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Summary. The paper is concerned with the numerical solution of the topology optimization
problems for elasto-plastic rather than elastic structures in unilateral frictional contact with a
rigid foundation. The system of the coupled variational inequalities governs the displacement
and generalized stress of this structure in contact. The material density function is the design
variable. The topology optimization problem consists in finding such material distribution in
the domain occupied by the body in contact to minimize the contact stress and to ensure the
uniform distribution of this stress. The state system of two inequalities is approximated by the
system of two nonlinear equations using the regularization technique. The phase field approach
is used to approximate sharp interface problem formulation and to calculate the derivative of
the cost functional. The set of necessary optimality conditions is formulated using Lagrange
multiplier technique. Gradient flow equation in the form of modified Cahn-Hilliard boundary
value problem is formulated and used to evaluate optimal topology domain. The examples of
minimal contact stress topologies are provided and discussed.

1 INTRODUCTION

Topology optimization consists in material distribution within the design domain to minimize
the given cost functionals describing required features of the structure [2, 6]. Most research
related to topology optimization has been concerned with linear elastic structures (see references
in [6]). The amount of papers dealing with non-linear elastic structures or nonlinear mechanical
behavior is limited. The ability to take into account elasto-plastic materials is of great interest
of industrial engineers. Plasticity models account for irreversible microscopic mechanical defects
resulting in plastic areas which tend to deform more than elastic ones. This may lead either to
wear and fatigue of the structure or to its damage.

The fundamentals of the theory of plasticity and elasto-plasticity, including both mechanical
and mathematical aspects, are presented and discussed in many monographs [9, 17]. In the
framework of theory of the variational inequalities and convex analysis the results dealing with
the existence, uniqueness or regularity of solutions to these elasto-plastic material models or
methods to solve them numerically are reported in these monographs. The contact problems
between elasto-plastic bodies governed by variational inequalities are discussed in [7, 8]. The
optimal control problems for static elasto-plastic material models with hardening have been
considered in [10, 13, 18]. Since in general the solution to the state inequality is not Gâteaux
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differentiable it is approximated and replaced by nonlinear equation using Huber or Moreau–
Yoshida regularizations. The necessary optimality conditions have been formulated for the
regularized optimal control problem and next by passing to the limit with the regularization
parameter to zero the set of optimality conditions for the original control problem have been
obtained. Shape or topology optimization of elasto-plastic structures have been investigated in
[1, 2, 3, 12, 14, 15, 16].

The aim of this work is to solve numerically the shape and/or topology optimization prob-
lem for two bodies in contact assuming static elasto-plastic rather than elastic material model.
The optimization problem consists in finding such shape of the domain occupied by the body
in contact to minimize the stress along the contact boundary. It extends the previous author
results from [16]. The bilateral elasto-plastic contact problem with Tresca friction is formulated
using the small strain plasticity material model [5]. For the sake of the sensitivity analysis
and numerical computations this problem is reformulated as dual variational problem where the
displacement and the generalized stress of the body are governed by the system of two coupled
variational inequalities. Using Moreau–Yosida as well as friction regularization techniques these
inequalities are transformed into the set of two coupled nonlinear equations. The topology opti-
mization problem for the bodies in contact is formulated in terms of material density function.
The derivative of the cost functional is calculated and gradient flow equation formulated. The
optimization problem is discretized using the finite element method. The semi-smooth New-
ton method is used to solve the discrete contact problem. Numerical results are reported and
discussed.

2 CONTACT PROBLEM

Consider a body occupying a bounded domain Ω ⊂ Rd, d = 2, 3, with a Lipschitz continuous
boundary Γ (see Fig. 1). The boundary Γ is divided into three open disjoint and measurable
parts Γ1, Γ2 and Γ3 such that meas(Γ1) > 0. The displacement of the body subject to defor-
mation by a given volume force of density f1 = f1(x), x ∈ Ω, and a surface traction of density
f2 = f2(x) applied on the boundary Γ2 is denoted by u = {ui}di=1. The body is clamped along
the boundary Γ1, i.e., its displacement vanishes there. Along the boundary Γ3 the body is as-
sumed to be in bilateral frictional contact with the rigid foundation. The friction phenomenon
is modeled by Tresca’s law. The forces f1 and f2 are acting slow enough to neglect the inertial
terms.
The domain Ω is filled with a material undergoing elasto-plastic deformation. In the elastic range
it obeys Hooke’s law [17] governed by a fourth-order tensor C = (Cijkl(x)), i, j, k, l = 1, ...d, such
that, for any symmetric matrix ζ, C : ζ = 2λζ+µtr(ζ)Id. λ and µ are the Lamé constants. For
µ > 0 and dλ+2µ > 0 and for almost all x ∈ Ω the elasticity tensor C(x) is symmetric, uniformly
bounded and coercive [9]. Tensor C = C(ρ) depends on material density function ρ ∈ L∞(Ω).
Let us also introduce the Cauchy stress tensor σ = σ(u) = {σij}di,j=1, and the linearized strain

tensor ǫ = ǫ(u) = ǫ(u) = 1
2 (ui,j+uj,i), [17], ui,j =

∂ui

∂xj
, i, j = 1, ..., d. The summation convention

over repeated indices [17] is used throughout the paper. The divergence operator div(σ) of

second order tensor σ is defined as div(σ) = {σij,j}, σij,j =
∂σij

∂xj
, i, j = 1, ..., d. We assume

the plastic deformation of the material is governed by the additive small strain plasticity model
[9, 17]. In this model the material strain ǫ is sum of the elastic strain ǫe and the plastic strain
ǫp, i.e., ǫ(u) = ǫe(u)+ ǫp(u), and the stress tensor satisfies σ(u) = C : ǫe(u) = C : (ǫ(u)− ǫp(u)),
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Figure 1: The body Ω in contact.

and ǫ(u) = C
−1 : σ(u) + ǫp(u).

Under the loading of volume or boundary forces f1 and f2 the body material undergoes
the deformation. The plastic deformation with the hardening phenomenon is governed by the
generalized plastic strain (ǫp, ξ) and the generalized stresses (σ,χ). The back stress χ and the
internal variable ξ are related by [9] χ = −H : ξ in Ω, where H = H(ρ) denotes the hardening
tensor. The generalized plastic stress may take values only in a closed convex set K of admissible
generalized stresses. For a given yield function ϕ this set is defined as [9]

K = {(σ,χ) : ϕ(σ,χ) ≤ 0}. (1)

The evolution of the plastic strain ǫp and the internal variable ξ is governed by the flow rule
[9, 13] described using maximal plastic work principle for the generalized stresses:

ǫ(u(x)) : σ(x) − σ(x) : C−1 : σ(x) − χ(x) : H−1 : χ(x) =

max
(q,η)∈K

{ǫ(u(x)) : σ(x) − σ(x) : C−1 : q(x)− χ(x) : H−1 : η(x)}. (2)

We shall consider the following contact problem: find the generalized stress field (σ,χ) : Ω →
Rd×d × Rd×d, the displacement field u : Ω → Rd, the generalized strain field (ǫp, ξ) : Ω →
Rd×d ×Rd×d satisfying the plasticity conditions (1) - (2) as well as

divσ + f1 = 0 in Ω, (3)

u = 0 on Γ1 and σν = f2 on Γ2, (4)

uν = 0, | στ |≤ µf p̃ on Γ3, (5)

| στ | < µf p̃ ⇒ uτ = 0 on Γ3, (6)

| στ | = µf p̃ ⇒ ∃λ ≥ 0, uτ = −λστ on Γ3. (7)

For the unit outward normal vector ν to the boundary Γ normal and tangential components of
the displacement field u are denoted by [17] uν = u ·ν = ui ·νi, i = 1, ..., d, and by uτ = u−uνν,
respectively. Similarly normal and tangential components of the stress field σ are denoted by
σν = σν · ν and by στ = σν − σνν, respectively. A real constant µf > 0 and | · | denote the
friction coefficient and the Euclidean norm, respectively. A real constant p̃ is interpreted as a
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bound of normal contact stress σν along the boundary Γ3 [11]. For a given p̃ ≥ 0 system (1)-(7)
governs the elasto–plastic bilateral contact problem with Tresca friction.

We shall formulate elasto–plastic contact problem (1)-(7) as a dual variational or so-called
forward problem. This formulation is based on the generalized stress tensor Σ = (σ,χ) rather
than on the generalized strain tensor (ǫp, ξ). Let us use von Mises yield function ϕM as the
yield function ϕ in (1). Von Mises yield function ϕM has the following form [9]

ϕM (σ) =
√
σD : σD − σtr =| σD | −σtr. (8)

The real constant σtr > 0 denotes the material yield stress. Therefore using (8) the set of
admissible generalized stresses (1) takes the form

KM = {(τ ,η) ∈ Rd×d
sym ×Rd×d

sym : | τD + ηD | −k2γ ≤ σtr}, (9)

where k2 ≥ 0 is the isotropic hardening parameter and γ is a scalar determining expansion
of the yield surface in the isotropic hardening or equivalent plastic strain [9]. For the sake of
simplicity we assume linear hardening only, i.e., k2 = 0. We denote by W and S the space for
displacements and the space for stresses as well as back stresses, respectively:

W = {u ∈ H1(Ω;Rd) : u = 0 on Γ1} and S = L2(Ω;Rd×d
sym). (10)

The sets of admissible displacements and admissible generalized stresses are denoted by

KC = {u ∈W : uν = 0 on Γ3} and KM = {(τ ,η) ∈ S × S : (τ (x),η(x)) ∈ KM}. (11)

The dual formulation of the contact problem (1)-(7) consists in the minimization of the
dual energy functional [9, 13] with respect to the generalized stress Σ. Let us define the weak
solution of the contact problem (1)-(7) obtained by its formal integration by parts. An element
(Σ,u) = (σ,χ,u) ∈ S × S ×W is called a weak solution of (1)-(7) if Σ ∈ KM and u ∈ KC as
well as

∫

Ω
σ : C−1 : (τ − σ)dx+

∫

Ω
χ : H−1 : (η − χ)dx−

∫

Ω
(τ − σ) : ǫ(u)dx ≥ 0 ∀ T = (τ ,η) ∈ KM , (12)

∫

Ω
σ : ǫ(v − u) +

∫

Γ3

µf p̃ | vτ | ds−
∫

Γ3

µf p̃ | uτ | ds ≥
∫

Ω
f1 · (v − u))dx+

∫

Γ2

f2(v − u) ∀ v ∈ KC . (13)

The elasto-plastic contact problem is governed by the system of coupled variational inequalities
(12)-(13). In order to solve it numerically we transform it into the system of coupled nonlinear
equations using penalization and regularization techniques. Remark, the first two terms of the
inequality (12) describe the projection of the generalized stress tensor Σ on the admissible set
KM [15]. Using the orthogonal projection operator PKM

of the generalized stress Σ on the set
KM with respect to the scalar product in S × S we define a relaxed version of the optimization
problem associated with (12)-(13) depending on penalty parameter α̃. It is equivalent Moreau-
Yosida approximation of the indicator function of the set KM of the admissible generalized
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stresses. Recall from [9] for von Mises yield function (8) the projection operator PKM
(Σ) of

tensor Σ on the set KM at the admissible generalized stresses is equal to

PKM
(Σ) = Σ− 1

2
max

(

0, | σD + χD | −σtr
) 1

| σD + χD |

(

σD + χD

σD + χD

)

. (14)

Since the mapping x → max(0, x) is non-differentiable the projection operator (14) is also
non-differentiable. Therefore the regularization of this projection operator consists in the reg-
ularization of the function max(0, ·). We denote this regularization as function f̃α(·) with the
regularization parameter α > 0. Function f̃α(·) has the form

f̃α(x) =







1
4αx

2 + 1
2x+ α

4 for x ∈ [−α,α],

max(x, 0) otherwise.
(15)

Taking into account (14) and (15) the regularized projection operator Pα
KM

(Σ) of the operator
(14) depending on parameter α can be written as

Pα
KM

(Σ) = Σ− f̃α
(

| σD + χD | −σtr
) 1

| σD + χD |

(

σD + χD

σD + χD

)

. (16)

Since the integrand function | · |: Rd → R in friction term of (13) is non-smooth the inequality
(13) still involves the non-differentiable term. Using the smooth function ϕρ̃ depending on
regularization parameter ρ > 0 we obtain:

∫

Γ3

µf p̃ | vτ | ds−
∫

Γ3

µf p̃ | uτ | ds =
∫

Γ3

∇vj
ρ̃
c (u)vds =

∫

Γ3

µf p̃
dϕρ̃(u)

du
vds ∀v ∈W. (17)

For the sake of clarity let us denote by β = (α̃, α, ρ̃) > 0 a real regularization parameter. Using
the penalization of the indicator function of the set KM , as well as the regularizations (16) and
(17) the original system (12)-(13) of two variational inequalities is approximated by the system
of the coupled nonlinear equations: find uβ ∈W and (σβ ,χβ) ∈ S × S satisfying

∫

Ω
σβ : C−1 : (τ − σβ)dx+

∫

Ω
χβ : H−1 : (η −χβ)dx−

∫

Ω
ǫ(uβ) : (τ − σβ)dx+ α̃

∫

Ω
[(σβ − Pα

KM
(σβ)) : (τ − σβ) +

(χβ − Pα
KM

(χβ) : (η − χβ)]dx = 0 ∀ (τ ,η) ∈ S × S, (18)
∫

Ω
ǫ(v − uβ) : σβ(u)dx +

∫

Γ3

∇vj
ρ
c (uβ)(v − uβ)ds = l(v − uβ) ∀ v ∈W. (19)

3 TOPOLOGY OPTIMIZATION PROBLEMS

Let us formulate the topology optimization problem for the state system (18)-(19). Topology
optimization of structures consists in the determining of the optimal distribution of the material
occupying the design domain Ω. The sharp-interface objective functional has the form:

J(E,u(ρ)) =

∫

E

ψ(u(ρ))dx +

∫

Γ
ψ̃(u(ρ))ds + Per(E; Ω). (20)
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The functions ψ : Rd → R and ψ̃ : Rd → R depend on the solution u to the state system
(18)-(19) and are smooth enough. In applications usually the following functions are chosen

ψ = 0, ψ̃ = σν(u) ην(x), x ∈ Ω, (21)

with an auxiliary given bounded function η(x) and its normal component ην . σν is the normal
component of the stress field σ = σ(u). The other choice is

ψ = max{σ, x ∈ Ω} or ψ̃ = σpν , p ≥ 2. (22)

In (20), the set E ⊆ Ω is finite perimeter set in Ω (see [6]). It means that the characteristic
function 1E of the set E belongs to the space of bounded variations BV (Ω). Therefore the
last term in (20) is used as penalty term preferring the sets E with smaller rather than larger
boundary. Let us formulate topology optimization problem, with E ∈ BV (Ω) as the control
function:

Find set E⋆ ∈ UE
ad such that: J(E⋆,u⋆) = min

E∈UE
ad

J(E,u), (23)

on the set of the admissible control functions:

UE
ad = {E ∈ BV (Ω) :

∫

Ω
dΩ = Vol(Ω) ≤ Volgiv}. (24)

Let us also consider a phase-field approximation of the optimization problem (23). Consider the
objective functional Jǫ assumed to depend on the material density function ρ = ρ(x), x ∈ Ω.
The regularized cost functional Jǫ(ρ,u) is equal to:

Jǫ(ρ,u) =

∫

Ω
ψ(u(ρ))dx +

∫

Γ
ψ̃(u(ρ))ds +G(ρ), (25)

Sub-domains of Ω where material density ρ ≈ 0 are interpreted as voids, i.e, as areas filled with
weak material. On the other hand, sub-domains of Ω where ρ ≈ 1 are interpreted as solid phase.
So, values of function ρ outside the interval [0, 1] have no physically meaning. The solution u to
the state system (18)-(19) depends on ρ, i.e., u = u(ρ). The regularization term G of the cost
functional (25) has the form of Ginzburg-Landau free energy functional:

G(ρ) =

∫

Ω
ψ(ρ)dΩ, (26)

where the integrand function ψ consists from:

ψ(ρ) =
γǫ

2
| ∇ρ |2 +γ

ǫ
ψB(ρ). (27)

In (27) ǫ > 0 denotes a real constant, and γ > 0 is the inter-facial energy density parameter.
Double-well potential function ψB(ρ), characterizing the two phases of domain Ω, has the form

ψB(ρ) = ρ2(1− ρ2). (28)

Remark, from (28) it follows, inside domain Ω void or solid phases are preferred. Intermediate
material density phases, ρ 6= 0 or ρ 6= 1 are penalized in (27). Let us formulate topology
optimization problem, where ρ is the control function:

Find function ρ⋆ ∈ U
ρ
ad such that: Jǫ(ρ

⋆,u⋆) = min
ρ∈Uρ

ad

Jǫ(ρ,u), (29)

on the set of the admissible control functions:

U
ρ
ad = {ρ ∈ H1(Ω; [0, 1]) ∩ L∞(Ω; [0, 1]) : Vol(ρ) ≤ Volgiv}. (30)
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4 NECESSARY OPTIMALITY CONDITIONS

Let us formulate the first-order necessary optimality conditions for the regularized optimiza-
tion problem (29). In order to calculate the derivative of the cost functional first we shall show
the differentiability of the solution to the state system (18)-(19) with respect to the material
density function ρ. Let p ∈ (2,+∞), f1 ∈ Lp(Ω;Rd), f2 ∈ Lp(Γ;Rd) and β ∈ (0,+∞). Then the
control-to state operator Sβ : L∞(Ω) ∋ ρ→ (u,σ,χ) ∈W × S × S is Fréchet differentiable. Its
derivative in the direction ζ ∈ L∞(Ω;Rd) is given by:

∫

Ω
σ′
β : C−1 : (τ − σβ)dx+

∫

Ω
σβ : (C−1)′ : (τ − σβ)dx+

∫

Ω
χ′
β : H−1 : (η − χβ)dx+

∫

Ω
χβ : (H−1)′ : (η − χβ)dx−

∫

Ω
ǫ(u′

β) : (τ − σβ)dx+ α̃

∫

Ω
[(σ′β − (Pα

KM
)′(σβ)) : (τ − σβ) +

(χ′
β − (Pα

KM
)′(χβ) : (η − χβ)]dx = 0 ∀ (τ ,η) ∈ S × S, (31)

∫

Ω
ǫ(v − uβ) : σ

′
β(u)dx +

∫

Γ3

∇vj
ρ
c (u

′
β)(v − uβ)ds = l(v − uβ) ∀ v ∈W. (32)

where u′
β denotes the derivative of uβ with respect to ρ. Remark, from (14) it follows that the

mapping

σD → f̃α(1−
σtr

| σ |D ), (33)

is strongly differentiable from L2+δ̄ into L2 for δ̄ > 0 and its derivative is equal to

df̃α

dσD
= f̃ ′α(1−

σtr

| σD |)
σtr

| σD |3σ
D. (34)

Let us introduce the adjoint state (z, p, q) ∈W×S×S associated with the optimization problem
(29). It satisfies the system of the following equations:

∫

Ω

dψ(uβ)

duβ

vdx+

∫

Γ

dψ̃(uβ)

duβ

vds −
∫

Ω
ǫ(vβ) : (p − σβ)dx+

∫

Γ3

∇vj
ρ
c (vβ)zds = 0 ∀v ∈W, (35)

as well as
∫

Ω
τβ : C−1(p− τβ)dx+

∫

Ω
ηβ : H−1(q − ηβ)dx

+α̃

∫

Ω
[(τβ − P ′

KM
(τβ)) : p+ (ηβ − P ′

KM
(ηβ)) : q]dx+

∫

Ω
ǫ(z − uβ) : τβ(u)dx = 0 ∀(τβ ,ηβ) ∈ S × S. (36)

From (18)-(19), (31)-(32), and (35)-(36), by standard arguments [6], it follows:

7
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Theorem 4.1. The derivative J ′
ǫ(ρ) of the functional (29) with respect to ρ ∈ L∞(Ω; [0, 1]) has

the form:

(J ′
ǫ(ρ), ζ) =

∫

Ω
ϕEζdx, ∀ζ ∈ L∞(Ω), (37)

where

ϕE = σ : (C−1)′ : p+ χ : (H−1)′ : q + γǫ | △ρ | +γ
ǫ
ψ′
B(ρ). (38)

If ρ⋆ ∈ Uρ
ad is optimal solution to the optimization problem (29), then

J ′
ǫ(ρ

⋆)(ρ− ρ⋆) ≥ 0 ∀ρ ∈ U
ρ
ad. (39)

5 NUMERICAL METHOD

In order to find the optimal material density function ρ⋆ and optimal topology domain Ω⋆ we
shall use the gradient flow rather than the optimality condition approach. Let us introduce an
artificial time variable t, t ∈ [0, T ), T > 0 is given, and assume the design parameter depends
on t, i.e., ρ = ρ(x, t). We shall aim to find a stationary function ρ satisfying the gradient flow
equation:

ρ(x, t)

∂t
= −∂Jǫ

∂ρ
. (40)

From (40) we deduce in H−1 norm [4, 19] the modified Cahn-Hilliard equation:

∂ρ
∂t

= ∇ · (∇ϕE(ρ)) in Ω, ∀t ∈ [0, T ), (41)

∇ϕE(ρ) · n = 0 on ∂Ω, ∀t ∈ [0, T ), (42)

∇ρ · n = 0 on ∂Ω, ∀t ∈ [0, T ), (43)

ρ(0, x) = ρ0(x) in Ω, t = 0. (44)

For the existence and regularity of solutions to (41)-(44) see [4, 19]. We shall use the finite
element method to discretize and solve numerically this system. Assuming Th is a regular family
of partitions of domain Ω, we divide this domain into disjoint open elements T , i.e. Ω =

⋃

T∈Th
T̄ .

Denote also by h the discretization parameter of domain Ω, i.e., h = maxT∈Th{diamT}. The
finite element space is defined as set of linear functions on each element T ,

D1
h = {η ∈ C0(Ω̄) : η|T ∈ P1(T ) ∀T ∈ Th} ⊂ H1(Ω). (45)

where P1(T ) denotes polynomial of order 1 on T . The time derivative in (41) is approximated
by forward finite difference with index n. So, applying the mixed finite element approach [19]
the system (41)-(44) is approximated by two coupled equations:

(
ǫ

τ
(ρnh − ρn−1

h , η)h + (∇ϕn
Eh,∇η)h = 0, ∀η ∈ D1

h, (46)

γǫ(∇ρnh,∇ζ)h +
γ

ǫ
(ψ′

B(ρ
n−1
h ) + ψ′′

B(ρ
n−1
h )(ρnh − ρn−1

h ), ζ)h −

(σh : (C−1)′ : ph + χh : (H−1)′ : qh, ζ)h = 0.∀ζ ∈ D1
h. (47)

For the results on convergence analysis of the system (46)-(47) see [19]. This system as well as
the discretized systems (18)-(19) and (35)-(36) are solved numerically using generalized Newton
method [8].
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6 NUMERICAL EXAMPLE

The topology optimization problem (29) for a body occupying two-dimensional domain
Ω ⊂ R2 in bilateral contact with the rigid foundation has been solved numerically in Mat-
lab environment. The objective functional (25) is chosen with the following integrand functions:

ψ(u) = 0 and ψ̃(u) = σν(u)φν , (48)

and a given auxiliary function φ. The optimization problem aims to find such optimal topology
of domain Ω to ensure the minimum value of contact stress peak. Since this stress usually is
high, therefore it causes wear or fatigue of the contacting interfaces of the bodies. The volume
constraint is given as:

Vol(u) =

∫

Ω
dx− V0, (49)

where constant V0 denotes the volume of the initial domain Ω0. The domain Ω ⊂ R2 has the
following structure (see Fig. 2):

Ω = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ 0 < v(x1) ≤ x2 ≤ 4}, (50)

where the function v(x1) = 0.125 · (x1 − 4)2. The boundary Γ of the domain Ω is divided into
three mutually disjoint pieces:

Γ1 = {(x1, x2) ∈ R2 : x1 = 0, 8 ∧ 0 < v(x1) ≤ x2 ≤ 4},
Γ2 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ x2 = 4},

Γ3 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ v(x1) = x2}.

Fig. 2 displays the initial hold-all domain D occupying the rectangle [0, 8]× [0, 4]. This domain
is divided into 80 × 40 grid. The initial computational domain D is assumed to consists from
voids (white areas on Fig. 2) as well as solid phase. The solid phase material is characterized by
Young modulus E1 = 21 · 105 MPa. The voids are assumed to be filled with the weak material
characterized by Young modulus E2 = 0.21 · 105 MPa.
The other data are as follows. The Poisson’s ratio is ν = .3. The friction coefficient is equal to
µf = 0.4. The shear and dilation moduli are equal to 8 ·104 MPa and 1.1 ·105 MPa, respectively.
The yield stress σtr = 367, 4 MPa. The hardening parameters are equal to k1 = 1 · 105 MPa
and k2 = 0 MPa. The body is loaded by the boundary traction f2 = −6.5 · 107 N along the
boundary Γ2. The body force f1 = 0.

Fig. 3 presents the optimal domain Ω⋆ obtained by solving structural optimization problem
(29) in the computational domain D. Weak material or void phases denoted by white colour are
concentrated in the central part of the domain as well as close to the clamped edges. Comparing
to [18], in a case of elasto-plastic materials the mass of the structure is larger than in a case of
elastic model. From Fig. 4 it results, the maximal Von Mises effective stress concentration areas
appear along the contact zone (denoted by red colour). There are also large stress concentration
areas close to the clamped edges. Inside the domain there are a few subareas with enhanced
stress but lower than close to the contact boundary. Fig. 5 displays the obtained normal contact
stress vs the initial stress along the contact boundary Γ3. The normal contact stress for the
optimal topology domain has been significantly reduced comparing to the initial one.
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Figure 2: Initial computational domain
D.
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Figure 3: Optimal topology domain Ω⋆.
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Figure 4: von Mises stress distribution.
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Figure 5: Maximal von Mises stress on
the contact boundary.

7 CONCLUSIONS

The obtained results indicate that the application of the phase field technique allows to solve
numerically a topology optimization problem for bodies in bilateral frictional contact where
nonlinear small strain elasto-plastic with linear kinematic hardening material model rather than
elastic material model is used. It is capable of finding topologies that generates minimum contact
stress and reduce it significantly with respect to the initial topology. This approach is flexible
and can be extended to solve other topology optimization problems for structures governed by
nonlinear equations.
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