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ABSTRACT  

Estuarine tidal flats represent a critical environment for maintaining healthy ecosystems. The geotechnical 
characterization of such environments is often challenging due to their soft nature and remote locations. Thus, the goal of 
this study is to explore the use of remotely sensed, high resolution (pixel resolution of ~0.5 m) synthetic aperture radar 
(SAR) data for characterizing these sediments. Towards this goal, the variability of sediment properties (median gain size, 
moisture content, fines content, and classification following the Unified Soil Classification System (USCS) were 
documented for a mixed tidal flat located on the Great Bay Esturay in New Hampshire, USA. A sediment classification 
scheme based on SAR, originally proposed by Gade et al. (2008), which utilizes the correlation length to characterize 
sediments based on the percentage of particles <0.063 mm, was tested using a high-resolution X-band SAR image (pixels 
of ~0.5 m) collected simultaneously to in situ measurements and a medium-resolution C-band image (pixels of ~10 m) 
collected 3 days later. The results of this study demonstrate that the framework proposed by Gade et al. (2008) was 
generally able to predict the correct soil classification for coarser sediments but failed to predict the correct soil 
classification for finer sediments when applying the original image resolutions. When the X-band image was 
downsampled to match the C-band image resolution, the framework was still unable to predict the expected soil 
classification. This suggests that, in order to utilize high-resolution X-band data to predict soil type, alternative sediment 
type classification schemes are required.  
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1. Introduction 

Tidal flats are critical coastal environments that 
support healthy ecosystems and protect coastal 
communities from erosion. Management strategies of 
tidal flats and estuarine environments require a detailed 
understanding of tidal flat sediments, including the 
geotechnical characteristics and the spatial sediment 
classification. However, due to their soft nature and 
location, tidal flats can be challenging to access and 
traditional testing may be difficult to perform. New 
advances in remotely sensed satellite data may be able to 
provide information regarding the geotechnical 
characterization of tidal flats on large spatial extents.   

Previously, it has been demonstrated that synthetic 
aperture radar (SAR), an active remote sensing 
technique, can be used to characterize the soil 
composition of tidal flats using images with pixel sizes 
>10 m (Choe and Kim 2011; Deroin 2012; Gade et al. 
2008; Lee et al. 2012; van der Wal et al. 2005). However, 
modern advances have resulted in SAR images with sub-
meter pixel resolutions that have not been tested for such 
applications. SAR, an active remote sensing technique, is 

able to image through clouds and storm events. Unlike 
passive remote sensing techniques like optical systems, 
they transmit their own energy source through a series of 
pulses. After hitting the ground, some of this energy is 
returned to the satellite and is referred to as backscatter. 
For bare soils, the backscatter is related to the radar 
properties (wavelengths, incidence angle, and 
polarization, which refers to the plane in which the 
transmitted and received signals are polarized) and 
terrain properties (dielectric properties of the soil-air-
water mixture, surface roughness, orientation of the 
features imaged). The surface roughness, in turn, is 
characterized by three parameters: the standard deviation 
of the height (or RMS height), correlation length, and 
correlation function (Davidson et al. 2000; Ulaby et al. 
1986). Of most importance are the rms height, which 
describes the random variation of the surface with respect 
to some mean surface, and the correlation length, which 
describes the horizontal distance over which the 
roughness profile is autocorrelated with some value 
larger than 0.368 (or 1/e) (Ulaby et al. 1986). 

For exposed intertidal flats, it has been demonstrated 
that, since they are often saturated, information regarding 
the soil texture can be derived from C-band SAR images 
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(van der Wal et al. 2005). Other studies have employed 
the use of decision trees for X-band data (Lee et al. 2012) 
or by inverting SAR models (Choe and Kim 2011; 
Deroin 2012; Gade et al. 2008) to classify the sediment 
type. The method proposed by Gade et al. (2008) to 
characterize soil type of mixed tidal flats from SAR 
suggested to invert the Integral Equation Model (IEM) 
(Fung et al. 1992) in conjunction with multi-frequency 
data to estimate the correlation length. This method 
makes two major assumptions: first that the backscatter 
response is primarily controlled by the profile of sand 
ripples and secondly that the rms height and correlation 
length can be used as proxies for the sediment type. This 
technique, along with others, were developed and tested 
on low to medium resolution data (pixel sizes on the 
order of tens of meters) and for only a single polarization. 
Furthermore, the technique of Gade et al. (2008) was 
tested for a site where sand was dominated by ripples and 
was not tested for when the site is composed of 
predominantly muddy sediments. Finally, such 
techniques have not been tested for high-resolution data.  
Thus, the goal of this study is to test the applicability of 
the sediment scheme proposed by Gade et al. (2008) on 
an exposed tidal flat not dominated by ripples on the 
Great Bay Estuary in southeastern New Hampshire, USA 
using high-resolution X-band SAR data.  

2. Methods 

2.1. Regional Context 

The Great Bay Estuary (Fig. 1a), located within the 
Gulf of Maine, is a drowned river valley located in New 
Hampshire in the northeastern United States. At the 
mouth of the estuary, the tidal range is 2.5 m and 
decreases in the bay to 1.8 m (Bilgili et al. 2003), with 
the water volume changing by approximately 40% during 
low tide (Ertürk et al. 2002). As a result, approximately 
50% of the fringing tidal flats are exposed at low tide 
(Bilgili et al. 2005; Cook et al. 2019). The Lower 
Piscataqua River region of the Great Bay, where Mast 
Cove is located (Fig. 1b), stretches from New Castle 
Island, NH on the Gulf of Maine, to Dover Point, NH. 
This portion of the estuary is a highly dissipative region 
that behaves like a partially progressive wave and has 

strong maximum tidal currents of up to 2 m/s (Cook, 
Lippmann, and Irish 2019; Swift and Brown 1983). The 
strong tidal currents prevent most fine sediments from 
being deposited, resulting in a high percentage of coarse 
(>0.075 mm grain size) sediments in Mast Cove.  

2.2. Sediment Sampling 

In total, 22 sediment samples were collected at low 
tide using 10 cm tall by 6.67 cm diameter transparent 
tubes (Fig. 2) at eleven stations. Two samples were 
collected at each station. The samples were processed for 
water contents, grain sizes following ASTM 6913 
(ASTM 2017b), and were classified following the 
Unified Soil Classification System (USCS). Due to the 
percentage of fines found at Mast Cove, samples were 
also processed via wet sieving following ASTM 1140 
(ASTM 2017a). Dry sieving was performed using the No. 
4 (4.75 mm), 10 (2.00 mm), 20 (0.85 mm), 40 (0.425 
mm), 100 (0.150 mm), and 200 (0.075 mm) sieves 
following wet sieving. Atterberg limits were performed 
on the fines content from Mast Cove to measure the 
liquid and plastic limits following ASTM 2487 (ASTM 
2005). Water contents were measured by drying ~100 g 
of soil for 24 hours at 100°C in an oven and weighing the 
samples before and after drying. Water contents were not 
corrected for organic matter or salt content. 

 
Figure 2. Example of a sediment sample collected at Mast Cove 

2.3. Satellite Image Processing  

Concurrent to sampling, a horizontally co-polarized 
X-band SAR image from the Cosmo-SkyMED-4 (CSK4; 
see Table 1 for details) satellite was collected during low 
tide when the sediments were exposed to air (Fig. 3). The 

 
Figure 1.  (a) Overview of the Great Bay Estuary, showing the location of Mast Cove; (b) overview of Mast Cove site, denoting the 
location of the coarser (lighter markers) and finer (darker markers) zones. 
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image was collected at an incidence angle of 38.1°. 
Images were first corrected to the backscatter coefficient, 
𝜎௢, from the digital number, DN, using the open-source 
Sentinel-1 toolbox for the Sentinel Application Platform 
(SNAP) (Veci 2019). 

 
Figure 3. Cosmo-SkyMED-4 image of the Great Bay Estuary 
on 06 August 2021 at 22:36 UTC. COSMO-SkyMed Product - 
©ASI - Agenzia Spaziale Italiana - 2021. All Rights Reserved. 

Since backscatter can span multiple orders of 
magnitude, it is typically expressed logarithmically: 

𝜎ௗ஻
௢ =  10 ⋅ logଵ଴(𝜎௢) (1) 

where 𝜎ௗ஻
௢  is the backscatter in units of dB. Images were 

then geometrically corrected using the STRM 1 sec HGT 
DEM (Veci 2019).  

After calibration, the soil type of the tidal flat was 
determined on a per-pixel basis using the approach of 
Gade et al. (2008). In this technique, the integral equation 
model (IEM) (Fung et al. 1992) was used in conjunction 
with multi-frequency SAR data (i.e. data collected over 
different wavelength) to classify soils following the 
scheme proposed by Pröber (1981). This scheme groups 
sediments based on the percentage of microparticles 
(grain size <0.063 mm) as sand (microparticles <10%), 
mixed (microparticles 10%-25%) and mixed/muddy 
(microparticles >25%). The correlation length is 
estimated using look up tables (LUTs) generated for the 
backscatter over different SAR frequencies and finding 
their intersection. Then, this estimated correlation length 
is used to classify sediments using 3.7 cm as the boundary 
between mixed and sandy soils and 4.2 cm to distinguish 
between mixed and mixed/muddy soils.  

The physical IEM model (Fung et al. 1992) calculates 
the backscatter of a bare soil as a function of the dielectric 
constant (𝜖), RMS height in cm (𝑠), the correlation 
function (𝜌), correlation length in cm (𝐿), polarization 
(VV, VH, or HH), radar wavenumber (𝑘), and incidence 
angle in radians (𝜃), with the general form expressed as 
(Fung and Chen 2004): 

𝜎௣௣
௢ =

𝑘ଶ

4𝜋 
exp (−2𝑘ଶ𝑠ଶ cosଶ 𝜃)

∗ ෍ห𝐼௣௣
௡ ห

ଶ 𝑊(௡)(2𝑘𝑠𝑖𝑛𝜃, 0)

𝑛!

ାஶ
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(2) 

where 𝑝 = v or h,  𝑊(௡) is the is the Fourier transform 
of the nth power of the surface correlation function 𝜌, and  

𝐼௣௣
௡ = (2𝑘𝑠 ∗ 𝑐𝑜𝑠𝜃)௡𝑓௣௣exp(−𝑘ଶ𝑠ଶ cosଶ 𝜃)

+ (𝑘𝑠 ∗ 𝑐𝑜𝑠𝜃)௡𝐹௣௣  
(3) 

For horizontally co-polarized backscatter, 𝑓௣௣ and 𝐹௣௣ 
are calculated using Eqns 4 and 5: 

𝑓௣௣ = 𝑓௛௛ =  −
2𝑅௛

𝑐𝑜𝑠𝜃
 (4) 

𝐹௣௣ = 𝐹௛௛ = 2
sinଶ𝜃

cos θ
൤4𝑅௛

− ൬1 −
1

𝜖
൰ (1 + 𝑅௛)ଶ൨ 

(5) 

where 𝜖 is the complex dielectric constant and 𝑅௛ is the 
horizontally polarized Fresnel reflection coefficient: 

𝑅௛ =  
cos(𝜃) − √𝜖 − sinଶ 𝜃

cos(𝜃) + √𝜖 − sinଶ 𝜃
 (6) 

The Fourier transform of the nth power of the surface 
correlation function is defined as: 

𝑊(௡)(𝑎, 𝑏) = 2𝜋 ඵ 𝜌௡(𝑥, 𝑦)eି௜(௔௫ା௕௬)𝑑𝑥𝑑𝑦 (7) 

For this study, the correlation function was assumed to be 
Gaussian. Using this approach, multiple pairs of RMS 
height and correlation length can result in the same value 
of backscatter for a given moisture content. 

Table 1. Summary of satellite characteristics 

Sensor 
Pixel 
Size 

Frequency 
(band) Polarization 

Cosmo-
SkyMED-4 

0.5 m 9.6 GHz (X) HH 

Sentinel-1A 10 m 5.405 GHz (C) VV 
 

To apply the IEM model, the real (𝜖ᇱ) and imaginary 
(𝜖ᇱᇱ) parts of the complex dielectric constant (𝜖 = 𝜖ᇱ −
𝑗𝜖ᇱᇱ) were calculated for the measured moisture content 
using the Hallikainen et al. (1985) model: 

𝜖 = 𝑎଴ + 𝑎ଵ𝑆 + 𝑎ଶ𝐶 + (𝑏଴ + 𝑏ଵ𝑆 + 𝑏ଶ𝐶)𝑚௩

+ (𝑐଴ + 𝑐ଵ𝑆 + 𝑐ଶ)𝑚௩  
(8) 

where 𝑆 and 𝐶 are the percentage of sand and clay (by 
weight) of the soil, 𝑚௩ is the volumetric moisture 
content, and 𝑎௜, 𝑏௜ , and 𝑐௜  are coefficients that are a 
function of the frequency from Hallikainen et al. (1985); 
the coefficients developed for 10 GHz were used. 

To provide a crude estimate of the soil type, Gade et 
al. (2008) found that the correlation length could be 
estimated by inverting the IEM model (Fung et al. 1992) 
over multiple frequencies and using the same image 
resolution. They used images from the L- (frequencies of 
1-2 GHz), C-, (frequencies of 4-8 GHz), and X-band data 
at HH-polarization to distinguish between soil types. 
Thus, at least one additional image is required to predict 
the soil type. For Mast Cove, an image was collected on 
09 August 2021 at 22:35 UTC (three days after 
measurements) from the C-Band (frequency of 5.405 
GHz) Sentinel-1A (S1A) satellite at an incidence angle 
of 34.9°; this image is shown in Fig. 4 with sensor details 
provided in Table 1. Both images were collected at 
similar tidal states, with the CSK4 image collected 
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approximately one hour following low tide and the S1A 
image collected approximately one hour preceding low 
tide (WillyWeather 2023). To calculate the dielectric 
constant, the coefficients for 6 GHz from Hallikainen et 
al. (1985) were used in Eqn. 8. For this study, no images 
at a third frequency were available for the site at the time 
of measurements. 

 
Figure 4. Sentinel-1A image of the Great Bay Estuary on 09 
August 2021 at 22:35 UTC. Sentinel-1A product – © 
Copernicus Sentinel data – 2021. 

To test if a difference in resolution impacts the 
predicted soil type, the X-band SAR image was 
downsampled to a pixel resolution of 10 m using the 
weighted average warping technique in QGIS 
(GDAL/OGR contributors 2024). The resulting soil 
classifications were then derived for two cases: (1) the 
backscatter from the images at their original resolutions 
and (2) using backscatter from the original resolution for 
the C-band image but the backscatter from the 
downsampled X-band image.  

3. Results and Discussion 

3.1. Sediment Samples 

From classification testing, the fines at Mast Cove 
classify as non-plastic silt. The cross-flat trends in 
moisture content, percent fines (percentage by weight 
with a grain size <0.075 mm), and the median grain size 
d50 are shown in Fig. 5c-e, respectively, with the USCS 
classification for all samples shown in Table 2. The 
triangles represent the measurement obtained from the 
first sample while the circle represents the second sample 
collected at each station. The first set of points at 0 m 
refers to MC1 while the final set of points at 110.5 m 
represents MC11. All sediment samples classified as 
sandy following the USCS classification scheme. 
However, Mast Cove has two distinct sediment regions: 
one composed on a higher percentage of fines and 
moisture content (stations MC7 through MC11, referred 
to as the finer region) and one with generally lower fines 
percentages and moisture contents (stations MC1 through 
MC6, referred to as the coarser region).  

All samples from the stations within the finer region 
of Mast Cove (stations MC7-MC11; Fig. 1b) classified 
as silty sands (SM), with fines content ranging from 14.1-
33.2% (average of 26.0%). The water contents at these 
stations ranged from 26.5-38.3%, with an average of 

34.2%. In general, the two samples at each station from 
this region exhibited similar values of d50, with some 
variability in the moisture content and fines content. 

Table 2. USCS classification for all samples collected at Mast 
Cove on 06 August 2023.  

Station Name Sample 1 Sample 2 
MC1 SM SP-SM 
MC2 SP-SM SM 
MC3 SM SM 
MC4 SM SM 
MC5 SM SM 
MC6 SP-SM SP 
MC7 SM SM 
MC8 SM SM 
MC9 SM SM 

MC10 SM SM 
MC11 SM SM 

 
The stations in the coarser region of Mast Cove 

(stations MC1 through MC6) exhibited a wider range of 
characteristics and classifications than the finer region of 
Mast Cove. These samples had fines contents ranging 
from 4.1-39.6%, with an average of 17.1% and moisture 
contents ranging from 20.4-41.2%, with an average of 
27.5%. For these samples, there was some variability in 
d50, particularly near MC1 and MC2. Sample 1 from 
MC2 and sample 2 from MC1 and MC2 had gravel 
contents >15%, and thus carry “with gravel” in their full 
classification. Both samples generally resulted in similar 
values for the fines content, with some variability in the 
water content observed, again for samples from MC1 and 
MC2. A peak in moisture content and fines content as 
well as a decrease in d50 is observed at MC4 (distance of 
35.7 m); this corresponds to crossing the draining 
channel seen in Fig. 1b. Stations MC3 and MC5 were 
also located near the drainage channels, which resulted in 
slightly higher values of moisture content and percentage 
of fines. Previous studies with samples collected near 
Mast Cove also suggest diverse classifications, with 
samples collected slightly offshore of the site having 
91.5% sands and 8.5% silts/clays (particles <0.063 mm) 
(Mattera et al. 2022) and a sample collected over the flat 
as having 42.9% sands and 57.1% silts/clays (Poppe, 
2003). Other samples from the site exhibit similar trends  
(Paprocki et al. 2024) 

3.2. Satellite Image Processing 

Fig. 5a presents the cross-flat trends in backscatter for 
the HH-polarized X-band image collected 06 August 
2021 following the profile shown in Fig. 1b. The stars 
represent the measurement locations. From Fig. 5a, it is 
apparent that there are distinct trends in backscatter for 
the different regions of Mast Cove. For the coarser region 
(0-81 m), backscatter ranged from -29.0 dB to -2.1 dB, 
with an average of -14.1 dB. Lower backscatter 
coefficients were observed in the first 30.2 m with 
minimums in the range of -20 dB, which may be a result 
of ponded water in pillow-hollows observed during 
measurements. Local minima (-29.0 dB and -25.1 dB) 
were observed at distances of 31.3 m and 51.3 m, 
respectively. These locations likely correspond to 
crossing the drainage channels observed at the site (see 
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Fig. 1b). Backscatter values lower than the average were 
observed from 59.5 m to 81 m. Although this section of 
the profile is part of the coarser region, it was near the 
water line, which may have impacted the recorded 
backscatter. The backscatter for the finer region (81 m to 
110.5 m) ranged from -27.5 dB to -13.8 dB, with an 
average of -19.8 dB.  

Fig. 5b presents the cross-flat trends in vertically co-
polarized backscatter for the C-band image collected 09 
August 2021 following the profile shown in Fig. 1b. The 
highest values of backscatter were observed in the sandy 
region (average of -9.62 dB), with the highest values 
observed at MC1-MC3 (average of -6.86 dB). Slightly 
lower values were observed at MC4-MC6 (average of -
12.38 dB); these stations were in the vicinity of the 
drainage channel (MC4 and MC5) and near the water line 
(MC6). The finer region of Mast Cove (stations MC7-
MC12) exhibited lower average values of backscatter 
(average of -15.15 dB), with lower values observed at 
stations MC7 and MC8 than MC9-MC12.  

Gade et al. (2008) found that, when soils were 
asaturated, the backscatter depended primarily on the 
surface roughness conditions, with lesser influence from 
the moisture and soil composition. Thus, a single LUT 
can be developed for tidal flats for a given frequency and 
incidence angle. For exposed sites, Gade et al. (2008) 
suggested to use pure sand and a volumetric moisture 
content of 43%. The LUT for X-band and an incidence 
angle of 38.1° is shown in Fig. 6 and the LUT for C-band 
and an incidence angle of 34.9° is shown in Fig. 7 using 
the suggested sand content and moisture content. The 
calculated isolines for each station based on the LUT 
shown in Fig. 6 for the X-band were compared to those 
derived for each station based on the in situ 
measurements of moisture content and fines content, with 
minimal differences found. The greatest differences were 
observed for the sandy sites, with less differences 
observed for the finer sites. 

For each station, the correlation lengths were found 
by inverting the IEM model (Fung et al. 1992) using the 

 
Figure 5. Trends in (a) horizontally co-polarized backscatter coefficient from the CSK4 image collected on 06 August 2021 at 
22:36 UTC and an incidence angle of 38.1°, (b) vertically co-polarized backscatter coefficient from the Sentinel-1A image 
collected on 09 August 2021 at 22:35 UTC and an incidence angle of 34.9°, (c) measured moisture content, (d) percentage of fines 
(particles <0.075 mm), and (e) median grain size d50 in mm. 
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LUTs shown in Fig. 6 and Fig. 7. The isolines for each 
station were calculated using the average backscatter of 
a 3 pixel by three pixel block for the CSK4 image at its 
original resolution and the pixel value where the station 
was located for the S1A image and the CSK4 iamge when 
it was downsampled to a 10 m pixel resoltuion. These 
isolines were then plotted simultaneously, with examples 
shown in Fig. 8, with the intersection between the two 
isolines selected as the correlation length. When using 
the CSK4 image at its original resoltion, four stations 
(MC1-MC4), which correspond to the coarser region of 
Mast Cove, had no intersection between the two isolines; 
an example of this for MC1 is shown in Fig. 8a. When 
using the downsampled CSK4 image, three stations 
(MC1-MC3) had no intersection. This may be a result of 
the factors such as the percentage of gravel materials or 
variations in mineralogy may have impacted the recorded 
backscatter. Gravel samples are able to more freely drain 
than sands or fines and such, may not be fully saturated 
during imaging and thus, this approach may not be 
applicable for these soils.  

 
Figure 6. Visual representation of a LUT for HH-polarization, 
an incidence angle of 38.1°, sand content of 100%, and a 
moisture content of 43%. The solid black line represents the 
isoline for -10 dB. 

 
Figure 7. Visual representation of a LUT for VV-polarization, 
an incidence angle of 34.9°, sand content of 100%, and a 
moisture content of 43%. The solid black line represents the 
isoline for -10 dB. 

The remaining eight stations when using the original 
CSK4 image resolution and nine stations when using the 
downsampled CSK4 image resulted in two intersections 
between the isolines (Fig. 8b). The higher value was 
selected as the correlation length, as shown by the arrow 

in Fig. 8b. The resulting correlation lengths for these 
stations are presented in Fig. 9, with the circles 
representing the correlation length when using the 
backscatter from the original resolution of the CSK4 
image while the squares represent the correlation length 
estimated using the backscatter from the downsampled 
CSK4 image. The dashed horizontal lines in Fig. 9 
represent the boundaries defined by Pröber (1981) to 
discriminate between sands, mixed, and mixed/muddy 
sediments. Using these limits, two stations classify as 
mixed/muddy seediments sediments (MC6 and MC8) 
when using both the backscatter from the original CSK4 
image resolution and the backscatter from the 
downsampled image. Two stations classified as mixed 
(MC7 and MC9) when using the backscatter from the 
original image resolution while four stations (MC5, 
MC9-MC11) classified as mixed when using the 
downsampled image backscatter. The remaining three 
classified as sands (MC5, MC10, and MC11) when using 
the original image resolution wile the remaining two 
(MC4 and MC5) classified as sands when using the 
downsampled resolution. When using the backscatter 
from the original CSK4 image, two stations classified as 
the expected soil type (MC5, MC8) while three stations 
(MC6, MC10, and MC11) did not classify as the 
expected soil type. Two stations, MC7 and MC9, 
classified as mixed while mixed/muddy sediments were 
expected. When using the backscatter from the 
downsampled CSK4 image, four stations (MC4-MC5, 
MC7-MC8) classified following the expected trends 
while the remaining four stations (MC6, MC9-MC11) 
did not classify according to the expected trends, with all 
stations classifying as mixed.  

 
Figure 8. Examples of the inversion process used following 
Gade et al. (2008), with the X-band HH-polarized isoline shown 
in blue and the C-band VV-polarized isoline shown in black. (a) 
Station MC1 where there was no intersection point between the 
two isolines and (b) Station MC 9 where there were two 
intersection points between the two isolines.  

Although different discrimiators were used to 
determine the fines content between Pröber (1981) and 
the present study, there are several discrepanies between 
the predicted and anticipated soil classifications. For 
example, station MC6 classifies as mixed mixed/muddy 
using the the backscatter from the downsampled and 
original CSK4 images, respectively, when using the 
scheme of Pröber (1981), which would suggest that the 
percentage of material <0.063 mm would be >25%. 
However, from wet sieving, the percenage of material 
<0.075 mm was measured to be 5.4% and 4.1% from the 
two samples (Fig. 5d), indicating a misclassification of 
the sediment. This misclassification may be a result of 
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the proximity of the station to the water line, where water 
would influence the backscatter return. This would be 
especially true for the C-band image and the 
downsampled X-band iamge, where the backscatter 
response of this pixel represents the average conditions 
on the ground. For this station, water could have been 
included in that pixel, impacting the results. 

Furthermore, station MC7 exhibited similar physical 
characteristics to MC8 in terms of moisture content, grain 
sizes, and fines content but exhibited different 
classifications and minor differences in the backscatter 
response when comparing the results obtained using the 
backscatter from the original CSK4 image. Similarly, 
stations MC9-MC11 exhibited similar moisture contents 
to MC8, but slightly higher fines contents, but were 
classified as different sediment classes using the limits of 
Pröber (1981). This suggests that other factors may be 
influencing the SAR backscatter beyond the soil 
classification, such as biological activity and mineralogy. 
However, this theory is under investigation, and will be 
the focus of future work. 

A potential source of error in this study is the image 
resolution used in comparison to the fine-scale changes 
in sediment characteristics. The area studied by Gade et 
al. (2008) was significantly larger than the area studied 
here. For their study, Gade et al. (2008) using images 
with pixel resolutions of 12.5 m and demonstrated trends 
in backscatter for a profile length of ~2,000 m cross-
shore. At Mast Cove the profile was only ~65.5 m cross-
shore (Fig. 5; stations MC1-MC6). The backscatter 
recorded within a single pixel represents the average 
conditions over that pixel (Lillesand et al. 2015). Thus, 
due to the wide variability of ground conditions (Table 2, 
Fig. 5c-e), this average backscatter over this 100 m2 pixel 
from the C-band is likely unable to allow for the small-
scale changes observed at the site be to be observed and 
higher resolution images are required. As an alternative 
technique for characterizing sites, it may be possible to 
use the statistical trends in backscatter for the entire 
region to characterize the broad soil type. These 
relationships are currently under investigation, with a 
primary emphasis on the relationship between mean 
backscatter and uniformity (a measure of how uniform 
the backscatter values are) and entropy (a measure at how 
random the backscatter values are) (Paprocki 2024). 

In the next phase of this work, measurements of the 
ground roughness characteristics, in conjunction with the 
grain size characteristics, will be conducted. This will 
allow for the development and calibration of a new 
classification scheme using the correlation length that 
accounts for the geotechnical classification and 
characterization of the sediments using high-resolution 
X-band SAR. 

4. Conclusions 

This study presents the distribution of sediment 
characteristics as well as trends in backscatter 
coefficients from both X-band and C-band SAR images 
for a mixed sediment tidal flat on the Great Bay Estuary 
in New Hampshire, USA towards the goal of classifying 
the exposed sediment using remote sensing. The site was 
composed of two distinct regions: a coarser region with a 
low percentage of fines and lower moisture contents, and 
a finer region with a higher fines contents and moisture 
contents. Similarly, the remotely sensed SAR data 
exhibited distinct trends for the two regions, with both 
the X-band and C-band SAR exhibiting higher 
backscatter values for the coarser region and lower values 
for the finer region. 

Due to the trends in backscatter, it was tested if the 
framework proposed by Gade et al. (2008) could be used 
to classify the sediments. In this method, the correlation 
length is estimated using the Integral Equation Model 
(IEM) by Fung et al. (1992) and data from different 
sensors to classify the soil as sandy (microparticles 
<10%), mixed (microparticles between 10-25%), or 
mixed/muddy (microparticles > 25%). The backscatter 
response for each station was extracted, and isolines of 
those backscatters were developed for each satellite 
frequency, pure sands, and a moisture content of 43% 
(Figs. 6 and 7). This framework was tested for two cases: 
first, using the original resolution of both images and 
second, using a downsampled X-band image to match the 
resolution of the C-band image. 

For both cases. the correlation length was unable to 
be estimated for four and three stations, respectively, 
which is likely due to the high percentage of gravels 
found at these stations. Of the remaining stations, four 
and three stations for the downsampled versus original 
backscatter classified according to the anticipated trends 

 
Figure 9. Estimated correlation lengths for Mast Cove. The dashed horizontal lines indicate the classification scheme defined by 
Pröber (1981) while the dotted vertical line represents the separation between the coarser (darker symbols) and finer (lighter 
symbols) regions of Mast Cove. 
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while all remaining stations did not. For both cases 
original and downsampled backscatter, the classification 
at three stations (MC6, MC10, and MC11) conflicted 
with those determined from in situ measurements. 
Mismatches in the sediment classification may be a result 
of biological activity influencing the SAR backscatter, 
issues associated with the image resolution, and the soil 
mineralogy. In the future, in situ measurements of the 
roughness characteristics will be conducted in 
conjunction with sediment characterization and image 
collection to test if the framework proposed by Gade et 
al. (2008) can be adapted for the joint use of high-
resolution X-band and medium-resolution C-band SAR 
of different resolutions for characterizing soil type of 
exposed intertidal flats.  
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