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Abstract. Hybrid methods are usually derived from an extended variational principle, in which
the interelement continuity of the functions subspace is removed and weakly enforced by means
of a Lagrange multiplier. In this context, a new primal hybrid finite element formulation is pre-
sented, which uses H(div) conforming displacement functions and discontinuos L2 approxima-
tion for pressure together with shear traction functions to weakly enforce tangential displace-
ment. This combination allows the simulation of compressible, quasi-incompressible and fully
incompressible elastic solids, with convergence rates independent of its bulk modulus. The
proposed approach benefits from the property that the divergence of the H(div) displacement
functions is De Rham compatible with the (dual) pressure functions. The hybridization of the
tangential displacements is weakly enforced through a lower order shear stress space. This
leads to a saddle-point problem that is stable over the full range of poisson coefficient (large
compressibility up to incompressible). Moreover, a boundary stress (normal and shear) can be
recovered that satisfies elementwise equilibrium. Hybridizing the tangent stresses and condens-
ing the internal degrees of freedom, a positive-definite matrix with improved spectral properties
can be recovered. The stability, consistency and local conservation features are discussed in
details. The formulation is tested and verified for different test cases.
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1 INTRODUCTION

In the context of linear elasticity, several numerical methods have been developed in the past
years. The most used one is the Finite Element Method (FEM). Using a continuous Galerkin
approach to approximate the displacements may lead to shear-locking phenomenon due to spuri-
ous energy modes under bending [1, 2] or volume-locking under quasi or full incompressibility,
as the stresses go to infinity [3, 4].

There are different ways in the literature to overcome these drawbacks. One possible choice
is to employ a mixed formulation [5, 6] where the displacements and the stresses (or pressure)
are approximated independently - i.e. the Taylor Hood elements [7] fulfill the inf-sup condition
yielding stable results for incompressible regime. This kind of approximation, on the other
hand, is not locally conservative as it does not satisfy the divergence constraint in a strong
manner. Another possibility is to use hybrid methods where the interelement continuity of a
given field is broken and weakly imposed by means of a Lagrange multiplier (see for instance
[8,9, 10]).

In this work we extend the semi-hybrid approach proposed in [11] for Stokes problems to
develop a new primal hybrid finite element formulation for elasticity based on a De Rham
compatible pair H (div) — L? for normal displacements and pressure. The H (div) functions are
constructed using a systematic methodology described in [12, 13].

2 GOVERNING EQUATIONS
In general elasticity, the governing equation of a continuum body 2 € R? is given by:
—V:-0—b=0in(, (1)

where o denotes the Cauchy stress tensor and b is the body forces vector. For the well-
posedness sake, proper boundary conditions need to be imposed on the Dirichlet boundary
(0€2p) and on the Neumann boundary (9€)y), as said,

u=up ondilp, (2)
o-n=h ondQy. (3)
The Generalized Hook law relates the stresses and strains by:
o = 2ue + Mr(e)l, 4)
where ;o and A are known as Lamé constants, € is the infinitesimal strain tensor, computed as:
€= %(VuT + Vu), (5)
and I is the identity matrix. By recalling that the hydrostatic pressure is defined as

tr(o)  (2u+A)
o 3 - 3 tr<€)7 (6)

p:
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and considering that o = o’ — pI, Eq. (1) can be rewritten in a mixed form so the boundary-
valued problem reads:
—V-o'(u)+Vp—b=0inQ
~V-u—21ip=0inQ
< ™
u=up ondlp

o-n=h ondQy

where Kk = @ is the material bulk modulus, D’ is the fourth-order deviatoric part of the

elasticity tensor and o refers to the deviatoric stress, computed as:
1
o' =2u (r—: — gtr(s)) : (8)

One notices that when A\ — oo, Eq. (7) recovers the classical mass conservation form of an
incompressible material i.e. V - u = 0.

3 WEAK FORM AND FINITE ELEMENT DISCRETIZATION

The variational form of Egs. (7) can be obtained by means of the weighted residual method.
Depending on the choice of test functions and approximation spaces, different formulations can
be derived. We shall start from the most simplistic one, the primal displacement formulation
and then move to the double-hybrid scheme.

Let 7 = {Q,e =1,--- n.} be a partition of {2 in n, finite elements €2, with hexahedral
shape for d = 3. The set £ contains all the element edges F and & = {F € £ : E C 1}
denotes the internal edges or element interfaces. Let introduce the following function spaces:

3.1 Primal displacement formulation

The primal displacement formulation is obtained by multiplying Eq. (1) by test functions
v € V|V C H'(T) and integrating over the discretized domain 7 [14]. The weak statement
reads: find u € V such that forallv € V,

> / e(u): D :e(v)dQ, = Y (/ b - vdQ. + / h- vd&Qe) )
QeeT Qe QeeT Qe I'n
is satisfied. Although the primal displacement formulation is simple to implement, it has some

limitations i.e. locking phenomena under bending and incompressibility. To overcome these
limitations, we shall introduce the semi-hybrid formulation.

3.2 Semi-hybrid formulation

In [11], the authors proposed a semi-hybrid formulation for Stokes-Brinkman flows that uses
H(div) conforming velocity functions and discontinuos L? approximation for pressure. The
same ideia can also be applied to elasticity. Let V = V N H(div,Q), ¥ C L*(2) be spaces of
vector functions and piece-wise scalars, respectively, for which the relation V - V € W holds.
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As H(div) approximation only guarantees the continuity of normal componentes of a vector
across elements interface, a hybridization of the tangential velocity is performed. We introduce
a third space defined as A' ¢ H~'/2(9€),), for which the Lagrange multiplier A’ € A’ has the
meaning of a shear traction to weakly enforce the tangential displacement continuity.

The weak statement for the semi-hybrid formulation thus reads: find {u, p, }\t} € VxUxA
such that forall v, ¢, n* € V x ¥ x A"

QEeT Qe

Z(/QvfdQJr/v o ndd )

Q€T

3
S (_/Q (V-u)que—/ﬂ 2#+qudfle) =0 (1)
QeeT € €
> / [u] - n'doQ. = 0, (12)

QeeT

2 (/Qf(") ZDIZE(U)dQeJr/ p(V-V)dQeJr X* [v]doQ. ) =
Q

where v, g and i’ are test functions for velocity, pressure and tangential traction, respectively,
[-] stands for the jump operator on the interface £° between two neighbour elements €, and €,
defined as [v] = v|q, — v|q,. Equation (12) plays the role of weakly enforcing the tangential
displacement continuity over the element interfaces.

3.3 Double-hybrid formulation

Although mathematically consistent, the semi-hybrid formulation poses some challenges
from a numerical perspective. It gives rise to a saddle-point problem with two different con-
straints: p and A’. This structure significantly increases the efforts required to consistently and
stably solve the linear system.

We propose a second hybridization of the tangential stresses in order to recover its primal
form. Introducing the space £! C H'/?(92,) for the tangential velocity, the hybrid form thus
reads: find {u,p, \,u‘} € V x ¥ x A’ x L such that forall v, q,n, v € V x ¥ x A’, L, the
following equations are satisfied:

> (/Qe’f(")iﬁrs(u)dQeJr/er(V-V)dQﬁ Al vd@Q)

Qe€eT (13)
Z (/ v - £dQ), +/v aNdaQ)
QeeT
3
> (— /Qe(v-u)que—/Qe 2M+qudge) = (14)

QeeT
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Z (/ u - n'dos, —i—/ [n'] ~utd896) =0 (15)
QeeT 0% £

[A] - v'doQd, = 0, (16)
QeeT V€
where Eq. (16) was introduced to impose the continuity of the tangential traction across £°.
Even though an additional constraint is introduced, ! is now associated to a single element
therefore it can be statically condensed and eliminated from the global system. For a com-
pressible solid, a symmetric positive-definite matrix is obtained with two unknowns, namely
u € H(div,Q) and u* € H'/2(9Q,). For the incompressible case where pressures cannot be
computed explicitly from the displacements, one mean pressure per element acts as a Lagrange
multiplier in the global system. This still gives rise to a saddle-point matrix, however, with
much better spectral properties and easier to solve compared to Egs. (10)-(12).

4 NUMERICAL EXAMPLES

This Section presents two examples to verify the primal hybrid formulation. The first one is
a cantilever beam subjected to an end shear load, where a convergence test is carried out and
compared to the analytical solution. The second example is a practical application where the
proposed method was used to simulate a real structural casket used to run experimental analysis
on petroleum engineering.

4.1 Cantilever beam subjected to an end shear load

Figure 1a shows a cantilever beam where L = 5, a = 0.5 and b = 0.5. The beam is assumed
to be fixed at z = 0 and subjected to an unitary shear-force F' = f_bb [° oydedy =1atz = L.
The Young modulus is /7 = 1 and different values for the poisson coefficient is used to test the
formulation in different compressibility regimes, i.e. ¥ = 0.3, v = 0.4999 and v = 0.5.

() (b) (©)

Figure 1: Cantilever beam subjected to an end shear load - geometry (at left), coarsest mesh (at
center) and finest mesh (at right)

The analytical solutions for the stresses and displacements are available in [15] and written
below:
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F
02z = FYZ,
Iy
F2a> v = (=1)" . sinh (n7y/a)
- NI (17)
O T TR T Z nz o0 (nm/a) cosh (mrb/a)
Fi¥*—y* F v |32?—ad? = (- 1) cosh (nmy/a)
T2 =TT 9 T1+4v 6 ? - cos (nm/a) cosh (nmb/a)
and
_ Fv
Us = =LY,
_F v, 9 1,
Fl1 1 1 1 (18)
us = 7= {Qy (va? + 2%) 2 + él/y?’ +(1+4v) <b2y — §y3> — gazyy
46’y K (—1)" sinh (n7y/a)
m™ = 0 cos (nmz/a) cosh (nmb/a)

where [ = 4ab? /3 is the second moment of area about the z-axis, and the series above are
evaluated with a finite number of terms n = 5.

The beam is discretized using hexahedral elements, where the element size is computed as
he = 1/2N, with N = {0,1,2,3,4}. The coarsest (h, = 1) and finest (h, = 0.0625) meshes
are shown in Figures 1b-1c. A convergence test is performed for displacement, pressure, stress
and mass conservation, where the error is computed according to the L? norm defined as:

" 1/2
It vl |3 (s
e=1 e

The results are depicted in Figures 2-4 and present optimal convergence rates of k + 1 for
the displacement and k for the remaining variables independently of the poisson coefficient.
This is a nice feature as many formulations present a locking phenomena under quasi and full
incompressibility. For the incompressible case (v = 0.5), a divergence free displacement field
is obtained even for the coarsest mesh thanks to the stable pair H (div, 2)-L?(2), with the error
bounded to the machine precision.

Figure 5 plots the displacement, pressure, normal and shear stresses distributions obtained
with the finest mesh using k£ = 2 over the deformed configuration of the beam for the compress-
ible case. The results qualitatively agrees with the reference solution of [15].

(19)
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Figure 2: Cantilever beam subjected to an end shear load - convergence analysis for the com-
pressible case (v = 0.30)

4.2 Experimental apparatus used in petroleum engineering

The second example consists on a thin-walled structural casket that is subjected to an in-
ternal pressure load due to the filling of saturated sand. This is a real apparatus designed to
run experimental analyses of the loss of injectivity of produced water in petroleum wellbores,
financed by Total Energies. The hull is made of steel, with Young modulus £ = 210 x 10?
MPa, poisson coefficient v = 0.3, thickness ¢ = 45.1 mm, internal radius R; = 344.9 mm and
length L = 1000 mm. The internal pressure is assumed to be p = 10.34 MPa. A real picture of
the module is shown in Figure 6a. The Von Mises stress and displacement fields are plotted in
Figures 6b-6¢. From a qualitatively point of view, the results are in agreement with the expected
physics of the problem.
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Figure 3: Cantilever beam subjected to an end shear load - convergence analysis for the quasi-
incompressible case (v = 0.4999)

S CONCLUSIONS

In this work a primal hybrid formulation for tridimensional elasticity problems was devel-
oped. The approximation space composed of De Rham compatible H(div) functions for the
normal displacements and L? functions for the pressure leads to a locally conservative scheme.
A second hybridization of the tangential stresses was applied in order to obtain positive semi
definite element matrices after condensing internal degrees of freedom. The property of the re-
sulting global system is symmetric positive-definite matrix when analysing compressible solids
and a saddle point problem with a single mean pressure per element acting as a Lagrange mul-
tiplier for incompressible materials.

The formulation was tested for a cantilever beam subjected to an end shear load and the
results showed optimal convergence rates of k£ + 1 for the displacement and & for the remaining
variables independently of the poisson coefficient. The formulation was able to capture the
correct stress and displacement distributions for the compressible case and a divergence free
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Figure 4: Cantilever beam subjected to an end shear load - convergence analysis for the incom-
pressible case (v = 0.5)

displacement field for the incompressible case. The simulation of a real scale structural hull
subjected to an internal pressure qualitatively indicates that the proposed method can be applied
to real engineering problems.
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(a) Displacement (b) Pressure

(c) Normal stress o, (d) Shear stress o,

Figure 5: Cantilever beam subjected to an end shear load - snapshots for v = 0.3
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