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Summary. This paper contributes to the continuous effort to design wings for aircraft with
improved efficiency and reduced environmental footprint. Among others, there is a strong inter-
est in the design of Natural Laminar Flow (NLF) wings by extending the area with laminar flow
over them, for reduced drag (and emissions) while ensuring environmental sustainability. The
design of NLF wings requires computational tools that can accurately simulate transition from
laminar to turbulent flow and the same tools should, also, be incorporated into the optimization
loop. In aerodynamic shape optimization, gradient-based algorithms usually rely on the adjoint
method to compute gradients, since this is the most cost-effective way to do so. In this work, the
continuous adjoint method to the γ−R̃eθt transition model, coupled with the Spalart-Allmaras
turbulence model is formulated and presented. This is used for the shape optimization of the
High Aspect-Ratio Wing of a business jet for minimum drag, subjected to lift and geometrical
constraints. The in-house GPU-accelerated PUMA code, which incorporates the primal and
adjoint solvers as well as the parameterization tool into a stand-alone tool, is used to carry out
the optimization.

1 INTRODUCTION

Air transportation is among the most important segments of the transportation sector and
is expected to witness significant growth in the upcoming years. However, this growth is con-
comitant with increased fuel consumption and increased greenhouse gases. For this reason, the
aeronautical sector has taken actions towards environmental sustainability, to meet the goals
for affordable and green energy by the year of 20301 and climate neutrality by 20502. Relevant
research includes methods for the design of Natural Laminar Flow (NLF) wings, [1]. The idea
is to extend the area over the wing where the flow is laminar, to reduce drag. To this end, the
availability of a computational tool accurately capturing the transitional phenomena with low
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computational cost is essential. Should this be available, next step is to build the corresponding
adjoint solver and incorporate both of them into a gradient-based optimization loop.

In aerodynamic shape optimization, gradient-based methods almost exclusively rely on the
adjoint method to compute the gradient of objective functions (J) with respect to (w.r.t.) the de-
sign variables bi, i=1, . . . , N . Its cost is independent of the number of design variables N , being
almost equal to that of solving the primal equations. While the differentiation of the turbulence
model (in both discrete and continuous adjoint) is nowadays a common approach, [2, 3, 4], the
literature regarding the differentiation of transition models is restricted and exclusively related
to discrete adjoint, [5, 6, 7]. The first continuous adjoint for transitional flows of compressible
fluids was recently developed by the group of authors in [8] for the γ −R̃eθt transition model
coupled with the Spalart–Allmaras turbulence model. The development was performed for three
variants of the γ−R̃eθt model, namely the SA-noft2-Gamma-Retheta, [9], the SA-LM2015 and
the SA-sLM2015 ones [10]; the first two include min./max. operators and conditional statements
while in the latter smooth expressions are used instead. The impact of the “frozen transition”
assumption (according to which the adjoint to the transition model is neither formulated nor
solved) was investigated in [8] and proved to lead to erroneous Sensitivity Derivatives (SDs).
The same studies demonstrated the superiority of the SA-sLM2015 variant, particularly within
an optimization loop. In the field of aviation, in [11], a constrained multi-point optimization
of the wing of a generic business jet aircraft was carried out; the study aimed to minimize
drag at cruise conditions under geometrical and aerodynamic constraints. The aerostructural
optimization of the wing of a commercial aircraft, by accounting for restrictions in the overall
aircraft design, flutter and powered engine, was performed in [12], while the shape optimization
of a supersonic aircraft was carried out in [13]; both based on discrete adjoint. In [14], various
turbulence and transition models were differentiated based on the discrete adjoint method and
the accuracy of gradients was assessed, among others, in a Falcon jet and a generic tail-less
configuration with a high aspect-ratio laminar wing in turbulent and transitional flows.

In this paper, the continuous adjoint method for transitional flows (the exact same software
developed in [8]) is used in a real-world shape optimization problem, namely that of a High
Aspect-Ratio Wing (HARW) of a business jet. The optimization aims to minimize the drag of
the aircraft, subjected to lift and geometrical constraints; the lift coefficient refers to the full
aircraft configuration and is computed as the weighted sum of the lift and moment coefficients
of the wing-body ones. The rest of the paper is organized as follows: the primal equations
for transitional flows of compressible fluids are presented in Sec. 2 and the adjoint equations
along with their boundary conditions in Sec. 3. These are implemented in the in–house GPU-
enabled primal and adjoint solver PUMA which is briefly presented in Sec. 4 and used for the
optimization of the HARW in Sec. 5.

2 PRIMAL PROBLEM

In a 3D Cartesian coordinate system xk (k = 1, 2, 3), the governing equations for the tran-
sitional flow of a compressible fluid comprise the mean flow (MF) equations, the one-equation
Spalart–Allmaras (SA) turbulence model, [15], the two-equation γ−R̃eθt transition model (the
SA-sLM2015 variant, [10]) and the Hamilton-Jacobi equation computing the distance field ∆
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from the closest solid walls. These are written as

RMF
n = ∂f inv

nk

∂xk
− ∂fvis

nk

∂xk
=0 , n = 1, .., 5 (1a)

Rν̃ = ∂ (ρvkν̃)
∂xk

− ρ

σ

{
∂

∂xk

[
(ν+ν̃) ∂ν̃

∂xk

]
+cb2

∂ν̃

∂xk

∂ν̃

∂xk

}
−P̃ν̃ +D̃ν̃ =0 (1b)
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Eq. 1a is solved for the conservative flow variables U=[ρ ρv1 ρv2 ρv3 ρE]T where ρ is the fluid
density, vk (k = 1, 2, 3) are the Cartesian velocity components and E the total energy per unit
mass. In Eq. 1a, f inv

k are the inviscid f inv
k =[ρvk ρvkv1+pδ1k ρvkv2+pδ2k ρvkv3+pδ3k ρvkht]T

and fvis
k the viscous fluxes fvis

k =[0 τ1k τ2k τ3k vℓτℓk+qk]T . p, ht stand for the fluid’s pressure
and total enthalpy and δkm is the Kronecker symbol. τkm =(µ+µt)

(
∂vk
∂xm

+ ∂vm
∂xk

− 2
3δkm

∂vℓ
∂xℓ

)
is the

stress tensor, qk =Cp

(
µ
Pr + µt

Prt

)
∂T
∂xk

is the heat flux, where µ, µt is the molecular and turbulent
viscosity, respectively. Pr, Prt stand for the Prandtl and turbulent Prandtl numbers and Cp is
the fluid’s specific heat capacity at constant pressure.

Eq. 1b is solved for ρν̃, where ν̃ is the turbulence model variable and turbulent viscosity is
computed by µt =ρν̃fv1 . The source terms of the SA model, modified to account for transitional
phenomena, read

P̃ν̃ =γρcb1S̃ν̃, D̃ν̃ =ρcw1fw

(
ν̃

∆

)2
(2)

Eqs. 1c and 1d are solved for ργ and ρR̃eθt, respectively, where γ is the intermittency and
R̃eθt the transition momentum-thickness Reynolds number. The production and destruction
terms in the γ and R̃eθt equations read

Pγ =ρcα1FlengthFonsetϕ-300 (ζ, ζthres) √
γ (1−cϵ1γ) , Eγ =ρcα2Fturbϕ-300 (ζ, ζthres) γ (cϵ2γ−1) (3)

Pθt =ρ
cθt

T

(
Reeq

θt −R̃eθt

)
(1−Fθt) , DSCF =cθt

ρ

T
ccf ϕ-300

[(
ReSCF −R̃eθt, 0

)]
Fθt (4)

Undefined terms/constants for the turbulence and transition models can be found in [15, 10].
Along the adiabatic solid walls, the no-slip condition vk =0 is imposed, while for the turbu-

lence and transition variables ν̃ = 0, ∂γ
∂n = 0 and ∂R̃eθt

∂n = 0. The far-field boundary is treated as
a synthesis of inflow and outflow boundaries, depending on the local velocity direction. At the
inflow boundaries, four flow quantities are imposed as Dirichlet conditions and one is extrapo-
lated from the interior. There is an opposite treatment along the outflow boundaries, with one
flow quantity kept fixed and the rest being extrapolated from the domain interior. For the SA
model, the viscosity ratio

(νt
ν

)
∞ is defined along the far-field boundary, while γ∞=1 and R̃eθt,∞

is computed as in [10].
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3 ADJOINT PROBLEM

This study deals with three objective/constraint functions J , namely the drag (J1), lift (J2)
and pitching moment (J3) coefficients of the aircraft. These are expressed as

J1,2 = F
1
2ρ∞U∞Aref

, F =
∫

SW

(pnk − τkmnm) rkdS

J3 = TY
1
2ρ∞U∞Areflref

, TY =
∫

SW

ϵ2lk (pnk − τkmnm)
(
xl − xref

l

)
dS

where F stands for the aerodynamic force acting on the aircraft in the direction defined by rk.
For rk = (cos α∞, sin α∞), F stands for drag; for rk = (− sin α∞, cos α∞), F is aircraft’s lift.
TY is the pitching moment (in the application studies of this paper, the spanwise direction is
along the y-axis) computed w.r.t. to reference point xref. ρ∞, U∞, α∞ are the free-stream fluid
density, velocity magnitude and the angle of attack, respectively, while Aref, lref stand for the
reference surface and length, and ϵijk is the Levi-Civita symbol.

In continuous adjoint, J is augmented by the field integrals of the products of the governing
equations’ residuals with the adjoint variable fields, resulting in the augmented function Jaug.
Differentiating this w.r.t. bi yields

δJaug
δbi

= δJ

δbi
+
∫
Ω

(
Ψn

δRn

δbi
+ν̃a

δRν̃

δbi
+γa

δRγ

δbi
+R̃ea

δRR̃eθt

δbi
+∆a

δR∆

δbi

)
dΩ (5)

where Ψn, (n = 1, ..., 5) are the adjoint mean flow variables and ν̃a, γa, R̃ea and ∆a are the
adjoint of ν̃, γ, R̃eθt and ∆, respectively. The adjoint variables act as extra degrees of freedom
to avoid computing the derivatives of the primal fields w.r.t. bi; this is achieved by formulat-
ing, discretizing and numerically solving the adjoint PDEs. Upon convergence of the primal
equations, Jaug ≡J and, consequently, δJ

δbi
≡ δJaug

δbi
.

Eliminating all volume integrals including derivatives of U, ρν̃, ργ, ρR̃eθt and ∆ w.r.t. bi leads
to the adjoint mean flow, Spalart-Allmaras, transition model and Hamilton-Jacobi equations,
written in the following synoptic form:

RΨ
m =−Anmk

∂Ψn

∂xk
− KMF

m + KSA
m + Kγ−R̃eθt

m = 0 (6a)

Rν̃a =−vk
∂ν̃a

∂xk
+ GSA,diff + GSA,src + Gµt,MF + Gµt,γ−R̃eθt = 0 (6b)

Rγa =−vk
∂γa

∂xk
+ Hγ−R̃eθt,diff + Hγ−R̃eθt,src + HSA,src = 0 (6c)

RR̃ea =−vk
∂R̃ea

∂xk
+ N γ−R̃eθt,diff + N γ−R̃eθt,src + N SA,src = 0 (6d)

R∆a =−2 ∂

∂xk

(
∆a

∂∆
∂xk

)
+ MSA,src + Mγ−R̃eθt,src = 0 (6e)

with n=1, . . . , 5, m=1, . . . , 5 and k =1, . . . , 3. K, G, H, N and M result from the differentiation
of the flow equations w.r.t. U , ρν̃, ργ, ρR̃eθt and ∆, respectively, with superscripts specifying the
corresponding term in the differentiated equations. Their full expressions can be found in [8].
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Since Eqs. 6a-6d do not depend on ∆a, Eq. 6e is numerically solved after them as it contributes
to the SDs.

In a similar manner, the elimination of the surface integrals that contain derivatives of the
flow variables w.r.t. bi leads to the adjoint boundary conditions. Namely, along the adiabatic
walls (SW ), the adjoint no-slip condition reads Ψm+1 = ∂J

∂(τkmnk) , the adjoint adiabatic condition
is qadj

k nk = 0, while ν̃a = 0, ∂γa

∂xk
nk = 0 and ∂R̃ea

∂xk
nk = 0. Along the far-field boundaries (SF), the

derivatives of shear stress and heat flux w.r.t. bi can be neglected. Let V loc
λ be the flow quantities

extrapolated from the interior of the domain (for subsonic inflow boundaries 1 Riemann variable
is extrapolated, while 4 variables are extrapolated over the subsonic outflow boundaries), then
ΨnAnmknk

∂Um

∂V loc
λ

=0. Moreover, ν̃a,∞ =0, γa,∞ =0, R̃ea,∞ =0 and ∆a,∞ =0.
After satisfying the field adjoint equations and their boundary conditions, the remaining field

and surface integrals comprise the formula for computing the gradient of J w.r.t. bi. Details
about the expression of the SDs can be found in [8].

4 THE PUMA SOFTWARE

All computations were performed using the NTUA in-house GPU-accelerated flow and adjoint
solver, PUMA [16]. PUMA solves the primal and adjoint equations on unstructured/hybrid grids
using vertex-centered finite volumes. PUMA runs on a GPU cluster and employs either the MPI
protocol for data communications between GPUs on different computing nodes or the shared
on-node memory for transactions between GPUs on the same node. High parallel efficiency is
achieved by the use of Mixed Precision Arithmetics (MPA), [16], as this reduces the memory
footprint of the code and transactions of the GPU threads with the device, without jeopardizing
code’s accuracy. In particular, all L.H.S. operators are computed with double precision but
stored in single precision accuracy. On the other hand, the R.H.S. is computed and stored in
double precision. Over and above to the primal and adjoint solver, PUMA includes a set of shape
parameterization tools and grid morphers based on volumetric Non-Uniform Rational B-Splines
(NURBS).

The continuous adjoint code employs consistent discretization schemes recently developed
under the name of the Think-Discrete Do-Continuous (TDDC ) adjoint, [17]. This bridges the
gap between discrete and continuous adjoint by combining the best of both worlds. The TDDC
adjoint enjoys the ease of implementation, the physical insight, the low computational cost and
memory footprint of continuous adjoint, with the accuracy of SDs computed by discrete adjoint,
without an excessive memory footprint, though. The TDDC adjoint discretization schemes for
turbulent/transitional flows are presented, in detail, in a companion ECCOMAS paper (Kontou
et al., Consistent Discretization Schemes for the Continuous Adjoint Equations in Aerodynamic
Shape Optimization for Turbulent/Transitional Flows).

5 SHAPE OPTIMIZATION OF A HARW BUSINESS JET MODEL

The geometry of a HARW business jet model (wing-body configuration) and the cruise con-
ditions were provided by Dassault Aviation in the framework of the NEXTAIR project (multi-
disciplinary digital-enablers for NEXT-generation AIRcraft design and operations) funded by
the European Union under Grant Agreement No. 101056732. The optimization of the HARW
model aimed at minimizing CD, with constant CL =0.50, where CL refers to the full configura-
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tion model (that includes, also, the horizontal tail plane and the powered engine), approximated
as the weighted sum of lift and pitching moment coefficients computed at the wing-body con-
figuration. Hereafter, CL denotes the lift coefficient of the full configuration.

Prior to the optimization, the flow around the baseline business jet was simulated. The
study was performed for three different Mach numbers, M∞ = 0.76, 0.78 and 0.80 and four
angles of attack (AoA ∈ [0◦, 1◦, 2◦, 3◦]). The Reynolds number and turbulence intensity level
were common in all cases, namely, Re = 4.24·106 and Tu = 0.1 %. A hybrid unstructured CFD
grid of ∼12.4M nodes was generated around half of the aircraft, with y+ <0.7 for the first nodes
off the wall. The computed polar diagrams, using the standard SA model and the SA-sLM2015
model are presented in Fig. 1. For all Mach numbers, the use of the transition model shifted
the polar diagram to smaller CD values (around ∼ 20 drag counts) with a slight increase in
CL. The pressure (Cp) and skin friction (Cf ) fields on the wing-body surface are presented in
Fig. 2 for the upper side of the aircraft, for M∞ = 0.78 and AoA = 2°. The top-half of this
figure corresponds to a simulation performed without, while the bottom-half, with transition
model. The Cp and Cf distributions on different cuts of the wing, along the spanwise direction,
are also presented in Fig. 3. The use of the transition model moved the location of the shock
wave downstream compared to a fully turbulent simulation, Figs. 2-left and 3-top. Differences
between fully turbulent and transitional results are pronounced in the Cf fields, Figs. 2-middle
and 3-bottom, as only the use of the transition model can capture the laminar area close to the
leading edge; this can also be seen in the intermittency field (γ), Fig. 2-right, where low values
of γ indicate the laminar zone.
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Figure 1: Polar diagram CL vs. CD resulted by the SA (no transition model) and the SA-sLM2015
transition model for M∞ = 0.76 (left), M∞ = 0.78 (middle) and M∞ = 0.80 (right). Drag values on the
horizontal axis are omitted on purpose. Horizontal spacing corresponds to 20 drag counts.

For the optimization, the wing was parameterized using the 4×9×2 control box of Fig. 4. The
control points in red were allowed to move in the normal-to-the-chord (z) direction, in pairs; in
specific, every pair of control points sharing the same x and y coordinates could be displaced
in the z direction, by retaining the distance between them. Such a way of displacement ensures
constant wing thickness distribution and frozen planform during the optimization. Control
points in blue remained fixed. In total, 24 design variables were used for the wing optimization.

The optimization was performed for M∞ = 0.78, in two steps. In the first step, the AoA
meeting the CL constraint (CL = 0.50, for the full configuration) was computed. Then, the
wing shape optimization followed and the desired CL value was imposed as constraint. Two
optimization runs were performed; the first was based exclusively on the SA turbulence model
(without transition model neither in the primal nor the adjoint solver), while the second relied
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Figure 2: Pressure (Cp, left) and skin friction coefficient (Cf , middle) fields on the aircraft surface for
M∞ = 0.78 and AoA = 2°. Computations based on the SA without (top-half) and with (bottom-half)
the SA-sLM2015 transition model are simultaneously presented. Right: intermittency (γ) field on the
aircraft surface computed using the SA-sLM2015 model.

Figure 3: Pressure (Cp, top) and skin friction (Cf , bottom) coefficient distribution on the wing surface
at different spanwise cross-sections (η =0.40, 0.65, 0.90, from left to right) for M∞ =0.78 and AoA=2°.
Computations based on the SA without (blue) and with the SA-sLM2015 (red) transition model. Abscissa
is normalized using the local chord at this spanwise position.
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Figure 4: NURBS control lattice set around the wing. Control points in blue are fixed whereas the red
are allowed to move in pairs (for the same x and y position) along the z-direction. The wing planform
remains constant during the optimization.

on the SA-sLM2015 transition model. These resulted in 17.2% (AoA=2.67◦) and 16.5% (AoA=
2.33◦) reduction in the CD value, respectively, satisfying the CL constraint, Fig. 5.
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Figure 5: Evolution of the objective (CD) and constraint (CL) functions during the optimizations for
M∞ = 0.78 and CL = 0.5. Optimization based on the SA turbulence model without transition effects
(left) and on the SA-sLM2015 transition model (right). Each optimization cycle comprises one primal
and two adjoint (for CD and CL) problem solutions.

The difference in the per face CD between the baseline and the optimized geometries (∆CD=
COpt

D −CBL
D ) is presented in Fig. 6 for the upper and lower sides of the two optimized aircraft. The

blue color indicates a decrease, while the red an increase in CD w.r.t. the baseline configuration.
In both optimized shapes, CD reduction was mostly associated with the area close to the shock
wave, especially on the wing suction side. Though there are areas where the per face CD was
increased compared to the baseline geometry (plotted in red), the overall difference of summed
up facial contributions led to a high decrease in CD, in both geometries. The aircraft which was
optimized using only the SA model was re-evaluated using the transition model and, as expected,
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the CL constraint was violated. In order to meet the CL =0.5 constraint and, thus make a fair
comparison, a post-hoc optimization by tuning the AoA was performed. This resulted in 15.0%
reduction in CD which is less than the 16.5% reduction achieved with the SA-sLM2015-based
optimization. This showcases the importance of including transitional phenomena into the
optimization loop.

Figure 6: Difference of per face CD between the baseline and the optimized wings (∆CD=COpt
D −CBL

D )
as computed based on the SA turbulence (first two) and the SA-sLM2015 transition (last two) model.

The Cp distribution on different spanwise locations are shown in Fig. 7 for the baseline and
the two optimized aircraft (all evaluated on the SA-sLM2015 model having CL =0.5). It can be
seen that the location of the shock wave has moved upstream close to wing root and tip, and
downstream elsewhere. It is interesting to note that, on the baseline geometry, 66% of CD was
due to pressure forces (pressure drag coefficient, CDp), with the remaining 34% being due to
shear forces (friction drag coefficient, CDf

). The two optimizations decreased CDp by 25.6% and
27.5%, respectively, while CDf

was slightly increased by 5.4% and 4.8%, respectively. This is
why, though not presented herein, the location of the transition line practically remained intact
or moved upstream since this is strongly related to CDf

(see Fig. 3).
The effect of transition model into the optimization loop was additionally assessed by compar-

ing the polar diagrams of the full configurations for M∞ =0.78 of the baseline and the optimized
wings. This is presented in Fig. 8 in which the black, blue and red curves correspond to the base-
line, optimized with the SA turbulence model and optimized with the SA-sLM2015 transition
model aircraft, respectively, all of them evaluated with transition model. The polar diagram for
the aircraft geometry optimized using the SA-sLM2015 model (red) is shifted to lower CD values
compared to that optimized without a transition model with re-evaluation on the SA-sLM2015
model (blue), Fig. 8-left. This gain is quantified by the area painted in light blue which exists
over the entire length of the polar diagram. However, the polar diagram for the optimized air-
craft is shifted to higher CD values compared to the baseline ones for CL <0.42 (light red area)
and lower CD values for CL > 0.42 (light blue area), Fig. 8-right. This is confirmed in both
optimizations and was expected as single-point optimizations, subjected to constraints on the
lift, were carried out.
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Figure 7: Pressure coefficient (Cp) distribution on the wing surface at different spanwise cross-sections
(η =0.06, 0.22, 0.40, 0.56, 0.72, 0.90, from top-left to bottom-right) for CL =0.50 for the baseline (black),
optimized with the SA (blue) and the SA-sLM2015 (red) models. All aircraft geometries are evaluated on
the SA-sLM2015 transition model. Abscissa is normalized using the local chord at this spanwise position.
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Figure 8: Left: Comparison of the polar curves for M∞ = 0.78 and AoA = [0◦, 1◦, 2◦, 3◦] for the
baseline (black) and the optimized without (blue) and with the SA-sLM2015 transition model (red)
aircraft geometries. The light blue area quantifies the CD reduction due to the use of transition model
into the optimization loop, in the entire range of the polar curve. Right: Comparison between the polar
curves of the baseline and the optimized, on the SA-sLM2015 model, aircraft geometry. Light blue and
light red regions correspond to the decrease and increase in CD. All aircraft are (re-)evaluated on the
SA-sLM2015 transition model.
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6 CONCLUSIONS

In this paper, the continuous adjoint method for transitional flow of compressible fluids
was applied in a real-world problem, that of a High Aspect-Ratio Wing business jet shape
optimization. The continuous adjoint has been presented for the γ−R̃eθt (SA-sLM2015 variant)
transition model coupled with the Spalart–Allmaras turbulence model. In the framework of
green aviation, the optimization aimed to reduce the drag of the aircraft without damaging lift
and also keeping the planform with frozen; deformations were allowed only on the wing camber.
In order to quantify the impact of including the transition model into the optimization loop, the
optimization was performed twice. The first optimization was based on the SA turbulence model
(in both the primal and the adjoint solver) followed by a post-hoc tuning of the AoA (to meet
the CL constraint) using the SA-sLM2015 transition model. The second optimization relied
on the SA-sLM2015 transition model. It was demonstrated that including transition into the
optimization loop was, indeed, beneficial as it led to a higher decrease in CD (16.5% compared
to 15.0%). Moreover, it was shown that the aircraft optimized using the SA-sLM2015 model and
its adjoint has an improved aerodynamic performance than the SA-based one (both evaluated
on the transition model), as it resulted to lower CD values along the entire length of the polar
curve and not only at the point the optimization was performed. This is a clear indication that
the use of a transition model into the optimization loop is absolutely necessary to accurately
capture the transitional phenomena and correctly guide the optimization.
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