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azzeddine.soulaimani.1@ens.etsmtl.ca

2 Mohammed VI Polytechnic University
Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco

nour-eddine.toutlini.1@ens.etsmtl.ca;
hamza.kamil.1@ens.etsmtl.ca

3 University of Ottawa
150 Louis-Pasteur Pvt, Ottawa, K1N 6N5, Ontario, Canada

beljadi@uottawa.ca

Key words: Solute transport; water flow; porous media; Richards equations; predictor-corrector
scheme; finite element method

Abstract. The objective of this study is to numerically solve the coupled system of water flow
and solute transport in unsaturated porous media using a noniterative predictor-corrector tem-
poral scheme for the Richards equation and a semi-implicit temporal scheme for the advection-
dispersion equation (ADE). The standard and non-standard Galerkin finite element methods are
used for spatial discretization. Three different techniques are proposed to calculate the pressure
head in the Levrett equation. These techniques are different in terms of the chosen shape func-
tions in the finite element space. The proposed schemes offer distinct advantages due to the
linear nature of the resulting system, facilitating easy implementation and avoiding the issues
associated with the divergence of iterative schemes. We evaluated the robustness and efficacy
of the suggested methods using a computational experiment to simulate soil salinity and wa-
ter flow in loamy soil. We compared it with data found in the literature. The results provide
compelling evidence confirming the proposed methods’ effectiveness and stability.

1 INTRODUCTION

Modeling water flow and solute transport through porous media is crucial for various appli-
cations, such as soil physics, hydrogeology, and agriculture. The Richards equation [1] is used
for modeling water flow and is combined with the equilibrium advection-dispersion equation
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for solute transport [13, 11] in unsaturated porous media. However, solving these equations
exactly presents a considerable challenge due to the highly nonlinear relationships among the
governing variables. Therefore, the use of numerical models becomes a versatile tool to solve
this coupled system. Over time, several numerical models have been developed to address the
complexities of the coupled system. In the literature, diverse approaches including the finite
element, finite difference, and finite volume methods are employed [6, 4, 11]. Additionally,
software programs have been developed to address the coupled system relevant to real experi-
ments, such as (2D/3D) [10]. In this study, our focus will center on the finite element method, a
widely utilized approach renowned for its capacity to effectively handle stiff problems. A stan-
dard and non-standard finite element method is used to describe the Richards equation which
is based on solving the Leverett equation to find the pressure head and then using this pressure
head to solve the mixed form of the Richards equation to find the saturation solution. Regarding
the time discretization, The implicit Backward Euler and the second-order Backward differen-
tiation formulation (BDF2) temporal schemes are commonly employed due to their ability to
handle highly nonlinear functions and allow for reasonably sized time steps [4, 11]. However, it
is important to note that this method may face convergence challenges in certain cases, particu-
larly when applied to the Richards equation [13, 4, 11]. Semi-implicit techniques are generally
much faster than fully implicit techniques. This speed difference arises because implicit meth-
ods involve iterative algorithms to solve the Richards equation, which inherently take longer to
compute. Another alternate approach to iterative methods is using the predictor-corrector ap-
proach for solving the Richards equation. Most studies use this alternative technique based on
utilizing a head-based for the Richards equation in the predictor phase and then using the mixed
form in the corrector phase [15, 14]. In our study, a predictor-corrector mixed finite element
scheme is proposed to solve the Richards equation, and a semi-implicit finite element method
is used for the solute transport equation. The proposed predictor-corrector schemes differ from
those found in existing literature, firstly, in the adoption of a mixed finite element formulation.
This formulation incorporates both pressure head and saturation, utilizing second and third ex-
trapolation formulas for the nonlinear Leverett J-function. Secondly, using different techniques
to calculate the pressure head variable in the Leverett equation. Our goal in this paper is to eval-
uate the performance and robustness of the proposed schemes in solving the coupled system
of water flow and solute transport. The remainder of the paper is structured as follows. Sec-
tion 2 provides the governing equations of the coupled system. Section 3 presents the temporal
schemes and the related weak formulations. Numerical results are then presented in Section 4.
Section 5 provides a summary of the final remarks.
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2 WATER FLOW AND SOLUTE TRANSPORT

The coupled water flow and solute transport system in unsaturated porous media is usually
described using the Richards and the advection dispersion equations:

ϕ
∂S

∂t
−∇ ·

(
Kskr∇Ψ+

∂K

∂z

)
= 0,

∂Rθc

∂t
−∇ · (θD∇c− cq) = 0.

(1)

In these equations, S (-) represents the saturation of the medium, c [ML−3] represents the solute
concentration, θ (L3L−3) is the water content, Ψ (L) denotes the pressure head, kr (-) is the
relative hydraulic conductivity, Ks (LT−1) stands for the saturated hydraulic conductivity, K =
Kskr (LT−1) is the unsaturated hydraulic conductivity, D (L2T−1) is the dispersion tensor, q is
the volumetric flux density (LT−1). (x, z) are the Cartesian coordinates of the domain, with z
(L) being positive upward and t (T) is the time. The water flux q in the soil is expressed using
the Darcy law [7] as follows:

q = −K∇(Ψ + z).

The system of equations (1) should be supplemented by the following initial conditions:

S(x, z, 0) = S0(x, z) and c(x, z, 0) = c0(x, z) in Ω, (2)

and the following boundary conditions:
(S, c) = (SD, cD) (Dirichlet boundary condition),

q · n = qw (water flux boundary condition),

− (θD∇c− qc) · n = qs (solute flux boundary condition),

(3)

where n is the exterior unit normal vector to Γ =: ∂Ω. The components of the dispersion tensor,
D, are expressed by the standard equations [12]:

Dxx = DT |v|+ (DL −DT )
v2x
|v|

+ τ ∗Do,

Dxz = (DL −DT )
vxvz
|v|

,

Dzz = DT |v|+ (DL −DT )
v2z
|v|

+ τ ∗Do,

(4)

where DL (L) is the longitudinal dispersivity and DT (L) is the transverse one, Do (L2T−1) is
the molecular diffusion coefficient of the solute in free water, τ ∗ is the tortuosity factor and |v|
is the absolute value of velocity vector.
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The soil water retention and hydraulic conductivity are calculated using the van Genuchten
model (VG) [3]:

S =
1

(1 + αv|Ψ|nv )
mv

kr = S
1
2

[
1−

(
1− S

1
mv

)mv
]2
,

where αv (L−1) is the parameter related to the average pore size, nv (-) is a parameter related
to pore size distribution, and mv = 1 − 1

nv
(nv > 1). The pressure head is described using the

Leverett J-function as follows [8, 11]:

Ψ = ψcJ(S), (5)

where J and ψc represent the Leverett J-function and the capillary rise function, respectively,
which are stated using the VG model as follows:

ψc =
1

αv

, J(S) = −
(
S− 1

mv − 1
) 1

nv
. (6)

3 METHODOLOGY

3.1 TIME DISCRETIZATION

A uniform discretization is used to decompose the time interval [0, T ], so that,

tn = n∆t, n = 0, 1, . . . , N, ∆t =
T

N
, (7)

where ∆t is the utilized time step. We set Sn ≈ S(tn), Ψn ≈ Ψ(tn), cn ≈ c(tn), . . . for
n = 0, 1, . . . , N.

For the temporal discretization of the Richards equation, we propose using explicit temporal
schemes by employing a predictor-corrector approach. Regarding the solute transport equation,
we propose to use a semi-implicit temporal method centered on the time level (n + 1

2
). All the

terms in the Richards equation and ADE are approximated using a second-order or third-order
time stepping method centered at time level (n+ 1

2
). These schemes are expressed as follows:

Predictor-RE: 
Ψn+ 1

2 = ψc

(
3

2
J(Sn)− 1

2
J(Sn−1)

)
,

ϕ
Sn+1,∗ − Sn

∆t
= ∇ ·

(
Kskr(Ψ

n+ 1
2 )∇Ψn+ 1

2 +
∂Kn+ 1

2

∂z

)
.

(8)

Corrector-RE:
Ψn+ 1

2 = ψc

(
3

8
J(Sn+1,∗) +

6

8
J(Sn)− 1

8
J(Sn−1)

)
,

ϕ
Sn+1 − Sn+1,∗

∆t
= ∇ ·

(
Kskr(Ψ

n+ 1
2 )∇Ψn+ 1

2 +
∂Kn+ 1

2

∂z

)
.

(9)
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Semi-implicit-ADE:

Rn+1θn+1cn+1 −Rnθncn

∆t
= ∇ ·

[
θn+1Dn+1

(
1

2
∇cn+1 +

1

2
∇cn

)
− qn+1

(
1

2
cn+1 +

1

2
cn
)]

.

(10)
The time discretization formulation used for the numerical treatment of the mixed form of the
Richards equation in both the predictor and corrector stages is of a second-order truncation error.
The order of accuracy of the extrapolation method used to approximate the Leverett J-function
is O(∆t2) at the predictor phase (8) and O(∆t3) at the corrector phase (9). We highlight two
primary advantages that arise from the suggested approach. Firstly, it is easy to implement.
Secondly, no iterative technique is required to solve the system of equations.

3.2 SPACE DISCRETIZATION

The domain Ω is uniformly partitioned into disjoint triangles τ by Mh, so that

Ω̄ =
⋃

τ∈Mh

τ. (11)

The mesh size h for each element is determined as the maximum among all element sizes hτ
within the partition Mh. The conventional finite element space, Vh, is defined by

Vh = {wh ∈ C0(Ω,R) : wh|τ ∈ Pk, ∀τ ∈ Mh} ⊂ H1(Ω), (12)

where Pk represents the space of polynomials on any element κwith degree less than or equal to
k. The resulting semi-discrete (in space) weak formulation of the equations (8)-(10) is obtained
by multiplying each equation by a test function wh ∈ Vh and integrating over the domain Ω and
it reads as follows:
Predictor-RE: Given an initial approximation (Ψ0

h, S
0
h) ∈ Vh × Vh and suitable initialization

(Ψ1
h, S

1
h) ∈ Vh × Vh, find (Ψ

n+ 1
2

h , Sn+1,∗
h ) ∈ Vh × Vh such that:

∫
Ω

Ψ
n+ 1

2
h wh dΩ =

∫
Ω

ψc

(
3

2
J(Sn

h )−
1

2
J(Sn−1

h )

)
wh dΩ,

∫
Ω

ϕh

(
Sn+1,∗
h − Sn

h

∆t

)
wh dΩ +

∫
Ω

[(
Kskr(Ψ

n+ 1
2

h )∇Ψ
n+ 1

2
h +

∂K
n+ 1

2
h

∂z

)]
· ∇wh dΩ

+

∫
Γ

qw · wh dΓ = 0 ∀wh ∈ Vh.

(13)
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Corrector-RE: Given an initial approximation (Ψ0
h, S

0
h) ∈ Vh × Vh and suitable initialization

(Ψ1
h, S

1
h) ∈ Vh × Vh, find (Ψ

n+ 1
2

h , Sn+1
h ) ∈ Vh × Vh such that:

∫
Ω

Ψ
n+ 1

2
h wh dΩ =

∫
Ω

ψc

(
3

8
J(Sn+1,∗

h ) +
6

8
J(Sn

h )−
1

8
J(Sn−1

h )

)
wh dΩ,

∫
Ω

ϕh

(
Sn+1
h − Sn+1,∗

h

∆t

)
wh dΩ +

∫
Ω

[(
Kskr(Ψ

n+ 1
2

h )∇Ψ
n+ 1

2
h +

∂K
n+ 1

2
h

∂z

)]
· ∇wh dΩ

+

∫
Γ

qw · wh dΓ = 0 ∀wh ∈ Vh.

(14)
Semi-implicit-ADE: with a suitable approximation of the initial solution c0h ∈ Vh, determine
cn+1
h ∈ Vh such that:

∫
Ω

(
Rn+1

h θn+1
h cn+1

h −Rn
hθ

n
hc

n
h

∆t

)
wh dΩ +

∫
Ω

[
θn+1
h Dn+1

h

(
1

2
∇cn+1

h +
1

2
∇cnh

)
−qn+1

h

(
1

2
cn+1
h +

1

2
cnh

)]
· ∇wh dΩ +

∫
Γ

qc · wh dΓ = 0 ∀wh ∈ Vh.

(15)

As an initial step, we take into consideration the following initial conditions: S0
h = ΠhS0 ∈ Vh

and c0h = Πhc0 ∈ Vh. Πh : H1
0 (Ω) → Vh represents the standard projection operator. The

second step of the solution (S1
h, c

1
h) is calculated employing the explicit temporal scheme used

in [4, 13] for the Richards equation and the Backward Euler method (BDF1) for the advection-
dispersion equation. In the following, we will discuss three proposed schemes to solve the
Leverett equation in the predictor and corrector stages of the Richards equation. For simplicity,
the discussion will be focus just on the Leverett equation in the predictor step (8) and the same
analogy can be done for the corrector step. These schemes are different in terms of the chosen
finite element space Vh:

1 Richards equation with continuous linear functions (RE-CP):
The first method involves selecting Ψh as a continuous linear function within each el-
ement Ωe, and then the weight function wh is also linear in each element Ωe, i.e., the
polynomial space is of order k = 1 (P1). It amounts to solving the following equation:∫
Ωe

Ψ
n+ 1

2
h wh dΩ =

∫
Ωe

ψc

[
3

2
J(Sn

h )−
1

2
J(Sn−1

h )

]
wh dΩ for all wh linear and continuous.

(16)

2 Richards equation with constant functions and 3 Gauss points (RE-3DP):
Here, the calculation of the variableΨ

n+ 1
2

h in the Richards equation of the system (8) needs
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two steps: the first one is to choose the auxiliary term Ψ̃
n+ 1

2
h as a constant in each element,

i.e., the finite element space Vh is of order zero (k = 0). We use the Gaussian quadrature
rule in 3 points to calculate the integration equation, so that:∫

Ωe

Ψ̃
n+ 1

2
h wh dΩ =

∫
Ωe

ψc

(
3

2
J(Sn

h )−
1

2
J(Sn−1

h )

)
wh dΩ for all wh constant.

(17)
Then, we use a smoothed technique to find the term Ψ

n+ 1
2

h , i.e.:∫
Ω

Ψ
n+ 1

2
h wh dΩ =

∫
Ω

Ψ̃
n+ 1

2
h wh dΩ for all wh linear and continuous. (18)

3 Richards equation with constant functions and Gauss point (RE-1DP):
This latest approach is similar to the earlier RE-3DP method. The difference lies in the
computation of equation (18). Unlike the previous method which employed the Gaussian
quadrature rule with 3 points, this approach uses only one Gauss point, so that:

Ψ̃
n+ 1

2
h =

1

|Ωe|

[
ψc(x

e)

(
3

2
J(Sh(x

e))− 1

2
J(Sh(x

e))

)]
, (19)

where xe and |Ωe| represent the centroid and the area of the element Ωe, respectively. and
then we use a smoothed technique to find the term Ψn+δ

h , i.e.:∫
Ω

Ψ
n+ 1

2
h wh dΩ =

∫
Ω

Ψ̃
n+ 1

2
h wh dΩ for all wh linear and continuous. (20)

We should note that for the solute transport equation, the finite element space Vhis chosen
to be of order 1 (i.e. k = 1). To address the issue of oscillatory solutions, we utilized a mass
lumping technique as done in previous studies such as in [11, 13]. In particular, we implemented
the row-sum technique, which consists of summing all the terms in the mass matrix. This
method was selected for its simplicity and proved to be effective in diminishing oscillations.

4 NUMERICAL RESULTS

In this section, two-dimensional numerical experiments will be conducted to evaluate the per-
formance of the proposed schemes. The numerical test is performed using an Intel(R) Core(TM)
i7-6700T, 2.80GHz, 2208 Mhz, 4 Core(s), 8 Logical Processor(s). The implementation is car-
ried out using the finite element platform FreeFem++ [9].

4.1 2D INFILTRATION TEST

In this first test, we aim to evaluate the accuracy and efficiency of the proposed schemes by
adopting analytical solution of the Richard equation. Focusing solely on the predictor phase,
we apply the RE-CP, RE-3DP, and RE-1DP techniques to determine the variable Ψn+ 1

2 in the

7
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Leverett equation. The test is evaluated in a square domain of length L = 15.24 m. The
Gardner model is used to express the Leverett J-function and the capillary rise function [2].
The soil domain is subject to the following initial and boundary conditions:

Ψ(x, L, t) =
1

αv

log
[
ξ + (1− ξ) sin

(πx
L

)]
,

Ψ(0, z, t) = Ψ(L, z, t) = Ψ(x, 0, t) = −15.24 m,

Ψ(x, z, 0) = −15.24 m.

(21)

Refer to [11, 13] for more details about the expression of the analytical solution, materials
and proprieties of soil used in this test problem. The L2-error of the pressure head and the

Table 1: Evaluating pressure head and saturation L2-errors for the proposed schemes as a function of the soil
parameter α̃ at time T = 10 days with ∆t = 5× 10−3 and 50× 50 elements.

Method αv = 0.164 αv = 0.328

L2-error on Ψh L2-error on Sh L2-error on Ψh L2-error on Sh

RE-CP 0.0715341 0.00283226 1.07959 1.07959
RE-3DP 0.414159 0.0106945 1.78456 0.046826
RE-1DP 0.191474 0.00546589 0.711355 0.0232625

saturation is calculated for different schemes under various time and mesh parameters. The
results (not shown here) indicate that RE-CP has a lower error compared to the other schemes.
However, instability was observed when refining the mesh size and the time step, attributed to
the explicit nature of the RE-CP scheme. Furthermore, RE-3DP demonstrates higher truncation
errors compared to RE-1DP, which performs well and exhibits stability under variations in
mesh size and time step. This highlights the improvement achieved by eliminating the need for
a smoothness technique. Regarding the CPU time, RE-1DP scheme outperforms all the other
schemes, as it involves computing smaller linear systems. to examine the impact of the soil
parameter αv, Table 1 presents the L2-errors for the proposed schemes. All the schemes remain
stable as αv increases. However, as mentioned earlier, RE-3DP has a higher truncation error.
The L2-error increases as αv is increased, which is logical because higher αv values lead to the
dominance of gravity forces over capillary forces. Conversely, RE-1DP demonstrates greater
accuracy when gravity forces dominate compared to the other schemes.

4.2 TRANSPORT OF SALT IN SOIL

In the previous test, we found that RE-CP scheme has a lower error and allows for the use
of the largest time step in comparison to the other schemes. For this purpose, we will adopt
this technique in the predictor-corrector scheme provided in the previous section. To overcome
instability issues related to this technique we will employ the predictor-corrector approach for
the Richards equation (8)-(9) and the semi-implicit method for the solute transport equation

8
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Figure 1: Schematic illustration of the test problem.

(10). This numerical test aims to assess the effectiveness of the suggested numerical approach
in simulating the movement of salt in loamy soil. The numerical test evaluation is carried out
in previous studies, such as [17, 11], to simulate pore-water electrical conductivity (EC) and
water flow. In [17], the authors have made the dataset they used for this study available via
[16]. We will compare the numerical results obtained by the suggested method with the Hydrus
simulations that have been provided. The test problem is conducted within a square domain
with dimensions of 2 m × 2 m. As depicted in Figure 1, a 10 cm wide section is allocated at
the center of the top boundary for solute application and water infiltration. The rate of water
infiltration is qw = −0.1 m/day. The bottom boundary of the domain is designed to allow
for free drainage, whereas the other sides are considered to have no water flow. For the solute
transport, a Cauchy boundary condition is applied in the section with a constant feeding of
c = 1S/m of the inlet water. The capillary pressure and the relative hydraulic conductivity
are modeled using the VG model. The test problem’s parameters and material proprieties are
offered as follows:

θr = 0.078m3/m3, θs = 0.43m3/m3, αv = 3.6m−1, nv = 1.56,

Ks = 0.25m/day, Ψ0 = −1.3m, c0 = 0.1S/m, R = 1,

Dm = 0m2/day, DL = 0.5m, DT = 0.1m,

(22)

where Ψ0 and c0 are the initial conditions of the pressure head and salt concentration, respec-
tively. A nonuniform triangular mesh with 4726 vertices and 9184 triangles is used to discretize
the domain. We choose ∆t = 10−4 day as the time step, and the period of simulation is T = 1
day. The evolution of the solute transport, saturation, and pressure head with time is shown in
Figure 2. We create a vertical cross-section of the capillary pressure and soil salt concentration
solutions at the domain center (x = 0 m). The 1D solutions obtained are depicted in Figure 3
for two time instances, T = 0.25 day and T = 0.5 day. Favorable agreements are observed be-
tween the results obtained using the proposed scheme and those obtained with Hydrus software.

9
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Figure 2: Time evolution of the pressure head, saturation, and solute transport for the solute transport test .
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and T = 0.5 day.
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5 CONCLUSION

In this study, we conducted a numerical investigation into modeling water flow and solute
transport processes in unsaturated porous media. We employed an explicit predictor-corrector
temporal scheme for solving the Richards equation, coupled with a mixed finite element for-
mulation. Additionally, a semi-implicit second-order time stepping method was utilized for the
advection-dispersion equation, in conjunction with the conventional finite element method in
space. Furthermore, we utilized three different technique to calculate the pressure head variable
in the Levrett equation, namly, RE-CP, RE-1DP and RE-3DP. The accuracy and stability of
these three techniques are tested using an analytical solution of the Richards equations. While
the RE-3DP scheme exhibited higher truncation error, the RE-1DP demonstrates greater accu-
racy when gravity forces dominate. Furthermore, The RE-CP scheme demonstrated improved
accuracy, CPU time and allows for the use of the largest time step in comparison to the other
schemes.

The evaluation of the proposed predictor-corrector approach with the use of RE-CP for the
Leverett equation involved a practical numerical test focusing on infiltration and soil salt trans-
port processes in loamy soil. Hydrus data served as a benchmark from existing literature. Our
findings demonstrate the robustness and efficacy of the developed schemes in simulating the
coupled system. Specifically, the numerical results showcased good agreement with the pro-
vided data, accurately capturing the evolution of saturation and soil salt concentration over
time.
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