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1 INTRODUCTION

Tension-Compression Asymmetry (TCA) and Glass Transition Sensitivity (GTS) are two
critical nonlinear characteristics in polymers. TCA [1, 2] is a common phenomenon where mate-
rials exhibit different mechanical behaviour under tensile and compressive loading. In polymers,
this is mainly due to their specific microstructure [3]. Additionally, the geometry of the test
specimen, such as cylinder-shaped samples, can influence the TCA due to effects like barrel-
ing, which affects pressure dependence [4]. GTS is a critical effect in polymer marking the
temperature θg at which a polymer shifts from a glassy to a rubbery state [5, 6]. This tran-
sition profoundly impacts the polymer’s mechanical and physical properties, such as modulus,
heat capacity, thermal expansion, and viscosity [17]. TCA and GTS significantly increase the
complexity of developing accurate constitutive models.

Many researches were published to model TCA and GTS [1, 4, 7, 8]. However, for TCA, these
models are discontinuous and require separate sets of parameters for tension and compression,
complicating material application [1]. For GTS, most models are limited to a narrow temperature
range and require multiple sets of parameters to account for different conditions [9, 10].

Recent advances in machine learning (ML) provide promising alternatives to traditional mod-
eling approaches to break through the bottlenecks in material modeling [11, 12]. Aiming to
improve the performance of ML-based models, physical knowledge is introduced into the neural
network (NN) structure or replacing parts of classical models with NN-based methods [13, 14].
To our knowledge, these NN-implemented physical-based models focus on mechanical behaviour
of metals and composites. Due to limited experimental data and the complex nature of inelastic
mechanical behaviour, extending these models to polymers is challenging.

In this work, we make use of the theoretical foundations on constitutive modeling of polymers
and propose a NN-based constitutive model for the nonlinear thermo-mechanical response of
polymers. This model is implemented for the Finite Element (FE) analysis and a physical-
informed FE-NN is proposed. This model accounts for temperature, strain rate dependencies,
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and TCA, enabling accurate predictions of the mechanical response across the glass transition
temperature. Epoxy Epon 862 and Polyamide 6 are utilized to evaluate the performance of this
model. Figure 1 present the general scheme of the proposal approach.

Figure 1: Overview of the stages required in this work to design a physical-informed FE-NN.

2 PHYSICAL-INFORMED FE-NN

The development of the FE-NN structure, model is based on a Unified Semi-Crystalline Poly-
mer (USCP) model [15], which is a physically-based constitutive model simulate the mechanical
response of thermosets and thermoplastics. The effective plastic strain rate is written as

ε̇ = ε̇0 exp
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where θ is the absolute temperature and variables m, ε̇0 and A are the rate-dependent sensitivity
parameters. The magnitude σc = tr(σ) is the trace of Cauchy stress, and α is the pressure
sensitivity constant. The variable s is the key internal quantity controlling the hardening-
softening features observed in the stress-strain response.

According to the USCP model, the phenomenological equation of the athermal resistance
evolution ṡ was written as:
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where s1 and s2 are the athermal strengths related to the peak and lower yield, respectively.
The athermal strength s3 is the preferred stated of the crystalline phase, and it may depend on
temperature, strain rate, crystallinity degree and humidity.

The time derivative of s, namely ṡ, requires several parameters, in which the Parameter
Identification (PI) process demands at least two stress-strain curves at the same temperature.
However, these set of parameters cannot be used to describe the dynamic shape changes in
the stress-strain curve due to the rate and temperature sensitivity of polymers. To break this
bottleneck, a pre-trained NN is used as a surrogate model to replace the calculation of s in the
USCP model. Due to the NN’s strong generalization capability, the model can be applied across
a wide range of temperatures and strain rates. Figure 2 shows the main idea of replacing the
classical constitutive model by the proposed NN-based model.

2



NINGHAN TANG, PEI HAO AND FRANCISCO A. GILABERT

Figure 2: The rheological model incorporating NN as the surrogate method.

After the training process, this NN-based constitutive model is implemented in the Finite
Element Method (FEM) for further simulations that can be used at structural level.

3 DETAIL OF NN TRAINING PROCESS

Epoxy exhibits clear TCA, whilst PA6 has a strong GTS across θg, and both polymers are
utilized as two representative materials to evaluate the performance of the proposed FE-NN
model. Experimental data from literature of epoxy [1] and PA6 [16] were used for PI process
needed by the USCP model. Several sets of parameters and the USCP model were implemented
in FEM using user-defined subroutine for dataset generation. The data used for NN training
process is purely virtual data.

The general dataset used for NN training includes: the strain, strain rate and temperature
as the input, the value of s as the output. To better describe the temperature sensitivity across
θg, Er and θr were added into the dataset. When θ > θg, θr = θr and Er = E/(Eg − Emax).
When θ ≤ θg, θr = θ/(θg − θmin) and Er = E/(Emin − Eg). In this procedure, θ represented
the current loading temperature, Emax and Emin were the maximum and minimum Young’s
modulus, respectively, while θmax and θmin were the maximum and minimum temperatures.
After data generation and data normalization, the dataset was divided into two subsets: 80%
for training and 20% for validation. The training subset was used to train the NN and the
validation subset was used to evaluate the NN’s performance.

A Back-Propagation NN was used to train the value of s. Two suitable NN structure were
selected for epoxy Epon 862 and PA6 respectively. For TCA, NN includes three hidden layer (6-9-
4). For GTS, NN includes seven hidden layer (7-9-12-15-8-4-2). In both cases, the mean squared
error (MSE = 1

n

∑n
i=1(yi− ŷi)

2) was selected as the loss function, with the tanh function chosen
as the activation function. The learning rate was set to 0.0001, and the Adam optimizer, an
adaptive learning rate optimization algorithm, was used. These NN structures were implemented
using PyTorch 2.0.1 with Python 3.10. The value of s was replaced by the NN, and the equation
is expressed as follows:
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s =

{
fNN(ε̇, ε, θ), TCA
fNN(ε̇, ε, θ, Er, θr), GTS

(3)

After training, the pre-trained NN is implemented in FEM and replacing the calculation of
s for further simulation.

4 VALIDATION OF PHYSICAL-INFORMED FE-NN

Figure 3 presents the comparison between FE-NN and experimental results under tensile and
compressive conditions with a strain rate of 10−3/s. FE-NN effectively captures the temperature-
and strain rate- dependence of epoxy Epon 862. The pre-yielding, softening, hardening state of
FE-NN are aligned with the experimental results.

Figure 3: Comparison results between FE-NN and experimental data [1] of epoxy Epon 862 with a
strain rate of under 10−3/s. Red: 25◦C, Black: 80◦C. Symbol: experimental data, line: FE-NN.

Figure 4: Comparison results between FE-NN and experimental results[1] for PA6.

Figure 4 displays the comparison between FE-NN and experimental results for PA6 under
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tensile loading conditions. The results show that the FE-NN effectively captures the experimen-
tal observed mechanical features, including temperature and strain rate sensitivity spanning
θg.

5 CONCLUSION

In this study, we propose a physical-informed FE-NN model to characterize the dynamic
changes in rate- and temperature- sensitivity across the glass transition temperature and tension-
compression asymmetry of polymers. The developed model approach relies on the USCP model,
which is a physical-based constitutive model and it incorporates a NN-based approach to merge
parameter sets and generate a unified function for athermal resistance, which is then fed back
into the prescribed plastic strain rate. After training process of NN, this model is implemented
within the FEM. The results show that this new FE-NN not only captures strain rate and
temperature sensitivity phenomenon effectively but also the shape transition in stress-strain
curves spanning the glass transition temperature θg.
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