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ABSTRACT 

The further development of offshore windfarm areas in various countries plays a key role in the transition of energy 
production towards renewable sources. As offshore windfarm areas tend to expand and the amount of ground truth data 
is limited, the estimation of geotechnical parameters at unknown locations integrating other site investigation data 
becomes a necessary tool. This is especially relevant for cost efficient area wide site characterization. Here, the proper 
integration and correlation of geotechnical and geophysical data is a key factor for reliable ground model building. This 
study investigates different prediction methods, while presenting a modelling framework which incorporates geological, 
geotechnical, and geophysical information to derive synthetic Cone Penetration Testing (CPT) profiles using offshore 
windfarm site investigation data from the German North Sea. We combine geological interpretation, CPT data and 2D 
ultra high-resolution seismic reflection data. The geophysical and geological information are used to guide geotechnical 
parameter prediction. Additionally, seismic horizons constrain the prediction as structural information. For evaluation, 
we test and compare several prediction techniques, with different level of complexity, from geostatistical methods to 
machine learning. Seismic attributes are used as auxiliary information to improve CPT parameter prediction. To validate 
the results, CPT parameters are predicted onto a representative 2D seismic line and a leave-one-out cross-validation 
(blindtest) is performed. Though all methods struggle to replicate local extremes, results indicate a reduction of prediction 
uncertainty when implementing seismic attributes. 
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1. Introduction 

Planning and development of offshore wind farms 
requires a good understanding of the sub-seafloor 
geologic conditions to design the foundations of offshore 
wind turbines (OWT) and decide on installation 
procedures. Especially the complexity of shallow 
deposits in Northern European waters, dominated by 
glacial geological processes, poses considerable 
challenges in understanding small-scale variability of 
geotechnical parameters within spatially heterogenous 
deposits (e.g. Cartelle et al. 2022, Emery et al. 2019). 
Standard procedures for wind farm site characterization 
include a dense grid of 2D ultra-high-resolution (UHR) 
multichannel seismic profiles and a geotechnical 
campaign including varying numbers of Cone 
Penetration Tests (CPT) and borehole investigations. 
Paricularly the amount of available geotechnical data 
depends on the stage of the project and preliminary 
ground models are often based on a very limited number 
of ground truth locations. However, a consistent 
understanding of the major geological units, especially at 
an early stage is essential for the planning of subsequent 

geotechnical campaigns and also for subsequent 
foundation design. 

In recent years, an increasing interest for predicting 
synthetic CPTs at any point of interest for a windfarm 
areas in the framework of Integrated or Quantitative 
Ground Models seen in the industry, to aid the 
understanding of the subsurface. Such approaches 
commonly involve the integration of geophysical and 
geotechnical data based on identified geological units 
and some form of estimation of sediment geotechnical 
parameters between CPT/borehole locations (e.g. Sauvin 
et al. 2018, 2022; Vanneste et al. 2022). A crucial aspect 
of such models is the deduction of geotechnical 
parameters laterally within identified units between 
ground truth locations, which may be implemented using 
inversion workflows (e.g. Vardy 2015) of the seismic 
data and correlations to geotechnical parameters using 
available CPT data or through geostatistical or machine 
learning approaches (e.g. Sauvin et al. 2019; Siemann et 
al., 2022). Especially in cases with very limited numbers 
of geotechnically explored locations, the ability of 
interpolation workflows to reconstruct the geotechnical 



 

 

character of individual units exhibits an improvement of 
the quality of the resulting ground model. 

In this study different prediction methods to derive 
synthetic CPTs within an exemplary wind farm area are 
tested and evaluated, showcasing the differences of the 
results and the limitations in comparison to real measured 
data. This work does not aim to judge on the most 
suitable methods, since this is very site and data 
dependent, but to summarize various methods as basis for 
deciding on the most appropiate tool for future 
investigations. Nevertheless, results indicate that 
although all methods perform comparably good due to 
the high amount of ground thruth data, the prediction 
uncertainty is reduced by including seismic atttributes as 
auxillarly information 

2. Study area and available data 

In this study, geotechnical and seismic data from an 
offshore windfarm area from the German North Sea is 
used. The site is located north of Heligoland. The 
windfarm is fully in operation and underwent a complete 
site investigation ahead including a 3D seismic survey 
and a full geotechnical campaign. Additionally, the 
research cruise He569 acquired additional seismic 
profiles in this area from which seismic data is used in 
this study. Figure 1A illustrates the location of used CPTs 
with respect to the analysed seismic line.  

 

 
Figure 1. Overview of the study area and the data being 

used in this study. A) Location of the seismic line and CPTs. B) 

UHR seismic data with the CPT logs. C) Absolute acoustic 

impedance results. 

2.1. Data description 

A representative 2D Ultra High Resolution (UHR) 
line was selected for this study (Fig. 1B). The total length 

of the profile is approx. 8300 m and the depth of 
consideration is 50 mbsf for the synthetic CPT 
prediction. Here, depth-migrated data is available, with 
an original vertical resolution of 0.25 m. For the purpose 
of this study three main units have been identified based 
on the interpreted horizons as shown in Figure 1B. Unit I 
is located between the seafloor reflector (SF) and H1. 
Unit II lies between H1 and H2. H2 is a very pronounced 
reflector indicating a prominent clay unit as seen in the 
borehole data which is covering the whole line. Deposits 
below reflector H2 is considered as Unit III. The seafloor 
multiple reflection has not been removed with additional 
processing efforts from the data and is therefore visible 
in the seismic line as well as in the acoustic impedance 
( �) results and is located at 29 m to the West and 
26 mbsf to the East of the profile. 

� (Fig. 1C) was calculated for the post-stack seismic 
data according to the description in section 3.1. 
Generally, � increases with depth until appr. 20 mbsf 
where it stays mostly constant until a distinct clay unit 
which top is represented by H2. In the inversion results, 
the deposits appear as a thin layer of low �, which can 
be traced throughout the whole section. 

Along the 2D line, 8 CPTs have been conducted with 
a varying distance between only 2 m (CPT-06) and 
maximum 172 m (CPT-01) to the seismic line and 
penetration depths ranging from 45 m to 60 m. A cluster 
of four CPTs can be found east of the profile with a 
maximum distance of 24 m to each other. Before using 
the CPT data for further studies, the raw data was cleaned 
from outliers and artifacts mostly caused by the form of 
the downhole CPT data acquisition. The first ten data 
points of each push as well as data with no related sleeve 
friction value was removed. By doing so, we ensure to 
not use erroneous data in further prediction. In this study 
only the corrected cone resistance ( �) is considered and 
predicted for the 2D seismic line. 

 

 
Figure 2. Plotted qt for the blindtest profile CPT-04, 

together with the acoustic impedance at the CPT position and 

the adjacent CPT profiles for comparison. 

For the evaluation and validation of the different 
prediction methods, CPT-04 is used as blindtest profile. 
This profile is removed for modeling to be later 
compared to the predicted data at the exact same location. 
Figure 2 shows the blind profile together with the 



 

 

acoustic impedance at the same position which is used for 
parts of the method as auxiliary information. In Unit I 
there is a positive trend of increasing � values until H1. 
In contrast, Unit II shows a slight negative trend of the 
values with some extremes between approximately 20 
and 35 m. Unit II has the highest variation of � for CPT-
04, containing the lower clay unit, as well as a very dense 
layer at 48 m. � follows the general trend of increasing 
values of the CPT profile, with a defined low impedance 
corresponding to low � values at the lower clay unit. The 
neighboring CPTs of the blind profiles including CPT-03 
and the CPT cluster 05-08 are illustrated as well to 
visualize the closest profiles being weighted stronger for 
the distance-weighted methods. 

2.2. Local geology 

The geology in the southeastern North Sea is dominated 
by Neogene Eridanos topset delta deposits below a 
prominent glacial unconformity. These deposits are 
incised by deep tunnel valleys attributed to the Elsterian 
glaciation (Lutz et al. 2009), which are filled by glacial, 
lacustrine and marine deposits (Hepp et al. 2012, 
Coughlan et al. 2018, Fleischer et al. 2022). These 
Elsterian deposits are overlain by a discontinuous 
intercalation of glacial and interglacial deposits, poorly 
preserved due to extensive erosion processes attributed to 
a late Saalian ice advance. The upper sequence comprises 
Weichselian deposits, which are characterized by 
extensive cut-and-fill structures correlating to a non-
glaciated lowland throughout the last glaciation. 
Holocene deposits consist of a sand unit of few meters 
thickness. Drowned and infilled river valleys are 
common, originating from the early Holocene 
transgression in the area (Özmaral et al. 2022). 

3. Methodology 

3.1. Acoustic impedance 

A band-limited acoustic impedance section has been 
generated based on post-stack seismic data and merged 
with a low-frequency model derived from interval 
velocities to generate an absolute impedance estimate. In 
the first step for the low-frequency model generation, 
seismic reflection events have been picked. As an 
adoption of Barros et al. (2015) those picks have been 
inverted for an interval velocity model with a differential 
evolution genetic algorithm and a second order move-out 
equation. 

Secondly, band-limited impedance was determined 
based on the post-stack seismic image with a genetic 
algorithm as described in Vardy (2015). In this global 
search and stochastic algorithm (Sen and Stoffa 1992), 
forward modeling was performed with a convolution of 
randomly initialized reflectivity models with a wavelet. 
The band-limited impedance is consecutively derived 
from the reflectivity. For this approach, the wavelet was 
extracted from the post-stack seismic image by stacking 
the tapered seafloor reflection along the profile. Further 
details of the reproducible implementation are described 
in Römer-Stange et al. (in prep. 2024). 

Finally, to merge the band-limited impedance 
inversion results with the low-frequency model and thus 
generate an absolute impedance estimate, the BLIMP 
algorithm described in Ferguson and Margrave (1996) 
was extended and applied. In this method, the band-
limited impedance was merged with the low-frequency 
model in the frequency domain with a Linkwitz-Riley 
crossover filter after scaling the band-limited impedance. 
Using this procedure, the wavelet and post-stack seismic 
image did not need calibration. 

3.2. Interpolation methods 

A variety of prediction methods to estimate 
geotechnical target parameters, focusing here on �, 
along the seismic line are tested and evaluated. A short 
description of the different methods is given in the 
following sub-chapters. 

 Inverse distance weighting (IDW) 

In IDW the values at unexplored positions are 
calculated by the weighted average of the input data 
within a search radius. Thereby the weight is estimated 
by the inverse of a power of the distance between the data 
points and the one to be calculated. The higher the power, 
the more weight is given to points which are closer to the 
target location. 

 Kriging variants 

Kriging is a linear geostatistical method of 
interpolation. The interpolated value is a linear 
combination of measurements in the neighborhood, 
while the weights are optimized to minimize the 
interpolation error. The Kriging weights are calculated 
during a matrix inversion, and they depend on distances 
between the positions of measurements and target, 
distances between the positions of measurements among 
themselves, and a model of spatial variability (variogram 
or covariance). Depending on the stationarity condition 
and number of variables, different variants of Kriging 
could be applied. Here, three variants are used: 

Ordinary kriging (OK) is a variant of kriging for 
univariate prediction of synthetic CPTs. It can be used for 
modelling a stationary variable. The term “ordinary” 
indicates that it is applicable for modelling a non-
stationary variable if local stationarity is established by 
the neighborhood (Chilès and Delfiner 2012). 

Ordinary collocated cokriging (CoK) is a variant of 
OK for multivariate modelling of the principal variable 
(e.g. �), considering an auxiliary variable from seismic 
data (e.g. �), which has a better or even area-wide 
geographical coverage. The term “collocated” refers to 
the situation when the auxiliary variable is known at all 
the target points (Wackernagel 2003, Masoudi et al. 
2023). Cokriging makes use of the cross-correlation 
between a primary and secondary variable to minimize 
the estimation error variance (Minnitt and Deutsch 2014). 

Kriging with external drift (KED) is a variant of 
kriging for modelling a non-stationary variable. In this 
method, the � drift is calculated as a function of � from 
seismic data, here polynomial equation of second degree 
is used. Then, the � residual is calculated by subtracting 
the drift. The � residual is considered as a stationary 



 

 

variable, so simple kriging is used for modelling it 
without applying any neighborhood limit (Pyrcz and 
Deutsch 2014). 

For each interpolated position, the kriging variants 
enable the quantification of uncertainty by means of the 
standard deviation of the interpolation error. It tends to 
be zero close to the measurements and increases as 
getting far from the measurements. The uncertainty 
measure is controlled by the variogram model. It means 
that it is possible to compare the standard deviation of 
error of interpolated value of two different �  models if 
the variogram models are identical, otherwise the 
comparison must be done with caution. 

 Turning band collocated co-simulation 

Geostatistical simulations are developed to perform 
stochastic analysis based on the interpolated value by 
kriging and the associated uncertainty (standard 
deviation of error of interpolated value; Chilès and 
Delfiner 2012). In this study, the method of turning band 
simulations (TBS) is used to generate 100 realizations of 

� conditioned to the CPT measurements and �. The 
mean of the realizations is considered to be the best 
estimate for the prediction. 

 Random forest regression (RF) 

In this study, we employ random forest regression 
(RF) to produce synthetic � values at designated 
locations. RF has previously demonstrated efficacy in 
analyzing offshore windfarm data, as evidenced by 
studies such as Vanneste et al. (2022). RF operates by 
constructing a substantial ensemble of decision trees, 
with each tree serving as an autonomous regression 
model (Breiman 2001). The combined prediction of the 
RF regression is obtained through averaging the outputs 
of all constituent decision trees. This approach enables to 
include multiple additional attributes in the prediction 
process. 

 Feed forward neural network (FFNN) 

The architecture of feed forward neural networks 
(FFNN) encompasses several essential components: 
hidden layers, the number of neurons in each hidden 
layer, the activation function for each neuron, and the 
training algorithm for determining collective weights and 
biases. While the input and output layers fulfill distinct 
roles in the presentation and extraction of data, the 
allocation of neuron quantities within these layers is 
governed by the characteristics of the input and output 
features. Positioned between the input and output layers, 
hidden layers possess designated weights and biases, 
steering input data through activation functions to 
undergo nonlinear transformations (Sharma et al. 2017). 
The input data is normalized using min-max 
normalization which helps faster convergence with high 
learning rates. Research, such as that conducted by 
Shoukat et al. (2023), used FFNN for forecasting 
synthetic CPTs within offshore environments. 

3.3. Modelling workflow 

 Geostatistical methods 

The CPTs are not exactly located on the seismic line. 
Therefore, as a first step, the CPT information is 
projected onto its trajectory. A semi three-dimensional 
grid is created as basis for the calculations covering the 
extent of the seismic line used for this study, with a 
vertical resolution of 0.1 m and a horizontal spacing of 
10 m leading to a total amount of 640 800 samples. The 
grid is used to extract synthetic CPT profiles at any point 
of interest. The seismic information which acts as guided 
information for the prediction is migrated onto that grid. 
At the CPT locations, the geotechnical parameters are as 
well projected onto the grid and are upscaled in the same 
step to the resolution given by the seismic data. The 
model is subdivided into three sub-domains 
corresponding to the main units shown in Figure 1. 
Modeling is performed separately in these sub-domains, 
which ensures more accurate prediction results, by not 
mixing up deposits not belonging to each other. For 
creating sub-domains, the spatial information from the 
interpreted and gridded seismic horizons is used. The 
model sub-domains are thus defined by the gridded 
horizons. The corresponding CPT data is assigned to the 
respective sub-domains as well. 

A search neighborhood must be defined which has a 
strong influence on the estimation result. Only data 
points being within the search volume are considered for 
interpolation. For the present data set, a relatively small 
neighborhood of 2.5 m was chosen for the vertical 
direction since data is expected to change more rapidly 
across geological strata. For the horizontal direction a 
comparably large neighborhood of 3000 m was selected 
due to the large distance between the ground truth 
locations and in order to include a sufficient amount of 
information for each interpolation point. This large 
lateral neighborhood assumes a relatively homogenous 
geology of the identified units. 

 Space deformation by unfolding 

To improve lateral spatial continuity, modelling is 
performed in flattened space. A simplified illustration of 
the concept is seen in Figure 3. Tectonic forces applied 
to the sedimentary deposits or dynamic sedimentary 
systems, impose structural modifications and 
consequently, make the space more heterogenous by 
reducing spatial continuity of the variables. Unfolding is 
a technique of space deformation that reduces space 
heterogeneities by restoring the sedimentary deposits to 
the condition prior to the application of tectonic forces or 
by accounting for non-horizontal and heterogenous 
layering (Caixeta and Costa 2021, Chautru et al. 2021). 

 

 
Figure 3. Simplified representation of the space 

deformation by unfolding approach for improved modeling. 



 

 

In this work, all the geostatistical methods and IDW 
are applied in the flattened space to improve the spatial 
continuity, but also to consider the structural geology in 
the models. The models created in the unfolded space, are 
then transferred to the real position in the folded space. 
Among several interpreted horizons, three were chosen 
to do unfolding separately in three intervals according to 
the interpretation given in Figure 1. The interpolation is 
performed within the different units separately to account 
for the interpretation and geological changes. The 
unfolding and geostatistical computations were 
performed by making use of functions exposed by the 
Isatis.neo software package. 

 Considerations for machine learning 

For the machine learning models Rf and FFNN the 
procedure to work in flattened space is not necessary 
because both methods will make use of multi attribute 
regression which is not restricted by geometrical 
constraints. For the calculation, the same grid as 
described in section 3.3.1 is used. Seismic and 
geotechnical data from the study area are included for 
training both machine learning models. Aside from �, 
additional information, including seismic attributes, 
water depth, geographical coordinates and the 
identification of geological units was utilized in the 
training process. Besides the �, eight additional post-
stack attributes are added to the training process: 
Instantaneous Amplitude including first and second 
derivatives, Energy, Instantaneous Bandwidth, 
Instantaneous Frequency, Instantaneous Q-Factor and 
Semblance. The incorporation of more attributes and 
therefore also more information is a clear advantage of 
this methodology compared to the others. 

4. Results and discussion 

The target value for predicting along the seismic line 
is �, which is calculated for every grid cell. Fig. 4 shows 
the results of the predicted �, together with the model 
uncertainty in the form of the standard deviation for all 
tested methods, except IDW and FFNN. It is not a 
common output of the latter and is therefore not 
discussed. 

Due to the modeling procedure of space deformation 
as described in section 3.3.2, � follows the seismic 
reflectors for all methods, even when applying more 
simple methods as OK and IDW that only use the 
geotechnical information as input. Generally, the 
standard deviation increases with depth and with distance 
to the CPT locations, which is valid for all the tested 
methods. The vertical lines represented as areas with low 
standard deviation indicate the positions of the CPT 
profiles used in the prediction. There is in general not a 
significant difference in � prediction for IDW and the 
geostatistical methods. This is partly caused by the larger 
amount of CPT profiles acting as fix points of 
information along the seismic line thereby limiting 
variability. 

IDW is a rather simple method which can be used to 
get results fast and does not need a certain experience as 
for the geostatistical methods and machine learning. In 
the results shown a power of two was chosen which led 

to the most reliable results for this particular data set. 
IDW generally generates rather very smooth predictions, 
leading to a loss of detail in some regions. For instance, 
the thin layer located at the left of the profile cannot be 
robustly delineated. 

Generally, the predicted � using OK shows a very 
similar appearance to IDW, while estimating much 
clearer boundaries between the different layers. The 
standard deviation for OK increases with increasing 
distance to the CPT location reaching its highest values 
at maximum distance between two actual measured 
locations. The standard deviation differs within the 
separate units due to different inputs and variograms in 
the corresponding units. The highest standard deviation 
can be found in the lower units, which can be explained 
by a decreasing amount of ground truth information with 
depth. 

Compared to the other methods, KED consistently 
leads to inaccurate and poorly resolved predictions of �, 
which becomes most apparent in Units I and III. In 
contrast to IDW and the other geostatistical methods, 
KED is able to capture the position and structure multiple 
from the seismic data, by considering the � as drift. 

CoK makes use of the acoustic impedance results as 
co-variable along the grid where no CPT information is 
available. This is seen in the way that it adds more local 
variations in the prediction, making it less smoothed as 
for kriging. Looking at the statistics of the output it 
strikes that the results obtain negative values, partly even 
below - 20 MPa within the clay units, which is far from 
typically expected values. The reason why CoK has 
negative values in Unit III is that there exist many blocks 
along the seismic profile with collocated values ( �), 
inferior to the minimum of � at the CPT positions. In 
other words, the modelling is valid for the range of 
acoustic impedance observed at the measured locations, 
leading to an unrealistic negative extrapolation of � in 
areas where � is lower. In direct comparison with OK, 
the overall standard deviation decreases, especially away 
from the CPT locations. Nevertheless, close to the 
measured location the standard deviation is higher 
compared to OK because of the chosen variogram model 
for this particular data set, which imposes higher 
variability at shorter distances compared to the OK 
model. 

In the case of TBS different equally possible 
realizations have been derived. The displayed � is the 
average of all the results. Simulation does not suffer from 
negative values as CoK, since the input data has been 
normalized prior to modelling. TBS honours the input 
statistics for the prediction, leading to the minimum and 
maximum � for each unit being the same as for the input, 
although the variation within those boundaries might 
vary. Close to the lower � layer, areas of high � are 
encountered. They correspond to zones where high � 
values can be observed, which could not be replicated by 
the other methods. The standard deviation shows a more 
dynamic appearance, which is governed by the �. Areas 
with high variability of � obtain higher uncertainties and 
vice versa. The overall standard deviation is again 
reduced, especially in Unit III. 



 

 

The RF � prediction does not replicate the layering 
structure as the other methods described before, which is 
due to the different modeling approach chosen for RF and 
FFNN. Since the acoustic impedance does not show a 
clear layering, it cannot be replicated with the RF 
approach. The lower clay unit is not as properly captured 
as in the other methods, and predominantly too high 
values are obtained in the East of the profile. In some 
areas the magnitude of the predicted qt suddenly changes 
at sharp boundaries. Same artifacts can be seen in the 
standard deviation which is overall the lowest for all 
tested methods. The appearance makes it more difficult 
to track the pre-defined horizons. This is caused by a 
limitation of the method when using limited amounts of 
data. For this particular input data set the subsets in the 
decision trees become too large leading to a blocky 
appearance in the seismic profile. 

The overall structural similarity of the FFNN results 
with the inverted acoustic impedance suggests that the 
former is strongly influenced by the latter. FFNN can 
capture the lower clay unit, although it predicts an area 
of relatively high � directly above, which is mostly not 
seen for the other methods. Also, the multiple leaves an 
undesired but strong imprint on the reconstruction. FFNN 
suffers the same problem as CoK and KED, predicting 
negative values within the lower clay unit. This is as well 
explainable by the fact that away from the training data, 
lower AI values are encountered, which have not been 
considered for training. This leads again to a negative 
extrapolation. This issue can be overcome by adjusting 
the normalizing range of the input data for training. 

 

 
Figure 4. Left: Best estimate prediction of qt - Right: 

Standard deviation of the corresponding methods. From top to 

bottom. A) IDW, B) OK, C) KED, D) CoK, E) TBS, F) RF, G) 

FFNN. 

In addition to the � prediction on the seismic line, 
Figure 5 illustrates the results of the different tested 
methods (blue curve) at the position of the blind profile 
CPT-04 (black curve). We have refrained from 
smoothing the measured data to properly display and 
address limitation of synthetic profiles compared to real 
data. The shaded blue area indicates the standard 
deviation of the corresponding method, which is as stated 
before not a common by-product of IDW and the FFNN 
approach. 

All methods capture the general trend of � in Unit I, 
though KED and RF tend to oversimplify while KED 
obtains the highest variation of the tested methods. In 
Unit II all methods have a higher deviation from the 
measured data, compared to Unit I. They are especially 
not able to properly predict the local extremes. This is 
due to the fact, that e.g. the very dense layer at around 
25 m depth is not present in the adjacent profiles as seen 
in Figure 2 and is therefore not predictable. Also, this 
layer is not indicated in the acoustic impedance results 
making it invisible for TBS, CoK, KED, RF and FFNN, 
which use � as auxiliary information. Smaller extremes 
(e.g. at approx. 31 m and 33 m) cannot be seen in the 
prediction because their vertical extent is smaller than 
what the seismic data can resolve. This information gets 
lost in the upscaling process and is therefore not 
considered for prediction. All methods tend to 
underpredict the measured profile except for the low 
resistances at appr. 22 m and 33 m. This is more critical 
since especially low resistance layers represent a 
potential a hazard in pile installation and are of particular 
interest in design processes and therefore relevant to be 
captured in synthetic CPT profiles. 

For Unit III, all methods capture the general course of 
the blind profile except for KED, TBS and RF. While 
IDW and OK tend to underestimate the original data, 
CoK, KED, TBS and FFNN are overestimating �, 
specifically below the clay unit. A slight vertical shift 
between the lower clay unit and low � predictions using 
the approaches which consider acoustic impedance as 
secondary information can be observed, which is not seen 
in the univariate methods. This is explainable on the one 
hand by vertical uncertainty introduced by the process of 
migration as well as by upscaling processes. On the other 
hand, uncertainty might be caused by the projection of 
the CPT data onto the seismic line. CPT-04 lies 88 m 
apart from the seismic line making vertical changes in the 
position of the clay deposit very likely. For engineering 
purposes, it is specifically important that low resistances 
areas are captured which is valid for most of the methods 
except KED and RF. The univariate methods (IDW and 
OK) led to improved predictions of the clay deposits 
because they are not influenced by the acoustic 
impedance and do not suffer from any potential 
mismatches. 

In this study IDW and the geostatistical variants 
perform comparably well to the tested machine learning 
methods, because many CPTs are available along the 
tested seismic line. They are able to capture geological 
layering imposed by the seismic horizons using the 
unfolding technique, though it needs to be considered 
carefully, since it does not account for major geological 
changes between the reference horizons. Generally, IDW 



 

 

and the geostatistical variants begin to struggle more in 
situations where there is less data and when the target 
points are far away from measured data because of its 
distance-based weighting. Here, the tested machine 
learning approaches obtain advantages because they are 
regression based and therefore independent of the 
distance between measured data and target location. In 
addition, machine learning can make use of multiple 
attributes, although their choice has to be made carefully 
to ensure that they favour improved reconstructions. 

 

 
Figure 5. Comparison of the different tested prediction 

methods using CPT-04 as blindtest. The Black line indicates the 

measured data and blue the predicted profile. The standard 

deviation is indicated by the shaded blue areas. 

5. Conclusions 

A series of methods has been tested to predict � 
along a representative reflection seismic line from the 
German North Sea. The compared methods do not show 
a significant difference in the overall trend between the 

prediction results, though especially CoK, TBS and 
FFNN can account for local changes when making use of 
seismic attributes as secondary variable. The 
implementation of seismic attributes as auxiliary 
information reduced the overall uncertainty of the 
prediction along the seismic line. All methods can 
replicate the trend of the measured data, rather than 
changes on the smaller scale, especially when the 
information is neither carried by the primary ( �) nor 
secondary ( �) information. The univariate methods 
perform well, even without auxiliary information, when 
having a high amount of CPT information as in this case 
study. Additionally, IDW and the geostatistical variants 
better replicate layering structure along the seismic line 
using the introduced unfolding workflow. In general, 
depending on the data density and the scope, it needs to 
be decided individually if the extra effort needed for the 
more advanced method is worth the outcome. 
Nevertheless, it has to be pointed out that the machine 
learning approaches obtain clear advantages by the 
straightforward implementation of various information. 

Finally, it needs to be emphasized, that the outcome 
of every method depends on various circumstances like 
the amount of data, input spatial distribution and the 
quality of the data, therefore this study does not aim to 
judge on which method performs best but rather to give 
an overview and to address differences and limitations. 

Future studies will focus on the investigation of the 
contribution of different seismic attributes on the 
prediction of geotechnical parameters, by more extensive 
sensitivity analysis, specifically for the machine learning 
approaches. Also, more data will be integrated by using 
site investigation data from other windfarm areas. 
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