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Abstract. In the present contribution, we propose an effective numerical thermal modeling
solution for melt pool simulations in Laser-based Powder Bed Fusion of Metals processes. The
proposed model employs an anisotropic conductivity to represent melt pool dynamics effects
in a homogeneous material model. The numerical implementation of the proposed physical
model is first experimentally calibrated and then validated with respect to a series of melt pool
measurements as acquired by using a short-wave infrared (SWIR) camera monitoring system.

1 Introduction

Laser-based Powder Bed Fusion of Metals (PBF-LB/M) has known exponential growth over
the last decades due to its capacity to produce close-to-freeform designs with high accuracy
and mechanical properties that for bulk material components are comparable to subtractive
manufacturing technologies [20]. Stainless steel 316L (SS 316L) is a common steel in Additive
Manufacturing (AM) applications, due to its high strength-to-weight ratio, excellent durability,
hardness, and mechanical properties at high temperatures. For instance, it can be used for
the production of engine components in the aerospace and automotive industry, as well as for
hydraulic components, heat exchangers, and structural joints.

Numerical methods can be a valid solution to predict the temperature field evolution during
the PBF-LB/M process. In the literature, several contributions can be found presenting a broad
set of thermal models and employing different numerical techniques [19, 5]. More specifically,
thermal models for PBF-LB/M process simulations can be divided into two main groups: i)
models which consider the single powder particles and melt pool dynamics [10] and ii) models
which consider the different phases of the material as homogeneous media [14]. The latter is a
well-established approach in the literature for meso and part-scale thermal analysis [2, 17, 6].
For a detailed review of the state of the art of PBF-LB/M thermal simulations, we refer to [21].
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In the present contribution, we propose a heat transfer model with homogeneous material,
extending the modeling solution proposed in [11]. The simulated melt pool area, length, and
width are compared to SWIR-measured data for the corresponding physical process, showing
excellent agreement between numerical and experimental results.

2 Physical and numerical model

Following [8], let us consider a physical domain Ω ⊂ R3 with homogeneous material. In such
a domain, we want to solve a heat conduction problem, i.e., a problem describing the physical
phenomena occurring during the PBF-LB/M process.

Let T indicate the temperature field, the heat conduction problem can be written as:

ρcpṪ −∇ · (k∇T ) = Q in Ω, (1)
k∇T = q on ∂Ω, (2)

T = T0 at t = 0, (3)

with k = k(T ) the temperature-dependent thermal conductivity of the material, ρ = ρ(T ) the
temperature-dependent density of the material, and cp = cp(T ) the temperature-dependent
specific heat capacity, Q the rate of heat per unit volume, q a prescribed heat flux on the
domain boundaries, and T0 the initial temperature in Ω. The Gaussian model proposed by [7]
is used to model the heat source energy input term Q, as follows:
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where P is the laser power, η is the absorptivity of the material, r the laser radius, and d the
laser penetration depth parameter with the laser beam centered in [xc, yc, zc].

2.1 Boundary conditions

The PBF-LB/M process occurs within a closed build chamber where an inert gas (argon)
flux is present to dissipate heat by convection. At the same time, heat is dissipated by radiation
in the region surrounding the melt pool due to the high temperature generated by the localized
laser beam. Therefore, the heat flux q in Eq. (2) models these two heat loss mechanisms on the
upper surface of the domain and it is defined as:

q = qc + qr (5)

where qc is the heat loss by convection and qr is the heat loss by radiation on the upper surface
of the domain Ω. These two terms are defined as follows:

qc = hc(Ta − T ) and qr = σsbϵ(T
4
a − T 4) (6)

with hc the convection coefficient, Ta the the ambient temperature in the build chamber, σsb

the Stefan-Boltzmann constant, and ϵ the emissivity of the material.

2



M. Carraturo, P. P. Breese, and S. Oster

2.2 Material model

The material considered in the present work is AISI SS 316L, a common steel in AM appli-
cations. The temperature dependent parameters are taken from [4], while, following [15], the
convection coefficient value, hc is set to 14.5 [W/m2K].

In the present work, a homogenized material is employed to model the problem, i.e., the
liquid phase of the material is a solid material with different thermal properties. Such an
approach is very common in the literature; however, it does not allow us to consider the melt
pool dynamics and its influence on the temperature distribution. In [9] and [11], an anisotropic
enhanced thermal conductivity approach is used to model melt pool dynamics influence on the
temperature distribution in the melt pool neighborhood.

In the present work, the thermal conductivity of the material is scaled by a conductivity
scaling factor diagonal matrix ϑi, with i = x, y, z. Such a scaling factor is applied at high
temperatures, i.e., the thermal material conductivity is modified at temperatures above a tem-
perature Tk close to the melting temperature (Tk = 1200°C). In particular, we consider an
anisotropic scaling factor ϑz = ϑy = 0.5ϑx for the homogeneous thermal conductivity of the
material k = k(T ) when T > Tk, modifying Eq. (2) such that:

ρcpṪ − ∂
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− ∂
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)
= Q (7)

2.3 Numerical implementation

In the present work, the domain Ω is discretized using a uniform cartesian grid with tri-linear
hexahedral elements with dimension (25× 25× 25)µm3. To accurately evaluate the computed
melt pool morphology, a finer grid is used to post-process the temperature field on the upper
surface of the domain. Such a post-processing grid has cells with dimension (5 × 5 × 5)µm3.
The melt pool area, length, and width are obtained by setting a threshold on such a post-
processing grid and considering only cells with an average temperature above the solidification
temperature Tm of the material (Tm = 1375°C).

An implicit Euler time integration scheme is used in our implementation to approximate the
temperature evolution in time. By following [12], the time step increment ∆t is defined as:

∆t =
r

v
(8)

with v the laser speed, i.e., such that the laser beam moves by a distance equal to the laser
spot radius at each time step.

3 Experimental setup

Single track melt pool measurements were performed on a custom PBF-LB/M printer located
at the Federal Institute for Materials Research and Testing in Berlin, Germany (see Fig. 1).
The printer consists of a recipient with an integrated PBF-LB/M powder bed module. The
recipient can be evacuated and filled with inert process gas (argon). Using a focusing unit
(varioSCAN, SCANLAB, Puchheim, Germany), and a galvanometer scanner (intelliSCAN,
SCANLAB, Puchheim, Germany), a 500 W fiber laser (1070 nm, IPG Photonics, Burbach,
Germany) is guided onto the build plate. A dichroic mirror is integrated into the laser path
which specifically reflects the laser wavelength. Thereby, a portion of the process emissions is
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decoupled and can be used for on-axis measurements of melt pool radiosity. A laser diameter
of 46 µm in the focal plane was measured using an optical focal spot analyzing device (Ophir
Optronics Solutions, North Logan, USA).

Figure 1: Custom PBF-LB/M printer located at Federal Institute for Material Research and Testing in Berlin,
Germany.

For the measurement of the melt pool radiosity, a short-wave infrared (SWIR) camera
(C-Red 3, First Light Imaging, Meyreuil, France) in combination with a 100 mm lens was
connected to the beam splitter. To neglect a disruptive influence from the laser, a notch filter
(1064± 2 nm) and a bandpass filter (1500±15 nm) were additionally mounted in front of the
lens. The measurement conditions lead to a spatial resolution of 29 µm/pixel in the focal plane.
The camera was operated at an acquisition frequency of 9501 Hz in subframe mode with an
image size of (64 x 64) pixels. Furthermore, an integration time of 11.6 µs was used. The laser
spot position on the focal plane was derived from the mirror position in the scanning unit with
a frequency of 100 kHz.

Single tracks were produced on a sandblasted bare plate from AISI SS 316L. We used nine
different combinations of laser power P and scan velocity V to produce a variety of melt
pool geometries. For each combination, eight scan tracks (length of 15 mm) with a lateral
displacement of 0.5 mm were produced. In order to calibrate the thermal model, we produced an
additional set of single tracks using an independent parameter set. All parameter combinations
are shown in Table 1.

3.1 Image processing

The acquired thermograms were temperature calibrated using a single-point calibration
model [18]. The melt pool shape was measured using a blob detection algorithm from Matlab
Image Processing Toolbox (MathWorks, Natick, MA, US). A global threshold was applied to
all thermograms. As threshold value, the solidification temperature Tm was used to separate
the liquid material of the melt pool from solidified material. During the blob analysis, the
melt pool shape was approximated by an ellipsis. The lengths of the main axes were used to
calculate the melt pool length (L) and width (W ). In terms of melt pool area (A), the number
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of melt pool pixels was summed up.
To estimate the total uncertainty in the melt pool geometry measurements, the uncertainty

resulting from single-point calibration was considered. In order to generate a calibration model,
a reference intensity Iref was extracted manually from the solidification plateau in the melt pool
rear in randomly chosen thermograms. From the measured values, we calculated the standard
deviation σIref . A numerical Monte Carlo simulation-based approach was used to incorporate
σIref into the total measurement uncertainty. This method was implemented according to the
“Guide to the expression of uncertainty in measurement” (GUM) [3]. We used a Gaussian
distribution as probability density function (PDF) for Iref . 1000 random values were drawn
from the PDF and propagated through the entire image processing workflow. From all obtained
results in terms of A, L and W , we calculated total standard uncertainties in the form of the
standard deviation.

Experiment 1 2 3 4 5 6 7 8 9 10
Laser power P [W] 314 314 314 245 245 245 176 176 176 224
Scan velocity V [mm/s] 600 800 1000 600 800 1000 600 800 1000 700

Table 1: Manufacturing parameters for the production of single tracks. The tenth parameter set was used to
calibrate the thermal model.

4 Results and discussion

The results presented in this section have been obtained using an Intel® Xeon® W-2125
CPU @ 4.00GHz with 256Gb RAM. The thermal model has been implemented in AdhoC++,
a numerical framework continuously developed at the Technical University of Munich [22, 13].

4.1 Thermal model calibration

The thermal model described in Section 2 includes numerical parameters that are complex
or even impossible to be measured. For these problem parameters, an experimental calibration
is required. In the model introduced in Section 2, we consider the following unknown quantities
to be calibrated: the material absorptivity η, the conductivity scaling factor along the laser
moving direction ϑx, and the laser penetration depth d. To calibrate and validate the proposed
model, we consider three quantities of interest (QoIs), namely the melt pool area, length, and
width. These three QoIs have been considered since they can be measured in-situ by means of
the SWIR camera mounted on the 3D printing system (see Section 3).

To calibrate the model, we use the Sparse Grid Matlab Kit [1, 16] a lightweight, high-level
Matlab toolkit for uncertainty quantification analysis based on sparse grids. Sparse grids are
a flexible numerical tool suitable for surrogate model generation. They have been proven
particularly effective for the generation of surrogate models in low-dimensional parametric
space, i.e., when the number of parameters is lower than four.

In the present work, first we perform a global sensitivity analysis to evaluate the sensitivity
of our model with respect to variations of the model parameters to be calibrated. Such an
analysis shows that the influence of the laser penetration depth on our QoIs is negligible;
therefore, in the subsequent calibration and model validation, we keep this parameter fixed,
such as d = 50µm. With the remaining two uncertain variables, we finally construct a surrogate
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model to effectively compute problem minimization. The final calibrated parameter values are
η = 0.21 and ϑk = 3.17.

4.2 Thermal model validation

To evaluate the robustness of the previously calibrated model, we run a set of nine simulations
using the process parameters reported in Table 1. Figure 2 shows the comparison of numerical
and experimental evaluation of the melt pool area, length, and width at steady-state along a
single track laser scan path. It can be observed that the proposed numerical model is able to
accurately capture the melt pool morphology for a wide range of process parameters. However,
for Experiments 8 and 9, the predicted area is outside of the measurement error bars; the
simulated melt pool length lies outside the experimental error bars for Experiments 6, 8, and
9; whereas the numerical melt pool width is outside experimental error bars for Experiments
2, 3, 6, and 9.
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Figure 2: Melt pool dimensions. Numerical Vs. Experimental results. The shown measurement uncertainties
include the uncertainty from thermal calibration.

To better understand the motivation of such a deviation of the numerical model from the
experimental data, in Fig. 3 we plot the melt pool area, length, and width with respect to the
linear energy density of each experimental setup, defined as El = P/v. This plot indicates
that the proposed model is able to well approximate melt pool behavior not only close to the
calibration point, but also for higher linear energy density values. Contrary, when the energy
density of the process is much lower than the value used for model calibration, the predicted
results start to deviate from the experimental measurements.

5 Conclusions

A simple yet effective thermal model for melt pool morphology prediction in PBF-LB/M
processes has been calibrated and experimentally validated with respect to nine different com-
binations of laser power and speed. The model shows good agreement with experimental results
and it can be considered valid for a wide range of linear energy density values. Further outlook
of the present work will aim at applying the proposed thermal model to investigate the influence
of process-induced defects on melt pool morphology.
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Figure 3: Melt pool dimensions with respect to linear energy density. Numerical Vs. Experimental results.
Dashed lines indicate the linear energy density used for model calibration.
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