determining the appropriate hyperparameter β, and choosing the
latent space dimension d. Given that our dataset is solely based on flight conditions represented
by a tuple of two design variables ([α,M ]), setting the latent space dimension to d = 2 simplifies
the regression from parameter space to latent space. This choice is in line with the findings
of [11], who noted that a β-VAE with d = 16 revealed that only two latent variables were
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Figure 3: Reconstruction loss for β-VAE model depending on latent space dimension and β hyperparam-
eter for the testing dataset. Root mean square error is computed between original Cp and reconstructed

C̃p through the β-VAE.

significantly correlated with M and α. Hence, we explore latent space dimensions in the range
d ∈ [2, 6] to determine the appropriate dimensionality, and β values from 0 to 1 to assess model
performance. Small values of β are crucial for maintaining acceptable reconstruction accuracy,
achieving poor regularization. The upper limit, β = 1, corresponds to a classic VAE.

Figure 3 shows the Root Mean Square Error (RMSE) as a function of β for different latent
space dimensions. The RMSE generally increases with larger β, indicating reduced reconstruc-
tion accuracy as expected in Equation 2.

The latent space dimension impacts the reconstruction error. For lower β values, the RMSE
remains stable in all dimensions but increases significantly with larger β. This indicates that
lower values of β help stabilize the model’s performance, leading to similar results.

Further analysis of the latent space, visualized in Figure 4, reveals that the latent variables
correlate well with flight conditions. For example, a value of β = 0.008 shows a clear correlation
between M and α with the latent variables (increasing directions from bottom to top, and from
left to right, respectively), demonstrating that the β-VAE learns to capture relevant aerodynamic
parameters since flight conditions are not used during training. This correlation strongly depends
on the latent space dimension, suggesting that lower values tend to yield clearer relationships.

The choice of d does not significantly affect RMSE for lower values of β. Although higher
dimensions capture more information, d = 2 remains sufficient, aligning with the relevant fea-
tures captured. This encourages us to set the latent space to d = 2 from now, seizing the
simple subsequent regression that results as well. For β, small values yield better performance,
with β ∈ [0, 10−3] providing the lowest RMSE and a reasonable latent space distribution. As β
approaches 1, the reconstruction accuracy decreases due to excessive regularization.

4.1 Latent space prediction

To predict the latent variables from flight conditions accurately, the regression model must
effectively map the parameter space to the latent space. The GPR model, using the kernels
defined in subsection 3.2, captures the relationship between the parameter space and the latent
space (see Figure 4). For clarity, we will refer to the latent space provided by the β-VAE and
visualized in Figure 4 as the reference latent space, which the GPR model aims to predict.
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Figure 4: First two variables of the latent space depending on its dimension and β hyperparameter
for β-VAE model. Value ranges are adjusted to be within the interval from -1 to 1. Latent spaces
with more than two dimensions show the relationship between the first two modes that accumulate more
information. Flight conditions are characterized by Mach number (point color) and angle of attack (point
size).

Figure 5 illustrates the regression performance on the test set, comparing the reference latent
space with the predicted one. Arrows indicate the displacement of the predicted latent variables
for the 10 cases with the highest prediction errors. Overall, the regressor performs well, with
most predictions aligning closely with the reference latent space points, demonstrating its ability
to effectively map the parameter space to the latent space.

The regressor tends to perform less accurately at points near or on the boundaries of the
parameter space, especially at high angles of attack (the right side of the latent space). This
behavior suggests that the regressor struggles more in these regions, potentially due to the
increased complexity and nonlinearity of aerodynamic responses, such as flow separation or
shockwave displacement. Additionally, these boundary data points in the latent space have
fewer neighbors, reducing the local information available to the regressor and making accurate
predictions more challenging.

The regressor performance is quantified with the Normalized Root Mean Square Error (NRMSE)
between the reference latent space and the regression predictions for both training and testing
datasets (NRMSE(µ, µ̂) = ∥µ− µ̂∥2/∥µ− µ̄∥2). The NRMSE metric quantifies the prediction
error relative to the overall size of the latent space, which allows for comparison across different
latent spaces regardless of β. For a data sample in the latent space µ, its mean value µ̄, and its
prediction µ̂, the NRMSE is defined as:
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Figure 5: Regression performance in the latent space on the test set, comparing the reference latent
space ( ) and the prediction ( ). The arrows (→) highlight the displacement of the predictions for the
10 cases with the highest error.
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Figure 6: Normalized root mean squared error between the reference latent space and the regression
prediction from flight conditions. Both training ( ) and testing ( ) datasets are considered. Dashed
lines ( ) indicate mean values.

Figure 6 displays the NRMSE distribution as a function of β for the β-VAE model across
training and testing datasets. The dashed lines represent the mean error evolution with β, while
the violin plots show the error distribution for each β value. As β decreases, the error distribution
widens, reflecting greater variability in prediction errors. This variability is consistent with the
large displacements reported in Figure 5 for high angles of attack. Despite this, the mean
NRMSE remains relatively constant and independent of β.

In conclusion, the GPR model and the selected kernels demonstrate reasonably accurate per-
formance regardless of the β value. This supports the choice of GPR for this application, despite
the availability of more sophisticated regressors, such as DNN-based models. The robustness
and versatility of GPR make it a reliable choice in similar studies [11, 23].

4.2 Pressure prediction

The performance of the surrogate model is assessed by predicting the pressure distribution
on the upper wing side of the XRF1 aircraft for various Mach numbers and angles of attack
within the flight envelope.

Figure 7 presents the Mean Absolute Error (MAE) between the actual pressure distribution
and the predictions for the β-VAE+GPR model. The results show that for smaller values of
β (e.g., 0, 0.008), the β-VAE+GPR model generally commits a small and stable error. This
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Table 2: Performance indicators of the surrogate. They include MAE, RMSE, and R2 score, which have
been computed using the testing dataset.

β MAE RMSE R2

0 0.062 0.114 0.812

0.0001 0.055 0.101 0.854

0.001 0.053 0.098 0.864

0.008 0.061 0.102 0.852

0.06 0.110 0.155 0.671

1 0.192 0.266 0.106

indicates that minimal regularization improves prediction accuracy, while higher β values tend
to increase MAE due to over-regularization.
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Figure 7: Mean absolute error between ground truth and Cp predictions for β-VAE+GPR model. Both
training ( ) and testing ( ) datasets are showed. Dashed lines ( ) indicate mean values.

The performance metrics, displayed in Table 2 and including MAE, RMSE, and R2 score,
reveal that the β-VAE+GPR model is able to explain more information when the β is small
enough, pulling down the bottom tail of the error distributions. Despite the complexity of
tweaking properly the hyperparemeters of the model, a properly tuned β value significantly
enhances surrogate model performance.

The global performance of the surrogate models is evaluated through detailed visualization
cases using β = 0.008, which offers a good balance between prediction accuracy and latent space
reconstruction. Figure 8 presents a comparison between the ground truth pressure coefficient
fields from RANS simulations and the predictions from β-VAE+GPR model for various flight
conditions. For the low Mach number and angle of attack case, the surrogate generally shows
small prediction errors across the wing surface, though there are localized inaccuracies near the
leading edge and trailing edge. In the moderate condition, prediction errors increase slightly,
especially near the leading edge, with the model smoothing the pressure distribution compared
to the reference. Finally, the high M and high α case shows more pronounced prediction
errors, particularly around the shockwave region. The model struggles to accurately capture the
pressure drop associated with shockwaves, as can be seen at the 0.9 wingspan percentage, but
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it learns the general tendency of the actual distribution.

Figure 8: Difference between ground truth and predicted coefficients for the visualization test cases with
β = 0.008. Chordwise pressure distributions from β-VAE+GPR ( ) model at span percentages η =
0.1, 0.5, 0.9 are displayed and contrasted with ground truth ( ).

In summary, the proposed methodology effectively produces a surrogate model capable of
capturing the essential features of complete pressure distributions under various flight conditions.
The architecture efficiently projects these fields into a low-dimensional space, thereby conserving
computational resources, and subsequently reconstructs the pressure distributions from this
latent representation while smoothing out the most nonlinear phenomena. Overall, the proposed
model demonstrates superior performance compared to traditional surrogates based on linear
reduction techniques [24].

5 CONCLUSIONS

This research investigates the use of β-VAEs combined with GPR for predicting pressure
fields over a wing in transonic flight conditions. The study employs a MLP architecture for both
the encoder and decoder in the β-VAE, effectively handling high-dimensional pressure coefficient
samples to produce their latent representations. The analysis demonstrates that β-VAE models,
when combined with GPR, accurately capture key aerodynamic features and maintain strong
correlations with flight conditions across various latent space dimensions and β values.

The GPR model’s performance in predicting latent space coordinates proves reliable, showing
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minimal prediction errors and consistent results between training and testing datasets. The
surrogate model efficiently predicts wing pressure distributions, exhibiting robust performance
even in challenging conditions such as high angles of attack and shockwave regions. Overall, the
β-VAE+GPR framework provides accurate and efficient predictions of pressure distributions,
making it a valuable tool for aerodynamic analysis and optimization. The results underscore
the effectiveness of this approach in balancing interpretability and prediction accuracy across
different flight conditions.

ACKNOWLEDGEMENTS

This work has been supported by the TIFON project, ref. PLEC2023-010251/MCIN/AEI/
10.13039/501100011033, funded by the Spanish State Research Agency, and by AIRBUS Defence
& Space through the CETACEO project, ref. PTAG-20231008, funded by the CDTI. The
authors would like to thank AIRBUS for providing the XRF1 database.

REFERENCES

[1] Jichao Li, Xiaosong Du, and Joaquim R.R.A. Martins. Machine learning in aerodynamic
shape optimization. Progress in Aerospace Sciences, 134:100849, October 2022.

[2] R. Yondo, E. Andrés, and E. Valero. A review on design of experiments and surrogate
models in aircraft real-time and many-query aerodynamic analyses. Progress in aerospace
sciences, 96:23–61, 2018.

[3] E. Iuliano and D. Quagliarella. Proper orthogonal decomposition, surrogate modelling and
evolutionary optimization in aerodynamic design. Computers & Fluids, 84:327–350, 2013.

[4] V. Dolci and R. Arina. Proper orthogonal decomposition as surrogate model for aero-
dynamic optimization. International Journal of Aerospace Engineering, 2016(1):8092824,
2016.

[5] R. Castellanos, J. Nieto-Centenero, A. Gorgues, S. Discetti, A. Ianiro, and E. Andrés.
Towards aerodynamic shape optimisation by manifold learning and neural networks. In
15th International Conference on Evolutionary and Deterministic Methods for Design, Op-
timization and Control, EUROGEN 2023. ISAAR-NTUA, 2023.

[6] J. Nieto-Centenero, A. Mart́ınez-Cava, and E. Andrés. Multifidelity surrogate model for
efficient aerodynamic predictions. In 8th European Congress on Computational Methods in
Applied Sciences and Engineering, ECCOMAS Congress, 2024.

[7] Ruixue Li and Shufang Song. Manifold learning-based reduced-order model for full speed
flow field. Physics of Fluids, 36(8), 2024.

[8] C. Duru, H. Alemdar, and O. U. Baran. A deep learning approach for the transonic flow
field predictions around airfoils. Computers & Fluids, 236:105312, 2022.

[9] Z. Wang, X. Liu, J. Yu, H. Wu, and H. Lyu. A general deep transfer learning framework
for predicting the flow field of airfoils with small data. Computers & Fluids, 251:105738,
2023.

11



V. Francés-Belda, A. Solera-Rico, J. Nieto-Centenero. E. Andrés, C. Sanmiguel Vila, and R. Castellanos

[10] J. Wang, C. He, R. Li, H. Chen, C. Zhai, and M. Zhang. Flow field prediction of supercritical
airfoils via variational autoencoder based deep learning framework. Physics of Fluids, 33(8),
2021.

[11] Y.-E. Kang, S. Yang, and K. Yee. Physics-aware reduced-order modeling of transonic flow
via β-variational autoencoder. Physics of Fluids, 34(7):076103, 2022.

[12] H. Eivazi, H. Veisi, M. Hossein Naderi, and V. Esfahanian. Deep neural networks for
nonlinear model order reduction of unsteady flows. Physics of Fluids, 32(10):105104, 2020.

[13] B. Zhang. Nonlinear mode decomposition via physics-assimilated convolutional autoencoder
for unsteady flows over an airfoil. Physics of Fluids, 35(9), 2023.

[14] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[15] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and
A. Lerchner. β-vae: Learning basic visual concepts with a constrained variational frame-
work. In International conference on learning representations, 2017.

[16] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and A. Lerchner.
Understanding disentangling in β-VAE. arXiv preprint arXiv:1804.03599, 2018.

[17] A. Solera-Rico, C. Sanmiguel Vila, M. Gómez-López, Y. Wang, A. Almashjary, S.T.M.
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