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Abstract. The activity and dynamics of excitable cells are fundamentally regulated and moder-
ated by extracellular and intracellular ion concentrations and their electric potentials. The increasing
availability of dense reconstructions of excitable tissue at extreme geometric detail pose a new and
clear scientific computing challenge for computational modelling of ion dynamics and transport. In
this paper, we design, develop and evaluate a scalable numerical algorithm for solving the time-
dependent and nonlinear KNP-EMI equations describing ionic electrodi↵usion for excitable cells
with an explicit geometric representation of intracellular and extracellular compartments and in-
terior interfaces. We also introduce and specify a set of model scenarios of increasing complexity
suitable for benchmarking. Our solution strategy is based on an implicit-explicit discretization and
linearization in time, a mixed finite element discretization of ion concentrations and electric potentials
in intracellular and extracellular domains, and an algebraic multigrid-based, inexact block-diagonal
preconditioner for GMRES. Numerical experiments with up to 108 unknowns per time step and up to
256 cores demonstrate that this solution strategy is robust and scalable with respect to the problem
size, time discretization and number of cores.
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1. Introduction. Our brains are composed of intertangled tissue consisting of
neurons, glial cells and interstitial space, penetrated by blood vessels. Ions, such as
potassium (K+), sodium (Na+), calcium (Ca2+) and chloride (Cl�), move within and
between the intracellular and extracellular compartments in a highly regulated man-
ner. These ions, their movement and concentration di↵erences, are fundamental for
the function and well-being of the brain [52, 45]. For instance, the brain’s electrical
signals fundamentally rely on action potentials induced by rapid neuronal influx of
Na+ and e✏ux of K+ [52]. Moreover, ion concentrations and importantly ion concen-
tration gradients may modulate brain signalling, regulate brain volume, and control
brain states [41, 4, 45]. Notably, these physiological processes are only partially un-
derstood and currently attract substantial interest from the neurosciences [35, 45,
60, 6, 56, 43, 20]. High-fidelity in-silico studies would o↵er an innovative avenue of
investigation with significant scientific potential.

Electrical and chemical activity in excitable tissue are naturally modelled via cou-
pled partial di↵erential equations (PDEs) describing ionic electrodi↵usion [39, 42, 38,
21, 22]. These models go beyond the classical electrophysiology models, such as the
monodomain or bidomain equations [53] and their cellular-level counterparts [3, 54],
by describing spatial and temporal variations of ion concentrations in addition to the
electric potentials. Within this context, we here consider explicit geometric repre-
sentations of the intracellular and extracellular compartments and their joint inter-
face representing the cell membrane [39, 61, 22]; i.e., the so-called KNP-EMI model
(Kirchho↵-Nernst-Planck, extracellular-membrane-intracellular). In their seminal re-
search [39], Mori and Peskin introduced and analyzed a finite volume-based spatial
discretization of these cell-based ionic electrodi↵usion equations, with numerical ex-
periments in idealized two- and three-dimensional geometries. Similar equations and
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2 P. BENEDUSI ET AL

approximation challenges are also encountered in connection with ionic transport
in lithium-ion batteries [32]. In our previous work [22], we introduced a mixed-
dimensional mortar finite element method for these equations, again with numerical
experiments limited to idealized geometries, and with little attention to computational
performance.

Dense reconstructions and segmentations of brain tissue are increasingly becom-
ing openly available [40, 62, 17, 36]. These imaging-based representations reveal
an extraordinary geometric complexity that is very di↵erent from the more struc-
tured layers of cardiac tissue [14, 30]. This complexity places clear demands on the
scalability of numerical solution algorithms. Solvers for the EMI (or cell-by-cell)
electrophysiology equations, which can be viewed as a subsystem of the ionic elec-
trodi↵usion equations, have been studied quite intensively in recent years [3, 54, 11],
including finite di↵erence based methods [31], mixed finite element methods with and
without Lagrange multipliers [54], boundary element methods [46], cut finite element
methods [13], and finite volume methods [58]. Another key topic is scalable precon-
ditioning [29, 11], and we highlight the scalable solution strategy for electrodi↵usion
(without interior interfaces) using a discontinuous Galerkin discretization proposed
by Roy et al [47]. Parallel scalability may also be approached via domain decomposi-
tion techniques [29, 31], though the transition to complex geometries pose additional
challenges. In fact, most studies consider highly idealized settings [39, 22], structured
cell patterns as encountered in cardiac excitable tissue [54, 30], or simplified neuronal
geometries [57, 59, 50, 15, 13, 24].

In this paper, we address the challenge of how to design scalable solution al-
gorithms for the cell-based ionic electrodi↵usion (KNP-EMI) equations with high
geometric complexity and physiological membrane mechanisms. To this end, we pres-
ent a lightweight single-dimensional finite element formulation with a scalable and
e�cient monolithic preconditioning strategy, vetted by a series of numerical experi-
ments with realistic model parameters and geometries. The approximation scheme
and solution strategy yield accurate solutions in a bounded (low) number of Krylov
iterations. Near-optimal parallel scalability allows for rapidly obtaining solutions to
large KNP-EMI problems using high performance computing systems, thus bridging
the technology gap between dense tissue reconstructions and ionic electrodi↵usion
simulations.

This manuscript is organized as follows. In Section 2, we present the KNP-
EMI equations and describe active and passive membrane dynamics involved in the
interface coupling. In Section 3, we introduce a weak formulation of the continuous
problem together with discretizations in time and space. In Section 4, we examine
the block-structure and properties of the resulting discrete systems, and present a
tailored solution strategy. In Section 5 we present four model scenarios in idealized
and image-based geometries of increasing complexity defining a benchmark suite for
KNP-EMI solvers. Section 6 reports on numerical experiments for the four scenarios,
investigating robustness, e�ciency, and parallel performance of the proposed strategy.
Finally, Section 7 provides some concluding remarks and outlook.

2. A model for ionic electrodi↵usion in cellular spaces. Following [22],
we consider the domain ⌦ = ⌦i [ ⌦e [ � ⇢ Rd for d 2 {2, 3} with ⌦i and ⌦e

representing the intra- and extracellular domains (ICS, ECS), respectively, and � =
@⌦i the cellular membrane(s). In general, the intracellular domain can be composed of

Ncell 2 N disjoint domains ⌦i =
SNcell

j=1 ⌦i,j , with ⌦i,j representing the jth (biological)
cell with membrane �j = @⌦i,j . We consider a set K of ionic species, for example
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K = {Na+,K+,Cl�}, with cardinality |K|. For each ionic species k 2 K and physical
region r 2 {i, e}, we model the evolution of ionic concentrations [k]r : ⌦r⇥ [0, T ] ! R,
as well as electric potentials �r : ⌦r ⇥ [0, T ] ! R.

2.1. Conservation equations. The assumption of conservation of ions for each
region r 2 {i, e} yields the following time-dependent partial di↵erential equation for
each ionic species k 2 K and for t 2 (0, T ) and x 2 ⌦r:

(2.1) @t[k]r(x, t) +r · Jk
r (x, t) = fk

r (x, t),

where Jk
r : ⌦r ⇥ [0, T ] ! Rd is the ion flux density. We consider a Nernst–Planck

relation describing di↵usion and drift in the electric field induced by the potential �r:

(2.2) Jk
r = Jk

r,di↵ + Jk
r,drift = �Dk

rr[k]r �
Dk

r zk
 

[k]rr�r,

where Dk
r 2 R+ is the e↵ective di↵usion coe�cient of ionic species k in region r, zk is

the valence of ion k, and  = RTF�1 is composed of the gas constant R, the absolute
temperature T , and the Faraday constant F . Finally, fk

r : ⌦r ⇥ [0, T ] ! R represent
source terms. For consistency with the Kirchho↵-Nernst-Planck (KNP) assumption
below, fk

r should maintain electroneutrality in the sense that

X

k2K

zkf
k
r (x, t) = 0 for r 2 {i, e}.

Equation (2.1) can be interpreted as an advection-di↵usion equation with advection
velocity given by the electric field r�r. Since �r is itself an unknown, it is not trivial
to classify (2.1) as a di↵usion- or advection-dominated problem a-priori. We note
that (2.1) ignores convective e↵ects due to movement of the domain or medium; thus
assuming a medium at rest (see e.g. [21, 49] for contrast).

We introduce the KNP assumption of bulk electroneutrality for each region r 2
{i, e}, for t 2 [0, T ] and x 2 ⌦r:

X

k2K

zk[k]r(x, t) = 0,

which, di↵erentiated with respect to time and combined with (2.1), yields

(2.3)
X

k2K

zkr · Jk
r (x, t) = 0.

The KNP assumption can be compared to the Poisson-Nernst-Planck (PNP) assump-
tion. The latter would explicitly account for also the (rapid) charge relaxation dy-
namics, more relevant at the nanoscale [19, 51]. Note that the ion fluxes nonlinearly
couple the ion concentrations [k]r via the potential �r. Given the |K| + 1 unknown
scalar fields in each of the two regions, the KNP-EMI model thus consists of two
systems of |K| + 1 partial di↵erential equations (|K| parabolic, one elliptic). These
two systems are coupled via EMI-type interface conditions.

2.2. Interface conditions. In this section, we introduce interface conditions
describing currents and dynamics across the cellular membrane(s) �. We first define
the membrane potential �M : �⇥ (0, T ] ! R as the jump in the electric potential:

(2.4) �M (x, t) = �i(x, t)� �e(x, t) for x 2 �, t > 0.
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We next assume that the total ionic current density IM : �⇥ (0, T ] ! R is continuous
across � such that for t > 0 and x 2 �,

(2.5) IM (x, t) = F
X

k2K

zkJ
k
i (x, t) · ni(x) = �F

X

k2K

zkJ
k
e(x, t) · ne(x),

where nr denotes the normal on the interface pointing out from ⌦r. We further
assume that IM consists of two components: a total ionic channel current Ich and
a capacitive current Icap. Both of these currents have contributions from each ionic
species:

(2.6) IM = Ich + Icap =
X

k2K

Ikch +
X

k2K

Ikcap.

The ionic channel currents Ikch will be subject to modelling, as described in Section 2.4,
while we consider the capacitor equation for the total capacitive current

(2.7) Icap = Cm@t�M ,

where Cm 2 R+ is the membrane capacitance.
As in [22, Section 2.1.3], we derive an expression for Jk

r · nr that will be of useful
in the weak formulation of the KNP-EMI equations. For k 2 K and r 2 {i, e}, we
introduce the relation

(2.8) Ikcap = ↵k
rIcap = ↵k

rCm@t�M ,

and define the ratio

(2.9) ↵k
r =

Dk
r z

2
k[k]rP

`2K D`
rz

2
` [`]r

2 [0, 1], with
X

k2K

↵k
r = 1.

Combining (2.5), (2.6) and (2.8), we can express the normal fluxes corresponding to
a specific ion k 2 K, as a function of the ionic currents and the membrane potential:

(2.10) Jk
r · nr = ±r

Ikch + Ikcap
Fzk

= ±r
Ikch + ↵k

rCm@t�M
Fzk

,

for r 2 {i, e}, ±i = 1, and ±e = �1.

2.3. Initial and boundary conditions. To close the KNP-EMI system, we
impose initial conditions for k 2 K and r 2 {i, e}:

[k]r(x, 0) = [k]0r(x), for x 2 ⌦r,(2.11)

�M (x, 0) = �0M (x), for x 2 �,(2.12)

with [k]0r and �0M representing initial ion concentration and an initial membrane stim-
ulus, respectively. We also assume that the initial ion concentrations are prescribed
such that bulk electroneutrality is satisfied in each region:

(2.13)
X

k2K

zk[k]
0
r(x) = 0.

We impose homogeneous Neumann boundary conditions on the exterior boundary @⌦

(2.14) Jk
r (x, t) · nr(x) = 0 for x 2 @⌦.

The electric potentials �r in (2.2) are only determined up to a (common) additive
constant. Therefore, an additional constraint must be considered to enforce unique-
ness. Previous works have for example considered a zero-mean condition on �e [22].
We return to this point in Remark 4.1.
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2.4. Ionic channels. In terms of ionic species, we focus on sodium, potassium,
and chloride: K = {Na+,K+,Cl�}, and two modelling scenarios (active and passive
dynamics) for the ionic channel currents Ikch.

2.4.1. Active dynamics: Hodgkin-Huxley model. To model the membrane
dynamics of axons, we consider the Hodgkin-Huxley (HH) ionic model [27] with the
following expressions for the ionic currents:

(2.15)

INa
ch (�M , [Na+]i, [Na+]e,w) = (gNa

stim + gNa
leak + ḡNam3h)(�M � ENa),

IKch(�M , [K+]i, [K
+]e,w) = (gKleak + ḡKn4)(�M � EK),

ICl
ch (�M , [Cl�]i, [Cl

�]e) = gCl
leak(�M � ECl),

given the ion-specific reversal potentials

(2.16) Ek =
RT

Fzk
ln

[k]e
[k]i

.

In (2.15), ḡk, gkleak 2 R+ are the maximum and leak conductivities, respectively. The
Hodgkin-Huxley model also includes a set of time-dependent gating variables w(t) =
(n(t),m(t), h(t)) 2 [0, 1]3 governed by the initial value problem

@w

@t
= ↵w(�M )(1�w)� �w(�M )w,(2.17)

w(0) = w0 = (n0,m0, h0).(2.18)

The coe�cients ↵w,�w depend on the di↵erence �M � �rest, given a resting potential
�rest, see [27]. The stimulus contribution gNa

stim : �⇥[0, T ] ! R+ triggers the activation
of the membrane dynamics.

2.4.2. Passive dynamics: Kir–Na/K. To model astrocyte and dendrite mem-
brane dynamics, we consider the following passive model (labeled Kir–Na/K) , which
includes leak channels, an inward-rectifying K channel, and a Na/K pump [25]:

INa
ch (�M , [Na+]i, [Na+]e) = (gNa

stim + gNa
leak)(�M � ENa) + 3FzNa · jpump,

IKch(�M , [K+]i, [K
+]e) = gKleak(�M � EK)fKir � 2FzK · jpump,

ICl
ch (�M , [Cl�]i, [Cl

�]e) = gCl
leak(�M � ECl),

where the Kir-function fKir, controlling the inward-rectifying K current, is given by:

fKir([K
+]e,��K,�M ) =

AB

CD

s
[K+]e
[K+]0e

,

where

A = 1 + exp(0.433), B = 1 + exp(�(0.1186 + E0
K)/0.0441),

C = 1 + exp((��K + 0.0185)/0.0425), D = 1 + exp(�(0.1186 + �M)/0.0441).

Here, ��K = �M � EK, and E0
K is the K-reversal potential at t = 0. Finally, the

pump flux density is given by:

jpump = ⇢pump

 
[Na+]

1.5
i

[Na+]1.5i + P 1.5
Na

!✓
[K+]e

[K+]e + PK

◆
,

where ⇢pump, Pk 2 R+ are, respectively, the maximum pump rate and a threshold for
ion k. All physical parameters are given in Table 2 (Section 5).
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3. Variational formulation and discretization.

3.1. Single-dimensional formulation of the KNP-EMI problem. We con-
sider a so-called single-dimensional formulation of the KNP-EMI problem, following
the naming convention introduced in [34, 55]. In this formulation, the membrane cur-
rent variable IM is eliminated and the problem is no longer mixed-dimensional, since
all the unknowns are defined over d-dimensional domains. For the EMI problem, us-
ing the single-dimensional formulation results in a more compact algebraic structure
with favorable properties (symmetry and positive definiteness) [11]. In the case of
KNP-EMI, only positive definiteness is maintained.

Let V k
r = V k

r (⌦) and Wr = Wr(⌦) be Hilbert spaces of su�ciently regular func-
tions. For r 2 {i, e}, assuming the solutions [k]r and �r to be su�ciently regular over
⌦r, we multiply the PDE in (2.1) by test functions vkr 2 V k

r and integrate over ⌦r.
After integration by parts and using the normal flux definition from (2.10), we obtain
for k 2 K and r 2 {r, e}:

(3.1)

Z

⌦r

@t[k]rv
k
r � Jk

r ·rvkr dx±r
1

Fzk

Z

�

�
Ikch + ↵k

rCm@t�M
�
vkr ds =

Z

⌦r

fk
r v

k
r dx

Similarly, multiplying (2.3) by test functions wr 2 Wr and integrating by parts, we
obtain

(3.2) �
X

k2K

zk

Z

⌦r

Jk
r ·rwr dx±r

1

F

Z

�
(Ich + Cm@t�M )wr ds = 0.

We recall that Ikch linearly depends on �M = �i��e (cf. Section 2.4) and non-linearly
on [k]r. We thus define the weak solution to the KNP-EMI problem as {[k]r,�r} for
r 2 {i, e} and k 2 K satisfying (3.1)–(3.2) for all test functions vkr 2 V k

r and wr 2 Wr.

3.2. Time discretization. We consider an implicit-explicit time discretization
scheme, leading to a convenient linearization. We partition the time axes uniformly
into Nt intervals:

tn = n�t, with n = 0, . . . , Nt, �t = T/Nt.

Given the initial conditions [k]0r,�
0
M ,w0 defined in Sections 2.3–2.4, we consider the

following first-order, implicit approximations at times tn for n = 1, . . . , Nt:

(3.3) @t[k]r ⇡ ([k]nr � [k]n�1
r )/�t, @t�M ⇡ (�nM � �n�1

M )/�t,

with [k]nr = [k]r(x, tn),�nr = �r(x, tn), and fk,n
r = fk

r (x, tn). The ion flux densities
are approximated with an implicit-explicit scheme, while the coe�cients ↵k

r and ionic
currents Ikch are treated explicitly:

Jk
r (x, tn) ⇡ Jk,n

r = �Dk
rr[k]nr � Dk

r zk
 

[k]n�1
r r�nr ,

↵k
r (x, tn) ⇡ ↵k,n�1

r =
Dk

r z
2
k[k]

n�1
rP

`2K D`
rz

2
` [`]

n�1
r

.

If gating variables w are present, we first solve the ODEs (2.17) numerically with
Node steps of the Rush-Larsen method with step size �t/Node to obtain wn ⇡ w(tn),
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setting �M = �n�1
M in (2.17), given the initial condition wn�1. We then approximate

the ionic currents by

(3.4) Ikch(x, tn) ⇡ Ik,n�1
ch = Ikch(�

n�1
M , [k]n�1

i , [k]n�1
e ,wn).

Inserting the previous expressions into (3.1), we obtain the following linearized weak
formulation:

(3.5)

Z

⌦r

[k]nr v
k
r ��tJk,n

r ·rvkr dx±r C
k,n�1
r

Z

�
�nMvkr ds

=

Z

⌦r

([k]n�1
r + fk,n

r )vkr dx�
Z

�
gk,n�1
r vkr ds,

for k 2 K and n = 1, . . . , Nt, having introduced the short-hand

(3.6) Ck,n
r =

↵k,n
r Cm

Fzk
and gk,nr = ±r

1

Fzk
(�tIk,nch � ↵k,n

r Cm�
n
M ).

Similarly, for (3.2), we obtain

(3.7) ��t
X

k2K

zk

Z

⌦r

Jk,n
r ·rwr dx±r

Cm

F

Z

�
�nMwr ds = �

Z

�
hn�1
r wr ds,

with hn
r = ±r(�tInch + Cm�nM )/F .

In summary, the semi-discrete KNP-EMI problem reads as: for n = 1, . . . , Nt, for
r 2 {i, e} and k 2 K, find [k]nr ,�

n
r such that (3.5) and (3.7) hold for all vkr 2 V k

r and
wr 2 Wr.

3.3. Spatial discretization. We discretize ⌦i and ⌦e by conforming simplicial
meshes Ti and Te, respectively, such that T = Ti [ Te forms a conforming simplicial
tessellation of ⌦; in particular, that Ti and Te match at �. For Tr and r 2 {i, e}, we
approximate the Hilbert spaces V k

r and Wr by finite element spaces V k
r,h and Wr,h of

continuous piecewise polynomials of degree pr,k and pr, for [k]r and �r respectively.
The (fully) discrete KNP-EMI problem to be solved at each time step n thus reads:
find [k]nr,h 2 V k

r,h and �nr,h 2 Wr,h such that (3.5) and (3.7) hold for all vkr 2 V k
r,h and

for all wr 2 Wr,h.
In practice, we use the same polynomial order p = pr = pr,k for all regions r and

unknowns, therefore using a single finite element space Vr,h of dimension (number
of degrees of freedom) Nr with Vr,h = V k

r,h = Wr,h for all k 2 K. We remark that
extending the content of the current and subsequent sections to the general case,
with multiple finite element spaces, is straightforward, but cumbersome in terms of
notation. We use Lagrangian nodal basis functions {'r,j}Nr

j=1 of order p (omitting the
order in the notation) so that

Vr,h = span
⇣
{'r,j}Nr

j=1

⌘
,

and the real coe�cients {[k]nr,j}
Nr
j=1 and {�nr,j}

Nr
j=1 define the discrete approximations

(3.8)

[k]nr (x) ⇡ [k]nr,h(x) =
NrX

j

[k]nr,j'r,j(x) and �nr (x) ⇡ �nr,h(x) =
NrX

j

�nr,j'r,j(x),
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for x 2 ⌦r and n = 0, . . . , Nt.
The potential jump �M and gating variables w are approximated with the same

Lagrangian elements restricted to the membrane. To illustrate, we have

�nM,h(x) = �ni,h(x)� �ne,h(x) =
X

j2J�

�nM,j'r,j(x) for x 2 �,

for a fixed but arbitrary r, and J� = {1  j  Nr : supp('r,j) \ � 6= ;} being the
set of indices corresponding to �. When applicable (if gating variables are present),
we solve (2.17) point-wise in space at the coordinates associated with the Lagrange
degrees of freedom and using the coe�cient values �M,j .

4. Discrete algebraic structure and solver strategy. We now turn to ex-
amine the structure and properties of linear operators associated with the discrete
KNP-EMI equations, before presenting a tailored iterative and preconditioned linear
solution strategy.

4.1. Algebraic structure and matrix assembly. We begin by defining mass
M and (weighted) sti↵ness matrices A for the concentrations and potentials in each
of the bulk regions ⌦r:

Mr =

Z

⌦r

'r,j(x)'r,l(x) dx

�Nr

j,l=1

2 RNr⇥Nr ,

Ar =

Z

⌦r

r'r,j(x) ·r'r,l(x) dx

�Nr

j,l=1

2 RNr⇥Nr ,

Ak,n
r =

Z

⌦r

[k]nr (x)r'r,j(x) ·r'r,l(x) dx

�Nr

j,l=1

2 RNr⇥Nr ,

We next define the membrane (mass) matrices:

Mr,� =

Z

�
'r,j(x)'r,l(x) ds

�Nr

j,l=1

2 RNr⇥Nr ,

Mrq,� =

Z

�
'r,j(x)'q,l(x) ds

�(Nr,Nq)

j,l=1

2 RNr⇥Nq ,

with q = {i, e}/r. Note that the membrane operators, denoted by the subscript �,
have non-zero elements only for (j, l) entries corresponding to basis functions with �
in their support. For example,

� \ supp('r,j) \ supp('r,l) 6= ; ) [Mr,�]j,l 6= 0.

Therefore, membrane operators can be seen as low-rank perturbations of bulk ones.
To recast the discrete KNP-EMI equations (3.5)–(3.7) as a linear system, we define
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the non-symmetric matrix1 corresponding to ⌦r, given ⌧kr = �tDk
r and ⌧̃kr = ⌧kr zk 

�1:

An
r =

2

66666664

Mr + ⌧1rAr 0 · · · 0 C1,n
r Mr,� + ⌧̃1rA

1,n
r

0 Mr + ⌧2rAr 0
... C2,n

r Mr,� + ⌧̃2rA
2,n
r

... 0
. . . 0

...

0 · · · 0 Mr + ⌧ |K|
r Ar C |K|,n

r Mr,� + ⌧̃ |K|
r A|K|,n

r

z1⌧1rAr z2⌧2rAr · · · z|K|⌧
|K|
r Ar CmF�1Mr,� + ⌃kzk ⌧̃kr A

k,n
r

3

77777775

,

with size Nr(|K|+ 1). More compactly,

An
r =

2

666664

A11
r A1�

r

A22
r A2�

r
. . .

...

A|K||K|
r A|K|�

r

A�1
r A�2

r · · · A�|K|
r A��

r

3

777775

n

=


Acc

r Ac�
r

A�c
r A��

r

�

n

,

with Acc
r 2 RNr|K|⇥Nr|K| and A��

r 2 RNr⇥Nr the concentrations and potentials
blocks, respectively. The last block-column of An

r is time-dependent and must be
updated in each time step tn.

The block diagonal structure of Acc
r highlights that the di↵erent concentrations

are coupled only via the potential. We define the following coupling matrices:

Bn
rq =

2

6666664

0 · · · 0 �C1,n
r Mrq,�

0 · · · 0 �C2,n
r Mrq,�

...
...

...

0 · · · 0 �C |K|,n
r Mrq,�

0 · · · 0 �CmF�1Mrq,�

3

7777775
,

with size Nr(|K|+ 1)⇥Nq(|K|+ 1), or, more compactly,

Bn
rq =


0 Bc�

rq

0 B��
rq

�

n

,

with Bc�
rq 2 RNr|K|⇥Nq ,B��

rq 2 RNr⇥Nq . The global matrix at time tn, coupling
variables in ⌦i and ⌦e, thus reads

An =


An

i Bn
ie

Bn
ei An

e

�
=

2

6664

Acc
i Ac�

i 0 Bc�
ie

A�c
i A��

i 0 B��
ie

0 Bc�
ei Acc

e Ac�
e

0 B��
ei A�c

e A��
e

3

7775

n

.

Let us remark that for multiple cells, i.e. Ncell > 1, An
i can be further decomposed in

Ncell diagonal blocks coupled with An
e via the coupling matrices Bn

rq.
Finally, we define the solution vectors:

(4.1) ck,nr = [[k]nr,1, . . . , [k]
n
r,Nr

] 2 RNr , cnr = [c1,nr , c2,nr , . . . , c|K|,n
r ] 2 RNr|K|,

1With a minor abuse of notation, we use k both to identify an ionic species, i.e. k 2 K and as
an index for elements K, i.e. k = 1, ..., |K|.
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(4.2) �n
r = [�nr,1, ...,�

n
r,Nr

] 2 RNr ,

and recast the discrete variational problem (3.5)–(3.7) as the following linear system
of size N = (Ni +Ne)(|K|+ 1), for n = 1, . . . , Nt:

(4.3)

2

6664

Acc
i Ac�

i 0 Bc�
ie

A�c
i A��

i 0 B��
ie

0 Bc�
ei Acc

e Ac�
e

0 B��
ei A�c

e A��
e

3

7775

n�1

2

664

cni
�n

i

cne
�n

e

3

775 =

2

664

f c,n
i

f�,n
i

f c,n
e

f�,n
e

3

775 , () An�1un = fn,

with f c,n
r =

h
f1,n
r ,f2,n

r , ...,f |K|,n
r

iT
2 RNr|K| and

fk,n
r =

Z

⌦r

([k]n�1
r (x) + fk,n

r (x))'r,j(x) dx�
Z

�
gk,n�1
r (x)'r,j(x) ds

�Nr

j=1

2 RNr ,

f�,n
r =


�
Z

�
hn�1(x)'r,j(x) ds

�Nr

j=1

2 RNr .

Let us remark that the choice of An�1, instead of An, makes problem (4.3) linear.

Remark 4.1. The linear operator An in (4.3) admits a one-dimensional nullspace
corresponding to the constant potential (see Section 2.3). There are several approaches
to eliminate this nullspace, such as enforcing a zero-mean integral constraint via a
Lagrange multiplier [22]. However, this approach leads to a dense row and column
in An, severely a↵ecting parallel matrix assembly and iterative solver performance.
Instead, we here, for the sake of simplicity and e�ciency, introduce a point-wise
Dirichlet condition on �e: given an arbitrary xe 2 ⌦e, we impose �e(xe, t) = 0 for
all t 2 (0, T ]. A third approach would be to prescribe the discrete nullspace in the
iterative solution strategy.

4.2. Solution and preconditioning strategy. To solve the non-symmetric
linear system (4.3), we employ a preconditioned GMRES method using the block
diagonal preconditioner
(4.4)

Pn =

2

664

Acc
i 0 0 0
0 A��

i 0 0
0 0 Acc

e 0
0 0 0 A��

e

3

775

n

=

2

666666664

A11
i

. . .

A��
i

A11
e

. . .
A��

e

3

777777775

n

2 RN⇥N ,

composed of 2(|K|+ 1) blocks, decoupling all concentrations and potentials. In case
of several disjoint intracellular domains, the intracellular blocks can be further subdi-
vided into block-diagonal matrices, with Ncell blocks each. By definition, Pn is sym-
metric and positive definite and corresponds to a simplified problem where ⌦i and
⌦e are decoupled and the continuity equation contains only di↵usive contributions
and no electric drifts, with each concentration evolving independently. In relation to
Remark 4.1, the constant potential null space has to be eliminated also for Pn.

In the simpler EMI setting, the elimination of o↵-diagonal blocks can be mo-
tivated by a spectral argument [11], demonstrating that the membrane terms are
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Geometry Domains Dynamics Stimulus N (max)

A Idealized ICS, ECS HH gNa
stim 6= 0 8.7 · 106

B Imaging Astrocyte, ECS Kir–Na/K fNa
e , fK

e 6= 0 5.3 · 106
C Imaging Dendrite, astrocytes, ECS Kir–Na/K gNa

stim 6= 0 2.0 · 106
D Imaging Neurons, astrocyte, ECS HH, Kir–Na/K gNa

stim 6= 0 1.0 · 108

Table 1: Overview of model scenarios, labeled Models A–D. The idealized Model A
includes both two-dimensional and three-dimensional (d = 2, 3) setups. Models B–
D employ di↵erent image-based 3D geometries, including one or more astrocytes or
partial astrocytic processes, neurons and neuronal compartments (dendrites, axons,
spines) at di↵erent scales in addition to the contiguous extracellular space (ECS).
The ICS in Model A and the neurons in Model D are modelled using Hodgkin-Huxley
(HH) membrane dynamics (Section 2.4.1). The astrocyte membranes in Models B–D
and the dendrite membrane in Model C are modelled using the passive Kir–Na/K
model (Section 2.4.2). Each scenario including the stimulus are described in further
detail in the respective model sections.

zero-distributed ; i.e., represent a negligible contribution to the eigenvalues distribu-
tion for a mesh resolution increasing uniformly in space. As further motivation for
this choice, numerical experiments suggest that di↵usion dominates the drift induced
by gradients in the electric potentials, at least for k 2 {Na+,K+} at the scale and
tissue types under consideration [51]. While the extension of the spectral theory to
the KNP-EMI case has still to be developed, the numerical experiments presented in
the subsequent sections show that Pn is an e↵ective and robust preconditioner. Let
us note that, for physiologically relevant parameters, the condition number of An can
exceed 1010, resulting in stagnation of GMRES if no preconditioning is adopted.

In practice, the action of P�1
n (which can be e�ciently computed block-wise with

a preconditioned CG) can be approximated by a single algebraic multigrid (AMG)
iteration applied monolithically [10]. Moreover, we may use P0 as a preconditioner
for all time steps n = 1, . . . , Nt. This reduces assembly times, with little or no impact
on GMRES convergence as compared to using the time-dependent preconditioner Pn.

5. Idealized and image-based brain tissue benchmark scenarios. In this
section, we present four model scenarios for ionic electrodi↵usion in brain tissue,
including neuronal (somatic, dendritic, axonal), glial (astrocytic) and extracellular
spaces at the µm scale (Table 1). These scenarios, along with sample simulation
results, are presented in some detail, with the idea that the models define and can
be reused for future benchmarks. A list of physical parameters and initial conditions
common for all models is provided in Table 2. We remark that this setting can be
further refined considering heterogeneous initial conditions and physical parameters,
depending on the cell type, and heterogeneous membrane properties within a single
cell [48]. All scenarios consider the ionic species K = {Na+,K+,Cl�}, while fk

r = 0
in (2.1) for all r and k unless otherwise indicated. We denote spatial coordinates by
x = (x, y, z). We also refer to the associated open software repository [12].

5.1. Model A. We consider an idealized geometry for a single cell represented by
a d-dimensional cuboid ⌦ = [0, 1]d µm, with ⌦i = [0.25, 0.75]d µm and d = 2, 3 (Fig-
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Parameter Symbol Value Unit Ref.

gas constant R 8.314 J/(K mol)
temperature T 300 K
Faraday constant F 9.648 · 104 C/mol
membrane capacitance CM 0.02 F
Na+ di↵usion coe�cient DNa

r 1.33 · 10�9 m2/s [26]
K+ di↵usion coe�cient DK

r 1.96 · 10�9 m2/s [26]
Cl− di↵usion coe�cient DCl

r 2.03 · 10�9 m2/s [26]
Na+ leak conductivity gNa

leak 1 S/m2

K+ leak conductivity gKleak 4 S/m2

Cl− leak conductivity gCl
leak 0 S/m2

K+ HH max conductivity ḡK 360 S/m2 [27]
Na+ HH max conductivity ḡNa 1200 S/m2 [27]
stimulus factor ḡstim 40 S/m2

stimulus time constant a 0.002 s
initial ICS Na+ concentration [Na+]0i 12 mM [44]
initial ECS Na+ concentration [Na+]0e 100 mM [44]
initial ICS K+ concentration [K+]0i 125 mM [44]
initial ECS K+ concentration [K+]0e 4 mM [44]
initial ICS Cl− concentration [Cl�]0i 137 mM [44]
initial ECS Cl− concentration [Cl�]0e 104 mM [44]
initial membrane potential �0M �67.74 mV
resting membrane potential �rest �65 mV
initial Na+ activation m0 0.0379 [27]
initial Na+ inactivation h0 0.688 [27]
initial K+ activation n0 0.276 [27]
maximum pump rate ⇢pump 1.115 · 10�6 mol/m2 s [25]
ICS Na+ threshold for Na/K-pump PNa 10 mol/m3 [25]
ECS K+ threshold for Na/K-pump PK 1.5 mol/m3 [25]

Table 2: Physical parameters and initial values, based on [22].

ures 1a–1b). We consider the active Hodgkin-Huxley membrane model (Section 2.4.1)
and, as stimulus, impose a time-periodic sodium current on the entire membrane �:

(5.1) gNa
stim = ḡstime

�(tmod ⌧)/a,

with ⌧ = 10 ms the time interval between subsequent stimuli (Figure 1c).
We discretize ⌦ with a uniform grid with Nx intervals per side and subdivide

each cube into 2 triangles in 2D (Figure 1a) or 6 tetrahedra in 3D (Figure 1b).
This tessellation results in N =

�
(pNx + 1)d + o(pdNd

x )
�
(|K| + 1) total degrees of

freedom, with p the Lagrange finite element order. The lower order term o(pdNd
x ) =

(3� d/2)(pNx)d�1 + 2(d� 2) appears since the degrees of freedom on � are repeated
for ⌦i and ⌦e. Figures 1d–1f show the evolution of concentrations and potential over
time for Nt = 300 time steps, Nx = 64, and p = 1.

5.2. Model B. We examine the electrodi↵usive response of an astrocyte (a heav-
ily branching-type of glial cell) in response to local changes in extracellular potassium
and sodium concentrations resulting e.g. from surrounding neuronal activity. The
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Te

Ti
�

@⌦

(a) 2D geometry (b) 3D geometry (c) Stimulus

(d) Sodium (e) Potassium (f) Membrane potential

Fig. 1: Model A. (a) Sample 2D geometry (Nx = 4). (b) Sample 3D geometry
(Nx = 20). (c) Membrane current stimulus (acting on �) gNa

stim versus time t. (d)
Evolution of ion concentrations over time. Extracellular and intracellular quantities
are sampled respectively at xe = (0.15, 0.15)µm 2 ⌦e and xi = (0.5, 0.5)µm 2
⌦i. (f) Evolution of membrane potential, which is homogeneous in �, for di↵erent
ionic models: the default Hodgkin-Huxley (HH); the Kir-Na/K model; a leak model
obtained by setting fKir = jpump = 0 in the Kir-Na/K model.

intracellular astrocytic domain ⌦i is described by a 3D geometry obtained via Ul-
traliser [1, 2], with a diameter of approximately 90 µm, centered at the origin. The
extracellular domain ⌦e is constructed as a 2 µm thick layer enclosing ⌦i (Figure 2a).
The astrocytic membrane dynamics are governed by the passive Kir–Na/K membrane
model (Section 2.4.2) over the entire interface �. As stimulus, we consider a bolus
injection of potassium and removal of sodium in a section of the extracellular space
over a time period of 2 ms:

fNa
e (x, t) = �1, fK

e (x, t) = 1, x 2 ⌦e s.t. x < 0, 0 < t  2ms,

and fk
r = 0 otherwise, cf. Figure 2b. No membrane stimulus is applied (gNa

stim = 0).
The geometry is described by a tetrahedral mesh with Ni = 475 206 and Ne =

860 025 vertices, and a total problem size of N ⇡ 5.3 · 106 for p = 1. Figures 2c–2g
show the evolution of concentrations over time for �t = 0.1 ms and Nt = 2000.
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1.0e+00

2.0e+00

1.2

1.4

1.6

1.8

la
be
l10 μm

(a) Astrocyte geometry (b) Stimulus

(c) [K
+
]i at t = 30 s and x = 0 plane (d) [K

+
]i at t = 200 ms

(e) Sodium (f) Potassium (g) Chloride

Fig. 2: Model B. (a) Astrocyte geometry with corresponding tetrahedral mesh. (b)
Ionic source terms over time, imposed for x < 0. (c),(d) Intracellular potassium [K]i
(mM) at two di↵erent time steps. Potassium is injected in the extracellular space for
x < 0. At t = 2 ms the extracellular potassium [K]e is increased by approximately
10 mM w.r.t. the initial condition [K]0e = 4 mM. As the system evolves, potassium
is electro-di↵using in both ⌦i and ⌦e through �. (e)–(g) Time evolution of ionic
concentrations [k]r(x?, t) (mM) with x? 2 � labeled by ? in panel (c).
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5.3. Model C. This model focuses on the electrodi↵usive interplay between
neuronal structures, the extracellular space and surrounding glial structures at the
scale of dendritic spines. We consider a 3D geometry (Figure 3a) representing a
neuronal dendrite segment with multiple dendritic spines, surrounded by extracellular
space and glial cells, all immersed in a 8⇥ 8⇥ 5 µm cuboid [33, 9]. We remark that
even this highly non-trivial geometry represents a substantial simplification of the
dense tissue structure, and in particular that a large number of glial structures are
ignored. We apply the passive Kir–Na/K dynamics model (Section 2.4.2) at both the
astrocyte–ECS and dendrite–ECS interfaces, though with fKir = jpump = 0 for the
latter, thus in essence only considering leak channel dynamics on the dendrite–ECS
interfaces. To trigger a system response, we apply sodium membrane currents at the
dendritic spine heads �head ⇢ � (marked in green in Figure 3a), mimicking synaptic
signalling:

(5.2) gNa
stim(x) =

(
2ḡstim if x 2 �head,

0 if x /2 �head,

We consider a tetrahedral mesh with Ni = 193 129 and Ne = 306 478 vertices, and a
total problem size of N ⇡ 2.0 · 106 for p = 1. In Figures 3b–3f, we show the resulting
concentrations and potential for Nt = 400 time steps and �t = 0.1 ms.

5.4. Model D. We examine electrodi↵usive neuronal–ECS–astrocyte interplay
at a larger spatial scale. From a 100 ⇥ 100 ⇥ 80µm portion of a rat somatosensory
cortex [2, 16], we select three neurons and four astrocytes and embed these in a cuboid
extracellular space (Figure 4a). For the neuronal membranes, we apply the active
Hodgkin-Huxley model (Section 2.4.1) with a periodic, localized stimulus current

(5.3) gNa
stim = 10 · ḡstime�(tmod ⌧)/a for x < 10µm,

and gNa
stim = 0 otherwise. The period ⌧ = 10 ms. For the astrocytic membranes, we

use the passive Kir–Na/K-model as previously and gNa
stim = 0 (Section 2.4.2).

We consider tetrahedral meshes with up to Ni = 9390 510 and Ne = 15 541 672
and problem size N ⇡ 1.0 · 108. The numerical solution is shown in Figures 4b-4f.

6. Numerical experiments. In this section, we examine the robustness and
e�ciency of the proposed monolithic numerical strategy in terms of iteration count
and parallel performance when applied to Models A–C. All numerical experiments are
performed on the Norwegian supercomputer Saga2, using up to 256 Intel Xeon-Gold
6138/6230R 2.0-2.1 GHz CPU cores with 40 cores per node.

6.1. Implementation and numerical verification. Our KNP-EMI solver
implementation [12] is based on the well-established FEniCS finite element soft-
ware [5, 37], using the multiphenics library [8] to handle variational problems coupled
across multiple subdomains. The linear algebra backend is PETSc [7]. The imple-
mentation is flexible in terms of ionic models of arbitrary complexity, and has been
verified using the method of manufactured solutions for the same benchmark prob-
lems as introduced in [22, Section 3.1], obtaining the expected convergence rates.
The image-based volumetric meshes (in Models B–D) are generated from segmented
microscopy data via unions of lower-dimensional surfaces using the computational
geometry library fTetWild [28].

2https://documentation.sigma2.no/hpc machines/saga.html

https://documentation.sigma2.no/hpc_machines/saga.html
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Extracellular space (ECS)

Dendritic spines

Dendrite

Glial cells (astrocytic)

1 μm

(a) Geometry

(b) [K
+
]i in � at t = 20 ms (c) [K

+
]i in � at t = 40 ms

(d) Sodium (e) Potassium (f) Membrane potential

Fig. 3: Model C. (a) Dendritic segment (red), spines heads �head (green), and glial
cells (blue). A portion of the meshed extracellular domain is shown as long as a
particular of few meshed dendritic spines. (b),(c) [K]i (mM) for two di↵erent time
steps, given a membrane stimulus located in the spines heads. (d)–(f) Concentrations
[k]r(x?, t) (mM) for k 2 {K+, Na+} and potential �M (x?, t) (mV) with x? 2 �head.
The location of x? 2 �head is labeled in panels (b) and (c) with ?.
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10 μm

(a) Geometry and intracellular potassium in � at t = 50 ms

(b) Membrane potential at t = 0.5 ms (c) Membrane potential at t = 1 ms

(d) Sodium (e) Potassium (f) Membrane potential

Fig. 4: Model D. (a) Cortex geometry with neurons and astrocytes, with a portion
of meshed ECS. Intracellular potassium at t = 50 ms is shown. (b),(c) Spreading
electric potential on neurons from an initial localized stimulus for two di↵erent time
steps. A portion of the plane x = 10µm is shown, as boundary of the stimulus region.
A threshold potential of 40 mV is highlighted by the color scale transition. (d),(e)
Intracellular concentrations for Nt = 1000. The solution is sampled in the membrane
of a dendrite, a soma, and an astrocyte. Legend is shared between the two images.
(f) Evolution of neuronal membrane potential.
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6.2. Solver configurations. When using a GMRES method to solve the KNP-
EMI system, we restart the algorithm after 30 iterations. For each time step n, we use
the solution at n�1 as an initial guess, substantially reducing the number of GMRES
iterations. As stopping criterion for the iterative solvers, we consider a tolerance of
10�6 for the preconditioned relative residual. To evaluate P�1

0 , we use a single V-cycle
of hypre BoomerAMG [23]. We refer to the associated software repository [12] for
the exhaustive list of AMG parameters3. In terms of computational time to solve the
system, the GMRES method is preferable compared to BiCGStab for all the reported
experiments. For comparative tests, we also use MUMPS as a direct solver.

To solve the gating variables ODEs (cf. (2.17)), we use Node = 25 intermediate
time steps of the Rush-Larsen method for each time interval, set to �t = 0.05 ms
(unless noted otherwise). In terms of runtime, solving the ODEs is negligible compared
to the linear system solve.

6.3. Iterative solver robustness. We begin by studying the robustness of the
proposed preconditioning strategy with respect to the spatial and temporal discretiza-
tion. We consider a single time step for Model A, with d = 2, as a flexible benchmark
example, and vary the time step �t, the finite element (polynomial) degree p 2 {1, 2}
and the mesh resolution Nx 2 {16, 32, 64, 128, 256, 512}. The resulting linear system
sizes vary from N = 4.6·103 for (Nx, p) = (16, 1) to N = 4.2·106 for (Nx, p) = (512, 2).
For �t 2 {1, 10, 100} (ms), GMRES preconditioned by P0 (LU(P0)) converges in 3
iterations for all cases. For �t 2 {0.01, 0.1} (ms), each case converges in 4 iterations.
In contrast, the unpreconditioned GMRES method never converges in less than 1000
iterations.

Next, we investigate how to approximate P�1
0 e�ciently. For larger problems, it

is not convenient to invert P0 to full precision. Instead, a suitable multilevel approxi-
mation of P�1

0 can reduce the time-to-solution while retaining the rapid convergence
of the GMRES method. We here compare a set of such approximation strategies to
black box approaches and the exact preconditioners for increasing problem sizes N , cf.
Table 3. We immediately observe that the direct solver and ILU(0) or AMG precondi-
tioners are not viable for larger N . We therefore consider two approaches where P�1

0

is evaluated exactly via LU or CG (LU(P0) and CG(P0), respectively). Here, the CG
solver is applied block-wise in a field-split fashion with 2(|K|+1) fields, and precondi-
tioned with AMG. In both cases, the convergence behavior is dramatically improved:
the number of iterations no longer increase with the problem size and remains low
(⇡ 4). However, we observe only marginal gains in terms of runtime compared to
ILU(0). Finally, we consider strategies based on the multilevel approximation of P0,
obtained with a single AMG V-cycle (AMG(P0)). Besides a monolithic approach,
we consider either block-wise or field-split application of AMG (AMGFS(P0)). We
observe that both of these latter strategies maintain the robustness in terms of a
constant and low iteration count (⇡ 4) for all problem sizes. Moreover, we observe a
significant improvement in run times for larger problem sizes. The best performance
is observed for AMG applied block-wise, with a 70% reduction in runtime compared
to the exact preconditioner (LU(P0)).

We end this section by examining how the iteration counts and runtimes depend
on time evolution, focusing on the two solution strategies (LU(P0) and AMG(P0)),
now distributed over 32 cores (Figure 5). For both strategies, the number of iterations
remains low (1–6 iterations) over the whole time span simulated. Moreover, the run

3For 3D runs, we set the threshold for strong coupling to 0.5, instead of the default value (0.25).
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N 17 412 67 588 266 244 1 056 772
(Nx) (64) (128) (256) (512)

Assembly 2.5 8.2 31.3 123.3

Direct (MUMPS) 2.1 10.0 49.5 259.1
AMG 2.3 [22.5] 24.8 [61.1] 252.5 [157] 3697 [585]
ILU(0) 0.4 [15.6] 2.4 [29.5] 17.1 [63.2] 176.7 [169]

CG(P0) 3.0 [4.0] 10.5 [4.0] 39.8 [4.0] 174.4 [4.0]
LU(P0) 0.5 [4.0] 3.5 [4.0] 18.1 [4.0] 122.4 [4.0]
AMG(P0) 0.8 [4.3] 3.3 [4.1] 13.8 [4.0] 55.2 [4.0]
AMGFS(P0) 0.6 [4.0] 2.2 [4.0] 9.0 [4.0] 37.0 [4.0]

Table 3: runtimes (in serial) and when applicable, in square brackets, average number
of preconditioned GMRES iterations to convergence over n = 1, . . . , Nt, for precon-
ditioners (Model A, p = 1, d = 2, Nt = 10 time steps). In the last two rows di↵erent
inexact preconditioners are used.

time per time step (after initialization) remains bounded throughout the time course,
with AMG(P0) being approximately 50% faster than LU(P0) on average.

Fig. 5: Number of iterations (left) and runtimes (right) over Nt = 300 time steps for
Model A with d = 2 and (Nx, p) = (512, 1) (N = 1056 772), using 32 MPI processes.

6.4. Parallel scalability: strong scaling. We now more carefully investigate
the parallel performance of the more promising preconditioned GMRES strategies
(Figure 6). We first compare their strong scaling (increasing the number of cores
while keeping the problem size fixed) for Models A, B, and C. For the smaller problem
(Model A with d = 2), we compare with the direct solver for reference. Throughout,
we also examine the scalability of the finite element assembly. Initial tests (using
Model A in 2D) indicate that all of the iterative strategies tested scale reasonably
well for a few (4–8) cores (Figure 6a). The field-split AMGFS(P0) is the most e�cient
for up to 32 cores, but stagnates for larger core counts since each diagonal block is
solved in parallel. The monolithic AMG strategy scales better and outperforms all
other strategies for the Model A, d = 2 test case for 64 cores or more. We therefore
focus our attention on the monolithic AMG in the subsequent experiments. For the
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(a) Model A (d = 2), N = 1.0 · 106 (b) Model A (d = 3), N = 4.2 · 106

(c) Model B, N = 5.3 · 106 (d) Model C, N = 2.0 · 106

Fig. 6: Parallel performance: strong scaling for Models A, B, and C. Plots show
runtimes for iterative solves, finite element assembly and total runtime versus number
of MPI processes (cores). For all models, we use p = 1 and Nt = 20 time steps.
Average AMG(P0)-GMRES iterations over n = 1, . . . , Nt are indicated for each data
point for Models A (d = 3), B, and C.

larger problems (Models A with d = 3, B and C), the scaling of AMG(P0), the
assembly algorithm, and the total runtime are close to ideal for at least up to 256
cores (Figures 6b–6d). We also note that the average number of iterations remain in
the same low range (4–5) varying the number of cores.

We also conduct a focused larger-scale experiment using Model D with up to
108 degrees of freedom to study the e↵ect of bulk- versus interface-dominated mesh
refinement on algorithmic and parallel performance (Table 4). As a baseline, we
consider Model D with the default configuration (Table 4, first column), as described
in Section 5, for 128 and 256 cores. For the case p = 2 (Table 4, second column) with
a 6.8⇥ increase in the number of degrees of freedom and reduced sparsity, assembly
time increases by a factor of 6.3⇥, while the linear solver time increases by a factor
of 9.3⇥. On the other hand, after uniform mesh refinement (third column), which
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N 6.7 · 106 4.5 · 107 4.5 · 107 1.0 · 108
Ni +Ne 1.7 · 106 1.7 · 106 1.3 · 107 2.5 · 107
Finite element degree (p) 1 2 1 1

Initialization (128 cores) 20.2 60.5 335.1 991.1
Initialization (256 cores) 19.0 31.5 143.1 317.1

Assembly (128 cores) 82.5 511.5 468.4 1064.1
Assembly (256 cores) 44.0 278.5 263.2 547.2

AMG(P0) (128 cores) 20.8 [4.0] 211.6 [4.0] 132.4 [4.6] 441.8 [8.0]
AMG(P0) (256 cores) 12.0 [3.9] 111.5 [3.9] 64.9 [3.9] 242.9 [7.8]

Table 4: Scalability and performance for Model D. Computational runtimes and, in
square brackets, average number of iterations to convergence over n = 1, . . . , Nt = 10
time steps. Total number of degrees of freedom N , intracellular and extracellular
degrees of freedom Ni + Ne, finite element (polynomial) degree p, with rows corre-
sponding to 128 and 256 MPI processes as labeled. The initialization time corresponds
to the finite element discretization setup in the first time step, thus becoming negli-
gible for large Nt. The columns give (from left to right) the results corresponding to
Model D with: (i) p = 1, (ii) p = 2, (iii) after uniform mesh refinement, and (iv) after
uniform and then interface-based mesh refinement.

yields the same increase in N and same sparsity pattern, the assembly time increases
by a factor of 5.7⇥ (128 cores) and 6.0⇥ (256 cores), while the GMRES runtime
increases by 6.3⇥ and 5.4⇥, demonstrating near-optimal or super-optimal scalability
with respect to N . For both cases, we again observe that the average number of
GMRES iterations stays near constant, remaining at 4–5.

Finally, we study the e↵ect of refining the mesh near the interface � only. This
scenario challenges the spectral analysis [10] in which the robustness of the precondi-
tioning strategy eliminating membrane blocks is established under the assumption of
uniform refinement. Indeed, the average number of iterations now increases, from 4–5
to 8, with a corresponding increase in computational cost (comparing the third and
fourth columns of Table 4). For all four columns, both the finite element assembly
and the AMG(P0)-GMRES solver scale near-optimally when increasing from 128 to
256 cores, with an average parallel e�ciency of 93% and 94% respectively.

6.5. Parallel scalability: weak scaling. Finally, we investigate the weak scal-
ing (increasing the number of cores and the problem size simultaneously) of the various
solution strategies, returning again to Model A (Figure 7). For small-sized problems
(Figure 7, left), the field-split AMGFS(P0)-GMRES is the fastest in serial, but, again,
the monolithic AMG(P0) outperforms all the other approaches in terms of scaling. For
the moderate-sized problems (Figure 7b, right), near optimal scalability is observed
for the assembly, with essentially a flat curve from 64 to 256 cores. As expected, the
number of AMG(P0)-GMRES iterations stays near constant (⇡ 4), while its runtime
increases by an average factor of 1.2⇥ as the number of cores and degrees of freedom
doubles. The increase in runtime is connected to communication overhead in matrix-
vector products and AMG setup. We refer to [18] for examples of fine tuning AMG
parameters to further improve its weak scalability.
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(a) Model A (d = 2) (b) Model A (d = 3)

Fig. 7: Parallel performance: weak scaling for Model A (p = 1) with (a) d = 2,
Nt = 10, 4.5 ·103 degrees of freedom per core and (b) d = 3 and Nt = 20, and 4.0 ·104
degrees of freedom per core. Average AMG(P0)-GMRES iterations over n = 1, . . . , Nt

are displayed as well as the total runtime.

7. Discussion, conclusions and outlook. The availability of dense brain tis-
sue reconstructions at an extreme level of detail poses a unique challenge for math-
ematical and computational modelling. Here, we presented a scalable finite element
discretization and solution algorithm to solve the KNP-EMI equations, describing
electrodi↵usion, at the level of complexity required for physiologically relevant simula-
tions. In particular, we employ a continuous finite elements discretization of arbitrary
order, with possible discontinuities across interfaces, where the KNP-EMI equations
are coupled with one or more ODEs, modeling complex membrane dynamics. We
describe the algebraic structure of the arising monolithic linear system and present
a tailored multilevel solution strategy, since black-box approaches are unfeasible for
large problems.

We show robustness of the our proposed solution strategy with respect to dis-
cretization parameters, given a near uniform spatial refinement. Strong and weak
scalability of the algorithm are near-optimal, as demonstrated here when running
simulations using from 1 to 256 MPI processes for problem sizes ranging from 4.6 ·103
to 108. Our motivation for considering this range of parallelism is four-fold: (i) these
problem sizes represent the first relevant stage for resolving the brain tissue geometry
at the tens of micrometers scale; (ii) any viable solution strategy must successfully
address this range; (iii) this is a range of computing resources readily available, in
particular 256 represents the default core limit for the Saga computing system; and
(iv) above these problem sizes, other aspects of the simulation pipeline such as e.g.,
mesh generation, labeling, and refinement appear as non-negligible potential bottle-
necks. However, our numerical results indicate that the solution algorithm can con-
tinue to scale for larger problem sizes and a larger core count. We also remark that
while we have presented physiologically relevant scenarios, more complexity could,
and should, be considered. For instance, more attention to the connectedness or
non-connectedness of the extracellular space and intracellular compartments could
yield even higher fidelity representations. Similarly, while we here consider di↵erent
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non-trivial membrane mechanisms for the di↵erent cellular types, a higher degree of
specificity would be more biologically meaningful, in particular for the neuronal com-
partments (axons, soma, dendrites). Our simulation code is openly available [12], and
importantly, we envision that the model scenarios presented can be used as stepping
stones for future benchmarks and research in this emerging field.
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Magistretti, 3D cellular reconstruction of cortical glia and parenchymal morphometric

analysis from serial block-face electron microscopy of juvenile rat, Progress in neurobiology,
183 (2019), p. 101696.

[17] M. Consortium, J. A. Bae, M. Baptiste, C. A. Bishop, A. L. Bodor, D. Brittain,
J. Buchanan, D. J. Bumbarger, M. A. Castro, B. Celii, et al., Functional con-

nectomics spanning multiple areas of mouse visual cortex, BioRxiv, (2021), pp. 2021–07.
[18] P. D’Ambra, F. Durastante, and S. Filippone, AMG preconditioners for linear solvers

towards extreme scale, SIAM Journal on Scientific Computing, 43 (2021), pp. S679–S703.
[19] E. J. Dickinson, J. G. Limon-Petersen, and R. G. Compton, The electroneutrality approx-

imation in electrochemistry, Journal of Solid State Electrochemistry, 15 (2011), pp. 1335–
1345.

[20] A. G. Dietz, P. Weikop, N. Hauglund, M. Andersen, N. C. Petersen, L. Rose, H. Hirase,
and M. Nedergaard, Local extracellular K+ in cortex regulates norepinephrine levels,

network state, and behavioral output, Proceedings of the National Academy of Sciences,
120 (2023), p. e2305071120.
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