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Summary. This paper presents a 3D equilibrium finite element approach for reinforced con-
crete, based on a piecewise linear tetrahedral elements for concrete stress interpolation and
embedded rebars represented as curves within the volume mesh. Global equilibrium is en-
forced through traction continuity equations on each triangular face of the mesh, incorporating
the rebar stress contribution on faces intersected by rebars. The formulation extends to the
elastoplastic case and limit analysis by adding nonlinear constraints: semidefinite constraints
for concrete stress based on the Rankine criterion, while the material behavior of the rebars are
modeled using a 1D perfect elastoplastic model.

1 INTRODUCTION

The development of equilibrium finite element (EFE) approaches dates back at least to the
work of Fraeijs de Veubeke in 1965 [4]. Since then, EFEs have been extensively researched
[1, 2, 3, 5, 6, 7, 8], but they have not achieved the same success in structural analysis as their dual
counterpart, the displacement-based approach. To our knowledge, very few commercial software
packages incorporate EFE in their finite element libraries. This is despite their advantage of
providing a stress distribution that locally satisfies the equilibrium equations, which is crucial
for verifying the resistance of different parts of a structure.

Another advantage of the equilibrium approach is that, when coupled with a displacement
approach, it provides an error estimator that can be used for mesh refinement. This combination
also helps validate the numerical results used in various post-processing steps aimed at checking
the resistance and ensuring the validity of the structure design. Thus, the equilibrium approach
is a powerful tool for structural analysis that should be more widely adopted and incorporated
into commercial software packages.

To advance this objective, a novel equilibrium finite element formulation for reinforced con-
crete was introduced in [5]. Understanding the behavior of reinforced concrete structures
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presents a formidable challenge due to the intricate interplay between ductile reinforcements
and brittle concrete. Unlike steel, where the normality flow rule aligns with reality [3, 2], rein-
forced concrete does not readily conform to a perfectly plastic model, hindering the application
of robust mathematical frameworks for nonlinear analysis. Nonetheless, through extensive ex-
amination of various test cases, it has been demonstrated that the equilibrium formulation offers
a promising tool for the analysis of concrete structures and can also be employed in limit analysis
to predict the load-bearing capacity of these structures.

In the first section of this paper, we will present the equilibrium formulation for reinforced
concrete in the elastic case. This formulation will be extended to the elastoplastic case and limit
analysis in subsequent sections. We will conclude with examples that illustrate the efficiency of
the proposed formulation.

2 THE EQUILIBRIUM FINITE ELEMENT FORMULATION:

2.1 Brief overview without rebars:

The equilibrium formulation is based on the following equations:

divσσσ = 000 . (1)

In order to verify strongly (1) in the volume V of the solid, the stress tensor σσσ needs to be
at least continuous and differentiable, a condition that is not easy to ensure in the general 3D
case. An alternative approach is to consider a partition of the volume V =

⋃nvol
i=1 Vi, where we

apply the following transformation of the equilibrium equations :

divσσσ = 000 on V =⇒

{
divσσσi = 000 on all Vi

JσσσKi nnn = 000 on all ∆i

, (2)

where σσσi corresponds to the concrete stress tensor of the ith elementary volume Vi, the notation
JσσσKi = σσσj − σσσk corresponds to the stress gap at an interface ∆i between the two elementary
volumes j and k, and nnn the normal vector to ∆i.

From the transformed equilibrium equations, it is straightforward to obtain the following
integral form of the equilibrium equations:{

divσσσi = 000 on all Vi

JσσσKi nnn = 000 on all ∆i

=⇒ ∀V̄ ∈ V,

∫
V̄
divσσσ dV = 000 , (3)

that can be considered as the true fundamental form of the equilibrium equations, as it does not
require a C1 stress tensor over the domain V .

Using a piecewise linear interpolation for the concrete stress tensor, it is straightforward to
ensure divσσσ = 000 for each elementary volume Vi. By adding the traction continuity equations as
equality constraints on each interface of the partition, the fundamental form of the equilibrium
equations in (3) is then verified.

The equilibrium approach for the elastic case can be written as an optimization problem,
expressed in the following form:
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min
σσσ∈S3

nvol∑
i=1

1

2

∫
Vi

σσσ : CCC−1 : σσσ dV −
∫
Γu

σσσnnn · ū̄ūu dΓ ,

s.t. divσσσ = 000 on all Vi ∈ V ,

JσσσKnnn = 000 on all ∆i ∈ Γ∆ ,

σ nσ nσ n = ttt on Γt ,

(4a)

(4b)

(4c)

(4d)

where Γu(ūuu) and Γt(ttt) represent the boundary conditions for displacements and surface forces,
respectively, Γ∆ =

⋃nface

i=1 ∆i the set of all the interfaces of the volume partition, and CCC−1 the
inverse of the elasticity tensor.

Extended the approach to the elastoplastic case can be performed by simply adding nonlinear
material constraints on the concrete stress tensor. For concrete, one of the most widely used
material criterion is the well-known Rankine criterion, expressed in as follows:

−fc ≤ σIII ≤ σII ≤ σI ≤ ft ⇒

{
000 ⪯ σσσ + fcIII3

000 ⪯ −σσσ + ftIII3
, (5)

where fc is the compression limit of the concrete, ft its tensile limit, (σI , σII , σIII) the prin-
cipal values of the stress tensor, and the notation 000 ⪯ · designates a positive semi-definite matrix.

The optimization problem expressed in (4), with the additional constraints in (5), is a semi-
definite programming (SDP) optimization problem, where some of the unknowns are matrices
that must be positive semi-definite. These optimization problem can be effectively solved by
using the interior point algorithm.

2.2 The equilibrium approach with rebars:

For reinforced concrete, the rebars are considered as 1D curves ccc(s) embedded in the mesh.
The discretization of each rebar is determined by the intersection points of its curve with the
interfaces in the set Γ∆ (see Fig. 1). Consequently, the rebar is divided into nrebar segments, each
with a piecewise constant rebar stress σr. Thus, for each rebar segment within an elementary

volume, the equilibrium equation
dσr

ds
is satisfied.
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Intersection points

Rebar
s1 s2 s3 s4

Figure 1: A rebar intersecting the interfaces of three tetrahedra.

Now, we introduce the key idea to connect the concrete stress tensor with the rebar stress
in the equilibrium approach. To this end, the traction continuity constraint for an interface ∆i

intersected by a rebar is expressed in its integral form with the aid of following Lagrangian :

L(σσσ, σr,uuu, ur) =

∫
∆i

JσσσKnnn · uuu d∆+ SrJσrKur , (6)

where Sr is the cross-section of the rebar, and (uuu, ur) the Lagrange multipliers that can be
assimilated to incompatible displacements on the interface ∆i.

To connect the stress tensor σσσ and the rebar stress σr, the hypothesis of perfect bonding
between uuu and ur is adopted:

ur(si) = eeer(si) · uuu(si) , ∀si ∈ Ir , (7)

where eeer := dccc/ds is the tangent vector to the curve ccc(s) representing the rebar.

Replacing in (6) with the relation in (7), and linearizing the Lagrangian with respect to
(uuu, ur), we obtain the following variational equation:

∀δuuu ,
∫
∆i

JσσσKnnn · δuuu d∆+ SrJσrKeeer · δuuu(sk) = 0 , (8)

which represents the traction continuity equations at the interface ∆i, coupling the concrete
stress tensor σσσ and the rebar stress σr.

The Lagrange multipliers, i.e., the incompatible displacement vectors uuu, are interpolated over
the interface ∆i: uuu =NNNTuuuN . Thus, the equation (8) is re-written in the following form:

∀δuuuN , δuuuTN

(∫
∆i

NNNJσσσKnnnd∆+ SrJσrKNNN(sk)eee
r

)
= 0 , (9)

⇒
∫
∆i

NNNJσσσKnnnd∆+ SrJσrKNNN(sk)eee
r = 000 , (10)
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where uuuN is the nodal displacement vector at the interface vertices, NNN is the interpolation fuc-
tions matrix.

We can now write the optimization problem for the equilibrium approach including rebars:



min
σσσ∈S3,σr∈R

nvol∑
i=1

1

2

∫
Vi

σσσ : CCC−1 : σσσ dV +

nrebar∑
i=1

1

2

∫
∆Li

(σr)2

Er
ds−

∫
Γu

σσσnnn · ū̄ūu dΓ ,

s.t. divσσσ = 000 on Vi ,

σ nσ nσ n = ttt on Γt ,∫
∆i

NNNJσσσKnnnd∆ = 000 on ∆i ∈ Γ∆ \ Γr
∆ ,∫

∆i

NNNJσσσKnnnd∆+ SrJσrKNNN(sk)eee
r = 000 on ∆i ∈ Γr

∆ ,

− fcIII3 ⪯ σσσ ⪯ ftIII3 on Vi ,

|σr| ≤ fy on Lr ,

(11a)

(11b)

(11c)

(11d)

(11e)

(11f)

(11g)

where Γr
∆ is the set of interfaces that are intersected by at least one rebar, and fy is the elastic

limit of the rebar.

2.3 The limit analysis problem for reinforced-concrete:

Limit analysis is a method that aims to directly compute the limit load of a structure in a
fixed loading direction by solely considering the material’s plasticity. The method is suited for
sufficiently ductile structures, not limited by a deformation or a strain limit.

The optimization problem for limit analysis can be obtained by introducing a new variable
λ into the problem in (11), representing the load factor to maximize, and by modifying the
optimization function. The new optimization problem for limit analysis is then expressed in the
following form:
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max
σσσ∈S3,σr∈R,λ≥0

λ ,

s.t. divσσσ = 000 on Vi ,

σσσnnn = λttt on Γt ,∫
∆i

NNNJσσσKnnnd∆ = 000 on ∆i ∈ Γ∆ \ Γr
∆ ,∫

∆i

NNNJσσσKnnnd∆+ SrJσrKNNN(sk)eee
r = 000 on ∆i ∈ Γr

∆ ,

− fcIII3 ⪯ σσσ ⪯ ftIII3 on Vi ,

|σr| ≤ fy on Lr ,

(12a)

(12b)

(12c)

(12d)

(12e)

(12f)

(12g)

The optimization problem is also an SDP problem, solved by using the interior point algo-
rithm.

3 Examples:

3.1 Example 1: pure bending of a cantilever rectangular beam

To illustrate the efficiency of the proposed equilibrium formulation for reinforced concrete,
we begin with a simple example of a cantilever rectangular beam. The beam has a length of
3 meters and cross-section dimensions of 1 meter by 0.5 meters, with a bending moment of 1
MN.m at its free end (see Fig. 2). It is reinforced with 3 layers of 3 rebars, each with a diameter
of 25 mm. The concrete characteristics are a compression limit fc = 10 MPa and a tensile limit
ft = 0.01 MPa. The elastic limit of the rebars is fy = 500

1.15 = 435 MPa. The mesh of the beam
is constituted of 22592 linear tetrahedra 3, while the mesh of the rebars will be determined by
their intersection with mesh triangular interfaces.

Figure 2: The geometry and boundary conditions of the cantilever beam.
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Figure 3: View of the mesh. 22592 linear tetrahedra.

For this example, we solve the limit analysis problem to determine the maximum loading
factor for the applied bending moment. The results are presented in the figures below 4(a), 4(b)
and 5, illustrating that the rebars are working at their elastic limit of 435 MPa and the concrete
at its compression limit of 10 MPa. The solution of the optimization problem in (12) results in
a loading factor of 1.32.

(a) Compression stress flow. (b) The axial stress component σxx.

Figure 4: Concrete stress results.
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Figure 5: Rebars stress at their elastic limit 435MPa.

3.2 Example 2: rebar stress transmission through overlapping

In this second example, we consider the same dimensions and material characteristics of the
rectangular cantilever beam. We utilize the same mesh as presented in Figure 3. The new
arrangement of the rebars for this example is illustrated in Figure 6.

Figure 6: The geometry and boundary conditions of the cantilever beam.

In this example, we apply a limit analysis with a traction force applied at the free end
of the beam. The objective of this case study is to verify and validate the capacity of the
equilibrium approach to transmit axial stress from overlapping rebars, which is crucial for general
applications in reinforced concrete structures.
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Figure 7: Rebars stress at their elastic limit 435MPa.

Figure 8: Rebars stress at their elastic limit 435MPa.

4 CONCLUSION

In conclusion, the equilibrium finite element approach has demonstrated significant potential
in structural analysis despite its limited adoption compared to displacement-based methods. The
inherent advantage of the equilibrium approach lies in its ability to provide a stress distribution
that locally satisfies the equilibrium equations, crucial for structural resistance verification.
Additionally, the synergy between the equilibrium and displacement approaches offers an efficient
error estimator for mesh refinement and validates numerical results, enhancing the reliability of
structural design.

This paper introduces a novel equilibrium formulation for reinforced concrete structures.
Addressing the complexities arising from the combination of ductile reinforcements and brittle
concrete, the equilibrium formulation has been shown to be a robust tool for analyzing reinforced
concrete structures. Through the presented examples, we have demonstrated its efficiency for
the elastoplastic analysis, as well as in limit analysis for predicting load-bearing capacities.
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In future developments of the equilibrium approach, notable advancements include the use of
limit analysis formalism for the automation of the strut-and-tie method in 3D structures [9], and
the extension of the approach to accommodate large deformations/displacements case, further
enhancing its applicability and robustness.
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