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Abstract. In this study, we propose a topology optimization approach aimed at designing an
optimal artificial auditory ossicle to enhance hearing restoration in the sound conduction recon-
struction of a damaged human middle ear. The primary objective of our design is to maximize
the vibration displacement of the stapes footplate by employing the concept of mutual mean
compliance. Using this method, we can determine the optimal topology configurations of the
artificial component based on topology sensitivity, which we theoretically derive in this paper.
To demonstrate the effectiveness and practical utility of our proposed approach, we present a
design example of artificial auditory ossicles utilized in tympanoplasty procedures.

1 INTRODUCTION

Hearing loss is a significant problem in everyday life, and conductive hearing loss is the
most common type, often resulting from issues in the middle ear or outer ear. The human
middle ear comprises three small bones called the auditory ossicles (malleus, incus, and stapes)
and the tympanic membrane. The primary function of the middle ear is to transmit sound energy
from the air to the inner ear. The process of hearing begins at the tympanic membrane, which
vibrates upon receiving sound energy. These vibrations are then amplified by the auditory
ossicles as they pass through the malleus, incus, and stapes. Finally, the stapes transfers the
vibrations into the cochlear fluid of the inner ear, enabling the hair cells to generate neuronal
signals. Conductive hearing loss occurs when the middle ear is damaged by various ear diseases,
hindering sound conduction through the eardrum and ossicles to the inner ear.

Tympanoplasty is often performed to reconstruct the damaged ossicular chain and improve
sound conduction efficiency. In this procedure, an artificial component called a ”columella”
is used to replace the typically damaged incus. The sound conduction efficiency during this
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operation depends on the shape, material, and mounting position of the columella. Currently,
the procedure relies heavily on the surgeon’s skill and experience. In our previous studies [1,
2], we investigated the dynamic characteristics of the middle ear in sound conduction using
a three-dimensional finite element method. Based on our analysis, we proposed that hearing
restoration effectiveness can be estimated by comparing the displacement of the stapes footplate
in a healthy model to that in an operative model. This suggests that designing a suitable artificial
auditory ossicle before the operation may be feasible. However, most research has focused
on the analytical aspects, such as the shape or mounting positions of the columella, without
exploring optimization through numerical methods.

In this study, we propose a topology optimization approach to design an optimal artificial
auditory ossicle to enhance hearing restoration in sound conduction reconstruction of the dam-
aged human middle ear. Our design objective is to maximize the vibration displacement of the
stapes footplate using the concept of mutual mean compliance [3]. With this method, optimal
topology configurations of the artificial part can be determined based on topology sensitivity,
which we theoretically derive in this paper. To demonstrate the effectiveness and practical util-
ity of our proposed approach, we present several design examples of artificial auditory ossicles
used in different types of tympanoplasty operations.

2 HUMAN MIDDLE EAR AND ITS FUNCTION

The ear functions as the organ responsible for both hearing and balance, and it comprises
three distinct sections: the outer ear, the middle ear, and the inner ear, as illustrated in Figure 1.
The middle ear connects the eardrum of the outer ear and the oval window of the inner ear. Its
primary function is to effectively transform the vibrations from the eardrum into fluid waves
within the cochlea. As depicted in Figure 2, the middle ear houses three small ossicles: the
malleus, incus, and stapes. These ossicles are interconnected by joints and supported by liga-
ments and muscles. The rotary motion of the auditory ossicles amplifies the vibrations received
by the tympanic membrane and transmits them to the stapes footplate. This action moves the
labyrinthine fluid within the inner ear, leading to the generation of electrical signals. These
electrical signals are then conveyed directly to the brain, where they are interpreted as sound.

3 DYNAMIC ANALYSIS OF MIDDLE EAR

3.1 Geometric modeling

A precise geometric model of the ossicles can be constructed through CT scanning of the
human head. As illustrated in Figures 3-5, the two-dimensional slice images obtained from
the CT scan data were converted into three-dimensional solid geometries using post-processing
software, allowing the extraction of the region containing the three ossicles.

Subsequently, these 3D geometries were refined and converted into DICOM data, which
were then transformed into STL data. These STL files were imported into general-purpose
structural analysis software to create a finite element analysis (FEA) model. The FEA model of
a healthy subject is depicted in Figure 6, encompassing the tympanic membrane, the auditory
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Figure 1: Structure of the human ear.
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Figure 2: Structure of the middle ear.

ossicles chain (malleus, incus, and stapes), ligaments, joints, the stapedial muscle, and other
relevant structures. The anatomical nomenclature for each part shown in Figure 6 is provided
in Table 1.

Subsequently, dynamic characteristics of a healthy model have been investigated by the har-
monic vibration analysis using a general-purpose finite element method code.

3.2 Material properties and boundary conditions

Material properties used in the analysis model were determined by referring to other re-
searches [4, 5, 1, 2]. The interaction between the stapes footplate and the cochlea labyrinthine
fluid was modelized with a set of translational springs installed between the stapes footplate
and a virtual base plate (a rigid body). The spring constant was given as 40N/m by considering
the research of Gan et al [6]. In addition, the damping matrix [C] of the solid elements was
expressed in equation (1).

[C] = ζ[I] + α[K] + β[M ] (1)

where, [I] was the unit matrix, [M ] was the mass matrix, and [K] was the stiffness matrix.
ζ, α, β express the damping coefficients. Rayleigh damping was only considered in this study,
ie., ζ = 0, and α = 0, β = 7.5× 10−5 were used for the coefficients of Rayleigh damping.

As the boundary conditions, outer circumferences of the tympanic membrane and the stape-
dial muscle, ends of the six ligaments, and the inner side of the base plate were clamped. In
the harmonic vibration analysis, a uniform pressure p was applied at the whole surface of the
tympanic membrane, and the applied pressure p=0.632 Pa can be calculated from the definition
equation of the sound pressure level (SPL) expressed in equation (2).

Lp = 20log10(p/p0) (2)

where, Lp = 90dB was set as the sound pressure level. p0 = 20× 10−6Pa denotes the reference
value or hearing threshold of the sound pressure.
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Figure 3: Extracting 3D model
from CT. Figure 4: Refine, design and

prepare model for FEM.

Figure 5: Vibration analysis by
FEM.

3.3 Analysis results of the healthy model

The results of the analysis are depicted in Figure 7, which illustrates the frequency response
curve of the healthy model. In this figure, the vertical axis represents the peak displacements of
the stapes footplate and the tympanic membrane, while the horizontal axis indicates the input
frequency. As shown in Figure 7, a resonance region emerges within the frequency range of
0.5 to 2 kHz, commonly referred to as the ”conversation range.” The peak displacement of the
stapes footplate occurs at approximately 1.3 kHz, with the response diminishing steadily beyond
2 kHz. Furthermore, it is evident that the displacements of both the tympanic membrane and the
stapes footplate align closely with empirical measurements reported in previous studies [7, 8, 9].
In this research, the frequency response curve of the healthy model serves as a baseline for
comparison with that of an operative model, wherein the damaged auditory ossicles are replaced
by a columella (a medical device). This comparison facilitates the identification of an optimal
surgical technique for sound conduction reconstruction.

4 TOPOLOGY OPTIMIZATION METHOD FOR ARTIFICIAL EAR OSSICLES

Let us consider the formulation of the topology optimization for finding the maximum Z-
direction displacement of the stapes footplate using the concept of the mutual mean compliance
[4]. Consider the columella as a linear elastic body occupying a three-dimensional domain Ω
and suppose that the body is subjected to pressure p1 at the surface of the tympanic membrane
Γ1 denoted as case (1), and unit dummy load p2 in the direction vetical to the footplate of stapes
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Figure 6: Geometric model of the healthy middle ear

Figure 7: Comparison of harmonic vibration analysis results with reference measurement values
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Γ2 denoted as case (2). Body forces applied to the elastic body are ignored for simplicity in the
formulation. The displacement field is u1 = {u1

1, u
1
2, u

1
3}T in case (2), and u2 = {u2

1, u
2
2, u

2
3}T

in case (2). The mutual mean compliance of the structure, l2(u1) is defined by the following
load linear form:

l2(u1) =

∫
Γ2

p2 · u1dΓ. (3)

Eq. 3 shows the measurement of displacement u1 at Γ 2 along Z-direction of stapes when p1

is applied at Γ 1. Hence, the maximum displacement of stapes can be obtained by maximizing
the mutual mean compliance. The topology optimization problem can be formulated as shown
below:

Minimizing − l2(u1), (4)
Subject to Case (1): a(u1, v1) = l1(v1), for all u1,∀v1 ∈ U, (5)

Case (2): a(u2, v2) = l2(v2), for all u2,∀v2 ∈ U, (6)

M =

∫
Ω

dV ≤ M̂ (7)

where l1(u1) and l2(u2) represent the average compliance of case (1) and case (2), respectively.
v1 = {v11, v12, v13}T and v2 = {v21, v122, v23}T express adjoint variables of the variational govern-
ing equations for case (1) and case(2), respectively. M̂ denotes constraint value of the volume.
In addition, the bilinear forms a(u, v) and the linear form l(v) are defined as follows using
tensor representation.

a(u, v) =

∫
Eijkluk,lvi,jdΩ, (8)

l(u) =

∫
Γ

pividΓ (9)

where Eijkl is the elasticity tensor and Eijkl = Ejikl = Eijlk = Eklij .
Letting v and Λ denote the Lagrange multipliers for the state equation and volume constraint,

respectively, the Lagrange functional L associated with the topology optimization problem can
be expressed in Eq. (10).

L = −l2(u1) + a(u1, v1)− l1(v1) + Λ(

∫
Ω

ρdΩ −Ω0) (10)

Then, the derivative of the Lagrange functional is derived as shown in Eq. (11).

∂L

∂ρ
= −

∫
Γ2

p2
∂u1

∂ρ
dΓ +

∫
Ω

∂u1
k,l

∂ρ
Eijklv

1
i,jdΩ +

∫
Ω

u1
k,l

∂Eijkl

∂ρ
v1i,jdΩ + Λ

∫
Ω

1dΩ (11)
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Figure 8: Design domain for the application example in the type-IV tympanoplasty operation

Figure 9: Optimal configuration and convergence histories
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Since v1i,j is arbitrary variables, the first two terms in Eq. (11) can be cancelled by considering
v1i,j = u2

i,j . Therefore, the sensitivity of the mutual mean compliance with respect to ρ is
obtained as follows:

∂L

∂ρ
=

∫
Ω

u1
k,l

∂Eijkl

∂ρ
u2
i,jdΩ + Λ

∫
Ω

1dΩ (12)

To validate the effectiveness and practical utility of the proposed approach, topology opti-
mization of an artificial ear ossicle used in type-IV tympanoplasty was conducted to maximize
the displacement of the stapes footplate. The operational model of the human middle ear, in-
cluding the design domain, is depicted in Fig. 8. In this model, only the footplate remains intact
in the stapes damaged by ear diseases, and the artificial ear ossicle is positioned between the
footplate and the malleus.

Figure 9 presents the optimal topology configuration and the convergence histories of the
Z-direction displacement and volume, with values normalized to their initial states. The results
demonstrate a steady increase in the ratio of displacement to volume, achieving a maximum
value while satisfying the specified volume constraint of M̂ = 15%M0.

5 CONCLUSIONS

This paper proposed a topology optimization approach for designing an optimal columella
to enhance hearing restoration in the sound conduction reconstruction of a damaged human
middle ear. The design objective was to maximize the displacement of the stapes footplate by
employing the concept of mutual mean compliance. Utilizing the proposed method, optimal
topology configurations of the columella were determined based on topology sensitivity, which
was theoretically derived in this study. A numerical example of the topology optimization of
a columella, used in a surgical procedure, was provided to demonstrate the effectiveness and
practical utility of the proposed approach. This methodology enabled the optimization of the
columella prior to surgery, offering a novel medical treatment for the recovery of conductive or
cochlear hearing loss.
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