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Abstract. Simulations of wave propagation in porous media are important to the understand-
ing of various phenomena, such as seismic effects and non-destructive testing. The derivation
and implementation of finite element analysis for a fully dynamic three-field deformable porous
media model based on the de la Cruz and Spanos (dCS) theory [1] is presented. The dCS theory
accounts for the fluid viscous dissipation mechanism and nonreciprocal solid-fluid interactions,
which are neglected in Biot theory [2]. While the Biot theory is based on experimental data,
the dCS theory is derived from mixture theories associated with the volume fraction concept
and representing the connection between micro and macro pore scales. dCS results presented
build upon recent FE model for quasi-static analysis [3]. Here, for the fully dynamic case incor-
porating both fluid and solid inertia, the accuracy and robustness of the FEA model is verified
by wave propagation examples in one and two dimensions. Time integration scheme utilized
and the changes in convergence rates according to how strongly coupled is the system will
be discussed. The required element approximation order for all variables to ensure numerical
stability will be demonstrated. The presented model is compared with the results from Biot
theory, allowing one to observe the differences between the two theories and their relevance.
The solutions in the time and frequency domain are also discussed, where the analysis of the
correspondent eigenproblem leads to important information regarding wave velocity and atten-
uation.

1 INTRODUCTION

The Biot (BT) theory is one of the first porous media theories developed [4]. It represents
the solid and fluid components, as well as their interaction, through a coupled set of governing
equations. Applications of the BT theory can be found for instance in quasi-static soil consoli-
dation [5], wave propagation [6], and non-destructive testing [7]. BT theory assumes that there
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is a unique potential deformation energy related to the porous medium, and hence solid and fluid
are assumed to deform to the same extent [8]. More to that, the BT formulation neglects the
fluid viscous dissipation terms present in the fluid stress definition. Consequently, it yields the
representation of only three wave types: a fast P, a slow P, and a fast S wave, hence neglecting
a slow S wave [9].

Following the development of the BT theory, other porous media theories based on mixture
theory and the volume fraction concept were proposed [10]. They assume that the porous media
governing equations are valid at the micro-scale, and volume-averaging techniques are applied
to extend them to the macro-scale. In this process, porosity is taken as a field variable. One
example is the de la Cruz and Spanos (dCS) theory [11, 12]. In the dCS framework, besides
including porosity as a variable, it also includes fluid viscous dissipation terms that were previ-
ously neglected in the BT model [13]. Later developments of the dCS model also accounted for
non-reciprocal solid-fluid interactions, which happen when the constituents deform to different
extents [14].

The use of numerical models to simulate porous media behavior has been vast throughout
the years, and various choices of main variables have been adopted. Two-field porous media
formulations, for instance, are written in terms of solid displacement and fluid pressure [15, 16].
Three-field models, on the other hand, can have solid displacement, fluid pressure, and fluid
displacement as main variables [17, 18]. Recently, the authors derived a finite element (FE)
model for a quasi-static dCS model [3]. Building upon such results, this work presents a finite
element model for the simulation of dynamic problems in the dCS context. The dCS FE model
is verified against a manufactured solution, and a convergence study is performed. Moreover,
one- and two-dimensional examples are presented so that we can evaluate the impact of the
fluid viscous dissipation terms and the non-reciprocal solid-fluid interactions. The dCS results
are compared with the BT theory, when we observe how they might diverge depending on the
problem characteristics.

2 POROUS MEDIA GOVERNING EQUATIONS

Based on the dCS formulation presented in [1], and assuming an isothermal model, the solid
and fluid equations of motion are

(1− η0)ρsüs = ∇ · σs +
µfη

2
0

κ
(u̇f − u̇s)− ρ12(üf − üs), (1)

η0ρf üf = ∇ · σf −
µfη

2
0

κ
(u̇f − u̇s) + ρ12(üf − üs), (2)

in which uf ,us are fluid and solid displacements, respectively; η0 is the initial porosity, ρs is
the solid density, ρf is the fluid density, µf is the fluid dynamic viscosity, κ is the intrinsic
permeability, and ρ12 is the added mass coefficient. The dots as superscripts indicate time
derivatives: u̇f , u̇s are velocities and üf , üs are accelerations of the fluid and solid constituents.
The divergence of solid and fluid stresses ∇ · σs, ∇ · σf , are given by

2



Bruna Campos, Robert Gracie

∇ · σs = (1− η0)Ks −Ks∇η + µM [∇2us +
1

3
∇(∇ · us)], (3)

∇ · σf = −η0∇p+ η0µf∇2u̇f + η0(ξf +
µf

3
)∇(∇ · u̇f ) + ξf∇η̇, (4)

where p is the fluid pressure variable, Ks is the solid bulk modulus, ξf is the fluid bulk viscosity,
µM = (1 + c)(1− η0)µs is the macroscopic shear modulus, µs is the solid shear modulus, and
c is a micro-heterogeneity parameter [1]. The storage equation is written as

ṗ

Kf

+∇ · u̇f +
η̇

η0
= s, (5)

in which Kf is the fluid bulk modulus, s is a source/sink term, and the porosity variable η is
related to the solid and fluid displacements us, uf by

η̇ = δs∇ · u̇s − δf u̇f . (6)

In the porosity relation (6), δs, δf are compliance coefficients defined as [14]

δs = (α− η0)
η0M

∗

Kf

, δf = (α− η0)
η0M

∗

Ks

n, (7)

where α is the Biot coefficient, n is the porosity effective pressure coefficient, and the modified
storage coefficient M∗ is related to the Biot storage coefficient M by

1

M∗ =
1

M
− (1− n)

α− η0
Ks

,
1

M
=

α− η0
Ks

+
η0
Kf

. (8)

The compliance coefficients can be taken as weighting parameters for the solid and fluid
deformations, representing their impact on the change in porosity. In this sense, variations in n
can be associated with physical phenomena in the porous medium. When n = 1, solid and fluid
constituents affect porosity to the same extent, and the formulation presented in Biot theory is
recovered [14, 3]. At its lower bound, i.e., n = 0, fluid has no effect on porosity change. On
the other hand, the upper bound n = Ks/Kf leads to no variations in porosity. It is noteworthy
that we have assumed that the macroscopic shear modulus µM is equal to the averaged solid
shear modulus (1 − η0)µs, meaning that the micro-heterogeneity parameter c is equal to zero
[1]. While c = 0 (and n = 1) recovers the BT formulation, changes in c might lead to deviations
from BT. Nevertheless, this study is out of the scope of the present work.

The system of equations to solve is written in terms of solid displacement us, fluid pressure
p, and fluid displacement uf ,

∇ · σ − (1− η0)ρsüs + η0∇p− η0µf∇2u̇f − η0(ξf +
µf

3
)∇(∇ · u̇f )

−ξfδs∇(∇ · u̇s) + ξfδf∇(∇ · u̇f ) +
µfη

2
0

κ
(u̇f − u̇s)− ρ12(üf − üs) = 0,

p

Kf

+
δs
η0
∇ · us + (1− δf

η0
)∇ · uf = 0,

−η0ρf üf − η0∇p+ η0µf∇2u̇f + η0(ξf +
µf

3
)∇(∇ · u̇f ) + ξfδs∇(∇ · u̇s)

−ξfδf∇(∇ · u̇f )−
µfη

2
0

κ
(u̇f − u̇s) + ρ12(üf − üs) = 0;

(9)
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the first equation is obtained by the summation of the solid and fluid equations of motion (1)-
(2), where the total stress σ is given by σ = σs + σf . The second equation comes from
the integration of the storage equation (5) with respect to time. The third equation is the fluid
equation of motion; in (9), the porosity variable was substituted by the relation expressed in (6).

3 FINITE ELEMENT DISCRETIZATION

After deriving the weak form, the system of equations (9) yields the finite element semi-
discretized form

Md̈+Cḋ+Kd = f , (10)

in which M is the mass matrix, C is the damping matrix, K is the stiffness matrix, f is the
boundary term vector, and d is the vector of nodal values for solid displacement, fluid pressure,
and fluid displacement. The submatrices in M are

Mss = [(1− η0)ρs − ρ12]

∫
Ω

N⊤
s NsdΩ, Msf = ρ12

∫
Ω

N⊤
s NfdΩ,

Mff = [η0ρf − ρ12]

∫
Ω

N⊤
f NfdΩ, Mfs = ρ12

∫
Ω

N⊤
f NsdΩ;

the damping submatrices are

Css = −ξfδs

∫
Ω

B⊤
s BsdΩ, Cff = (

4

3
η0µf + η0ξf − ξfδf )

∫
Ω

B⊤
f BfdΩ,

Csf = −ξfδs

∫
Ω

B⊤
s BfdΩ, Cfs = (

4

3
η0µf + η0ξf − ξfδf )

∫
Ω

B⊤
f BsdΩ;

and the stiffness submatrices are

Kss =

∫
Ω

B⊤
s DBsdΩ, Ksp = (α− η0)

∫
Ω

B⊤
s NpdΩ,

Kps =
δs
η0

∫
Ω

N⊤
p BsdΩ, Kpp =

1

Kf

∫
Ω

N⊤
p NpdΩ,

Kpf = (1− δf
η0
)

∫
Ω

N⊤
p BfdΩ, Kfp = η0

∫
Ω

B⊤
f NpdΩ.

For the fully discretized system, the generalized Newmark method [19] is employed for time
integration. To introduce some sort of damping, the related time integration constants are taken
as 0.7, and thus the method is first-order accurate in time.

4 NUMERICAL EXAMPLES

4.1 Verification and convergence study

A manufactured solution is used in a one-dimensional example for verification and conver-
gence studies related to the proposed dCS FE model. The solid displacement, fluid pressure,
and fluid displacement fields are given by
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us =
sin(x+ 2t)

1000
, p =

sin(x) + sin(2t)

1000
, uf =

cos(x+ 2t)

1000
. (11)

The domain has a length of L = 6m; for the verification study, the mesh consists in ne = 200
elements with a quadratic approximation for the solid and fluid displacement fields, and a linear
approximation for the fluid pressure field. The final simulation time is tend = 1s with a time
step of ∆t = 10−5s. The numerical results for all three fields match the chosen manufactured
solution.

For the convergence study, the final simulation time and the time step are kept the same, and
the element size is gradually decreased. The results for five different values of ne are plotted
in Figure 1 alongside correspondent regression lines. The convergence rates for the three-field
dCS model are m = 2.17 for the solid displacement, m = 1.46 for the fluid pressure, and
m = 1.95 for the fluid displacement. As noticed, the reported rates differ from those obtained
in uncoupled linear problems – order 2 for linear elements and order 3 for quadratic elements.
This is due to the coupling nature of the problem, and the more strongly coupled the porous
media simulation is, the more the convergence rates decrease.

(a) us field (b) p field (c) uf field

Figure 1: Relative error of L2-norm for the three-field dCS model; items (a) and (b) also include
the convergence slopes for the two-field us − p dCS model.

For comparison purposes, Figure 1 also depicts convergence rates for a two-field dCS model,
having only solid displacement and fluid pressure as main variables. As noticed, the two-field
model has poorer rates that the three-field model. This is an expected result; the two-field
formulation assumes that solid and fluid accelerations are the same, and it is usually employed
in only quasi-static simulations due to the consequent lack of accuracy in dynamic simulations.

4.2 Effect of fluid viscous dissipation

When the porosity effective pressure coefficient is taken as n = 1 and the micro-heterogeneity
parameter is c = 0, the sole difference between the dCS and the BT models is the presence of
fluid viscous dissipation terms in the former, as part of the fluid stress definition. In this section
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we assume n = 1 and c = 0, and evaluate the effect of the viscous terms in the dCS theory for
different porous media constituents. Such study is performed through an assessment of wave
velocity and attenuation patterns in porous media. Whilst BT theory yields two P waves and
one S wave, the dCS theory yields also an additional slow S wave due to the viscous dissipation
terms. The new S wave might have an impact on the other wave types, which is also a topic of
observation in this section.

Five solid-fluid combinations are considered (note that, in all cases, we assume that the
medium is fully saturated): (M1) water and sandstone [20], (M2) water and cancellous bone
tissue [21], (M3) fluidized snow and ice [22], (M4) brine and marine sediments [23], and (M5)
heavy oil and marine sediments. Figures 2 and 3 depict the normalized velocity and attenuation
values, respectively, of the four evaluated wave types for the BT and dCS models.

Results for the solid-fluid combinations M1, M3, and M4 are practically identical for both
BT and dCS, hence attesting that viscous dissipation terms are negligible in these cases. More to
that, the slow S wave is highly dissipative, showing a low velocity (specially at low frequencies)
range between 0.10 m/s (M4) and 32 m/s (M3) and an attenuation range in the order of 103 to
106 for low frequencies.

The water-cancellous bone combination (M2) depicts few changes between BT and dCS
models, where the only noticeable discrepancy appears in the first P wave attenuation, increas-
ing by 30% in dCS. The slow P wave in this scenario is also characterized by low velocity and
high attenuation. For the porous media M5, the solid constituent in combination M4 – marine
sediments – is coupled with a very heavy oil. In this case, due to the high fluid viscosity, BT
and dCS theories diverge. Differences in the results are more noticeable for the second P and
first S waves, where velocity and attenuation in the dCS model is significantly higher.

4.3 Effect of non-reciprocal interactions

A two-dimensional example of wave propagation is used to evaluate the effect of non-
reciprocal interactions included in the dCS framework. A water-saturated sandstone porous
media is considered, for which the adopted material parameters [13] are listed in Table 1. The
square domain has dimensions of L = 12m, and a wave source sw(t) of the form

sw(t) = P0 (sin(πtf)− 0.5 sin(2πtf)) , t < 1/f (12)

is applied at the center of the domain (x = 6m, y = 6m). In this wave source equation, t is
the time variable, P0 = 105Pa is the source amplitude, and f = 103Hz is the source frequency.
The domain is discretized into a mesh with 240 × 240 quadrilateral elements. A bi-linear
approximation is employed for all three variable fields. The final simulation time is taken as
tend = 2× 10−3s with a time step of ∆t = 10−5s.

Figure 4 shows the solid displacement, fluid pressure, and fluid displacement distribution
over the domain at the final simulation time for the dCS model herein presented. As depicted in
Figure 5, it is possible to identify the propagation of the first P wave and the first S wave. Due
to the high attenuation of the slow P and S waves, they could not be identified within the context
of this example. Figure 6 depicts the variation in the same fields, now comparing variations in
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(a) First P (b) Second P

(c) First S (d) Second S

Figure 2: Wave velocity for different materials considering both BT and dCS models.

Table 1: Material parameters for two-dimensional wave propagation considering water-
saturated sandstone constituents [13].

Parameter Value Unit Parameter Value Unit
E 11.76 GPa Ks 33 GPa
ν 0.2 - Kf 2.2 GPa
κ 1× 10−13 m2 ρs 2650 kg/m3

α 0.78 - ρf 1000 kg/m3

η0 0.25 - ρ12 0 kg/m3

µf 10−3 Pa · s δs(n = 1) 0.4644 -
ξf 2.8× 10−3 Pa · s δf (n = 1) 0.0310 -

the non-reciprocity in dCS framework with BT theory results. We notice that when the porosity
effective pressure coefficient is equal to 1, dCS and BT results coincide. The only difference
between dCS and BT theories in this case is the additional fluid viscous dissipation terms in
the former. Hence, such terms are negligible for the specific conditions – material parameters,
amplitude and frequency of the wave source – of this example.

When n = nmin, we notice a slight increase in attenuation of the solid velocity, and a slight

7



Bruna Campos, Robert Gracie

(a) First P (b) Second P

(c) First S (d) Second S

Figure 3: Wave attenuation for different materials considering both BT and dCS models.

decrease in attenuation for the fluid pressure when compared to n = 1. The wave velocity, on
the other hand, is very similar to when n = 1. For n = nmax, changes are more significant, and
now there is less attenuation in the solid velocity and more attenuation in the fluid pressure field;
wave velocity also seems to change in this case. Variations in wave behavior can be explained
by the significance of the porosity effective pressure coefficient n. It is used to indicate the
presence of heterogeneity, being related to the concentration of potential energy in the solid/fluid
constituents or at their interface. A more detailed explanation of its meaning can be found in
[14].

5 DISCUSSION

The robustness of dCS finite element model herein proposed was verified by using a man-
ufactured solution in a one-dimensional case. The Newmark method was used for the time
integration, in which the related constants were assumed in a way such that some numerical
damping is added to the problem. Further analysis showed that the absence of such damping
lead to numerical instabilities. Optimal convergence rates were obtained, and we observed how
these rates are superior than those of a two-field dCS model. This happens due to the fact that
a two-field formulation can only be obtained under the assumption that solid and fluid accel-
erations are equal, which reduces the model accuracy when dealing with dynamic simulations.
Moreover, additional tests confirmed that the adopted material parameters influence on the mesh
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(a) Solid velocity [m/s] (b) Fluid velocity [m/s] (c) Fluid pressure [Pa]

Figure 4: Wave propagation in two-dimensional domain.

(a) Solid velocity in x [m/s] (b) Solid velocity in y [m/s]

Figure 5: Solid velocity for the two-dimensional wave propagation.

size convergence rates. At the limit where the porous medium coupling terms vanish, the con-
vergence rates from uncoupled problems were recovered. Therefore, we can conclude that the
slope of convergence is directly related to how strongly coupled the solid and fluid constituents
are.

A one-dimensional example was considered to study the effect of the fluid viscous dissipation
terms present in the dCS model (and neglected in the BT theory). Five different solid-fluid
combinations were observed. The analysis considered the eigenproblem related to the dCS wave
equations, which lead to expressions for phase velocity and attenuation. Differences between
wave velocity and attenuation for the BT and dCS models appeared at high frequencies, and
were more significant when the fluid had high viscosity. It is noteworthy, hence, that while
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(a) Solid velocity in x [m/s] (b) Fluid pressure [Pa]

Figure 6: Comparison between BT and dCS results for the two-dimensional wave propagation,
considering variations in the coefficient n for the dCS model.

dCS theory matches BT results in various situations, it might better represent wave patterns for
certain combinations of solid-fluid constituents.

Wave propagation was represented in a two-dimensional domain, where we evaluated the
impact of non-reciprocal solid-fluid interactions. It was noted that changes in n affect both the
wave velocity and attenuation in the medium. Furthermore, the propagation of both fast P and
fast S waves were identified. Due to the dissipative characteristic of the slow P and S waves, they
could not be observed. While the one-dimensional examples considered mixed-order elements,
the two-dimensional wave propagation was simulated considering bi-linear elements for all
variable fields. Additional tests indicated that the use of bi-quadratic elements for the solid and
fluid displacement fields, while maintaining a bi-linear approximation for the pressure field,
lead to numerical instabilities. Consequently, the guarantee of stability when using mixed-order
elements in quasi-static two-field formulations cannot be extended to the three-field model – for
both dCS and BT theories [18].

6 CONCLUSIONS

This work presented the derivation of a finite element model for porous media simulation us-
ing the de la Cruz and Spanos (dCS) theory. When compared to the commonly used Biot (BT)
theory, the dCS model includes viscous dissipation terms, non-reciprocal solid-fluid interac-
tions, and a micro-heterogeneity parameter. Hence, it is important to understand whether these
contributions lead to any discrepancy from the BT model, and if so, under which circumstances
this might happen. One-dimensional examples were used for a verification and convergence
study, and for the evaluation of the impact of dCS fluid viscous dissipation terms. The verifi-
cation study showed optimal convergence rates for the three-field model, and how these rates
are dependent on the level of coupling between solid and fluid constituents. For the simulations
considering five different solid-fluid combinations, we concluded that viscous effects are more
significant for specific sets of materials, and differences appear mainly for high fluid viscosity
and at high frequencies. A two-dimensional example was used to show the propagation of dif-
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ferent wave types and to observe the effect of the non-reciprocal interactions introduced in the
dCS framework. Variations in the parameter n lead to changes in velocity and attenuation, and
the extent of these changes is also dependent on the material properties of the medium.
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