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Summary. As modern systems become more complex, their control strategy can no longer
solely rely on measurement data gathered by instrumentation. Instead, it must also incorporate
information derived from mathematical models. The complexity of system models can result
in excessively long computation times, making the control process impractical. As a solution,
surrogate models are implemented to provide estimates within an acceptable timeframe for
decision-making purposes. The surrogate model can be a Physics-Informed Neural Network
that is used to obtain the system state on the next time step; such information can be used
with a Deep Reinforcement Learning algorithm to train a control strategy based on simulations,
replacing the need for running direct numerical simulations. On this work, we explore a Deep
Q-Learning strategy on 1D heat conduction problem in which temperature distribution feeds
a control system to activate a heat source, aiming to obtain a constant, previously defined
temperature value. The main goal is to stabilize the bar temperature at the middle point of it
without recurring to numerical simulations.

1 INTRODUCTION

In the study of real-world events, differential equations are the main way to describe the
complex interactions between a system, which are not mainly linear [1]. Although it is possible
to model those systems, their analytical solutions are typically only available for simple cases
that are primarily of interest in academic settings. Complex cases that do not have an analytical
solution often take a significant period of time to be solved, making it challenging to use in a real-
time application to make timely decisions in order to apply control measures. Often, surrogate
models and numerical solutions are utilised to address this issue, leading to alternative methods
for finding the actual solution.
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Data-driven models are used in certain research investigations to make it easier to extract
knowledge from temporal and spatial discretizations. As an example, the research by [2] focuses
on how well a trained model can work with unstructured grids, random time intervals, and noisy
observations to find a solution to a partial derivative equation.

An alternative method for data modelling is by using neural networks [3, 4]. Neural networks
are computational models that approximate the behaviour of a system and are composed of
multiple layers that combine multiple linear functions to represent data, which may have multiple
levels of abstraction [5].

The typical procedure to train a neural network involves defining a dataset containing true
inputs and their corresponding true outputs. Then, the goal is minimize the error between
true known data and the computed prediction from the neural network model using arbitrary
defined parameters. The error is minimised by modifying the neural network parameters using
an optimisation strategy.

In not all cases, it is possible to compile a dataset due to impractical reasons such as a lack
of sensors or lower amounts of recorded data. So, an alternative method for training a neural
network proposed by Lagaris et al. [6] is to use the differential equations that describe the system.
The objective is to reduce to zero the residual of evaluating a neural network as the answer to
the differential equation. This method does not require true input data with it’s corresponding
true data; instead, collocation points are defined and evaluated. This training approach has been
defined as Physics-Informed Neural Networks (PINN’s), and has been successfully implemented
in the fields of robotics [7], electrical transformers [8] and control strategies [9].

Despite the concept of PINN’s being simple, their training process is not straightforward [3].
This challenge arises when configuring the Neural Network hyperparameters for Physics-Informed
Neural Networks (PINNs), when it is necessary to consider the number of layers, nodes per layer,
activation functions, and type of loss function. Additionally, PINNs require balancing multiple
terms in the loss function, the partitioning of results, and the implementation of time marching
techniques to avoid convergence towards undesirable solutions [10, 11, 12, 13, 14, 15].

Once a PINN has been successfully defined, it can be used as a digital twin of a physical
system that would provide relevant information to a decision-making process. It could also take
information gathered from physical sensors [16] to compute an action or set of actions to change
the dynamics of such physical system in a real-time situation [17].

The application of neural networks in the form of digital twins is becoming more common
in the context of controlling nonlinear dynamical systems. Those digital twins are employed to
estimate the state of the system at any given location and time, acting as virtual sensors. As an
implementation, it has been used to estimate flow around obstacles, stabilise vortex shedding,
and reduce drag forces, as presented by Fan et al. [18] and Déda et al. [19]. A strategy to define
the control system is by using reinforcement learning algorithms, which are a machine learning
area that seeks to improve a policy within a model-free framework [20].

The Deep Q-Learning algorithm is one of the algorithms employed in reinforcement learning.
Let’s consider a scenario where a discrete time controller determines an action. Upon defining
and executing such action, it is observed that the state of the system changes. The states of
the system are compared to a reference. The outcome of this comparison yields a reward that
is associated with the corresponding action. Then, the system defines another possible action,
executes it, and generates another related reward. This process is repeated until an objective is
achieved. Those rewards are successively appended and used to train the process model. The
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Bellman equation is used to evaluate future incomes (Q-value) [21].
This work proposes a strategy for controlling the central point temperature of a rod in which

a heat source is applied at one end and, at the other end, it has free convection into ambient
air as a heat transfer phenomenon. The control strategy is trained with the Deep Q-learning
approach using a Physics-Informed Neural Network to evaluate the state of the system and
forecast near-future states. This approach is also compared with a standard control strategy.
The problem is presented as a uni-dimensional and continuous medium problem, which implies
the control strategy has to deal with the delay effects caused by the control action and the heat
loss to the ambient.

2 DEEP-Q LEARNING FRAMEWORK

2.1 System Control

A few components with information flowing between them can represent a straightforward
control system, as shown in Fig. 1. In such a representation, the set of actuators is initially
configured with some possible action values. The action coming out of the set of actuators
results in an impact on the environment, which is composed of the system and its bound’s
interactions. The system’s state is then measured by sensors. The control unit is another
component that modifies the system settings to achieve an objective using the data collected by
the sensors.

Initial
settings

Update
settings

Actuator Environment

Sensors

Figure 1: Basic flowchart of a control system

In the system presented in Fig. 1, the two components that are more relevant to this work are
the environment and the control system. Regarding the environment, it can be replaced by a
simulator to perform predictions. And the control system is to be trained using the environment
to define a policy that decides the best system setting for an environmental state, represented
by the sensor’s measurements.

2.2 PINN

Artificial Neural Networks have been developed since the 1950’s inspired by rats cortex func-
tioning [22, 23]. A neural network consists of a number of straightforward computational units
called perceptrons (see Fig. 2a). These perceptrons multiply a set of inputs by weights and
compute their sum, along with a bias to an activation function.
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N.D. Gonçalves and J. de Sá Rodrigues
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Figure 2: Neural Network basic structure. (a) perceptron. (b) Group of perceptrons forming a
Neural Network

In Neural Network a set of inputs can feed a set of perceptrons, forming a layer. A feedforward
Neural Network is composed of a series of layers, with the outputs of those layers being used as
inputs for the following layer (see Fig. 2b).

The number of inputs and outputs of a Neural Network is defined by the data that is being
modelled; however, the number of layers, number of nodes per layer, and activation functions are
not so easily defined. Data scientists usually use previous experience to set an initial estimate
that is improved in the training stage. As stated before, to train a neural network, it is required
to gather input values and their respective true output values to minimize a loss function.

On the other hand, for a PINN training process, the neural network is considered the solution
of a differential equation, so a set of collocation points is defined to evaluate not only the neural
network but also its respective derivatives. Then, a residual LTotal is evaluated based on the
differential equation that describes the system’s dynamics, including its boundary conditions
and initial conditions, to be minimized towards zero by an optimization algorithm; a schematic
representation of a PINN is shown in Fig. 3. This approach eliminates the required true results
for such evaluation points.
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Figure 3: Basic PINN architecture
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2.3 DQL

The objective of the control unit is to decide the best action for a given environment state,
i.e., the action that maximizes the reward: at some stage, taking an action from a given state,
or during an entire episode, considering the expected future rewards available from the current
state up to the episode end when the goal is achieved.

With a Reinforcement Learning strategy, each state, action taken and reward obtained are
recorded in a table to support future decisions. When the set of possible states is too big or
even infinite, one needs to make some kind of generalisation, and Neural Networks can be used
to perform this task.

To find the best action for a given state in Deep Q-learning (DQL), a NN is used instead of a
function that looks at a table of past results. The NN figures out the expected future reward (Q-
value) by adding up all the future rewards that are weighted with a discount factor,

∑
t>0 γ

trt,
for each of the possible actions [23]. The general information flow for a DQL implementation is
shown in Fig. 4.

agent

DQL

environment

action= π(s)

update π

reward

state

Figure 4: Deep Q-Learning training flowchart

The Q-learning algorithm is based on the Bellman equation, presented in Eq. 1.

Qnew (st, at) = Qmain (st, at) + β
(
rt + γmax

a
Qtarget (st+δt , a)−Qmain (st, at)

)
, (1)

where β is the learning rate, rt denotes the current reward obtained taking the action at from
state st, γ is the discounting rate, a value in ]0, 1[ used to set the importance of immediate
rewards compared with future ones.

During the DQL training algorithm, the estimate of maxaQ (st, at) leads to systematic over-
estimation, introducing a bias in the learning process. A solution to avoid this overestimation
is to use two different estimators, Qmain and Qtarget, trained at different stages [24]. Whereas
Qmain is trained periodically every pre-determined number of iterations, Qtarget is updated,
getting the values of Qmain less frequently.

3 CASE STUDY

To make an example of the DQL implementation, a heat transfer process is proposed for a
one-dimensional problem.

3.1 Case description

For demonstration purposes, let’s suppose a one-dimensional rod of length L, with a natural
convection phenomenon occurring at it’s left end (x = 0) and a heat source at it’s right end
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(x = L), see Fig. 5.

x

Heat
flux

u
Convection

q′′

x = 0 x = Lx = L/2

Figure 5: One-dimensional bar as case of study

The goal of the implementation is to keep the temperature of the rod at a defined value,
located at the middle point of its length (x = L/2). For this problem, the governing equation is
the energy conservation relation, as described in Eq. 2.

∂T

∂t
= α

∂2T

∂x2
, (2)

where T the temperature, t the time, α stands for the thermal diffusivity, and x is the spatial
coordinate. For the convection heat transfer phenomena and the heat source, Eq. 3 and Eq. 4
are used, respectively.

−k

[
∂T

∂x

]

x=0

= −h (Text − [T ]x=0) (3)

−k

[
∂T

∂x

]

x=L

= u, (4)

where k stands for the thermal conductivity of the rod, the coefficient h is the convection
coefficient, Text is the external temperature and u stands for the heat intensity that flows towards
the rod. As initial conditions, we consider that the entore rod is at Tini.

The governing equation, Eq. 2, can be adimentionalized by the change of variables presented
in Tab. 1, by using Eq. 5, Eq. 6 and Eq. 7, obtaining an equivalent equation, Eq. 8.

Table 1: Replacement relations for adimentionalization of the governing equation

Temperature Coordinate Time

θ =
T − Text

Tini − Text
(5) ξ =

x

L
(6) τ =

α

L2
t (7)

∂θ

∂τ
=

∂2θ

∂ξ2
, (8)

Alternatively, it was considered the normalised values of thermal diffusivity α = 1, heat
transfer coefficient h = 1, T ∈ [Text, Tini] with Text = 0 and Tini = 1, and x ∈ [0, L] with L = 1.
The time step was defined as δt = 0.1 s. For the space discretization several meshes were
considered, with 5, 11, 21 and 41 nodes.

The x[m] values considered in this work were in [0, 1] with increment 0.1, leading to 11
possible points to the reference case. The mesh studies were performed with 5, 11, 21 and 41
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points with the corresponding increments. The initial values were defined considering a degree
3 polynomial defined with the conditions: [T ]x=0 = T0, [T ]x=L = TL,

[
∂T
∂x

]
x=0

= T0 − Text and[
∂T
∂x

]
x=L

= u, where T0 and TL are the temperatures at x = 0 and x = L, respectively, with
values in [0, 1] with increment 0.1, and a random perturbation rnd in [−0.005, 0.005]. The time
values, t [s], were set in [0, 2] with increment 0.05 and u ∈ {0, 0.25, 0.5, 0.75, 1}. Therefore, a
training set with 11 × 21 × 5 × 11 × 11 = 139755 rows of eleven Tx values was set, and 10% of
its values randomly chosen were used to train the PINN.

3.2 Solution

To validation purposes, the finite volumes method is used, keeping the same domain dis-
cretization as the PINN method. For the boundary conditions, a zero-volume element is con-
sidered to tackle them.

3.3 PINN parameters

The inputs of the proposed neural network typically contain the x coordinate, the evaluation
time t, the input u value, and the number of initial temperatures, which corresponds to the
discretization number of the domain. The output of the neural network is only one value,
which makes reference to the temperature T at the x coordinate. The inner layers are 5,
whose composition is: 2 × 14, 3 × 14, 2 × 14, 14 and 7 nodes, respectively. As activation
functions, the hyperbolic tangent was chosen to activate the hidden layers, except for the last
layer, in which a linear activation function was chosen. The optimizer algorithm employed
was Adam, and the train was performed with 200 iterations per each of the learning rates:
10−3, 10−4, 10−5, 10−6, 10−6.

3.4 DQL parameters

The DQL neural network was set with 11×Nst,h inputs for the defined number of previous
time steps considered, multiplied by the number of temperatures of each time step (eleven).
The 4 hidden layers with 2× 11Nst,h, 4× 11Nst,h, 2× 11Nst,h and 1× 11Nst,h nodes each, and
sigmoid activation function. For the last layer, the activation function was set with Softmax.
The optimizer algorithm was set to Adam with a learning rate of 10−3 and categorical cross-
entropy as a loss function. The DQL was trained with 400 episodes, with a maximum of 20
steps per episode.

4 RESULTS

4.1 PINN results

The training of the PINN was performed in an Intel® Core™ i7-7700K CPU at 4.20GHz (4
cores, 8 threads) and 64 GB of RAM, and took approximately 17′ (with 5 elements), 2h6′ (with
11 elements), 11h57′ (with 21 elements), and 89h21′ (with 41 elements).

The PINN quality was evaluated through the analysis of its prediction to the temperature
distribution for all (5, 11, 21 or 41) points homogeneously distributed along the range [0, 1], from
the initial condition (at t = 0 s) up to t = 2 s with a time step of 0.1 s. A comparison is made
between the PINN results and the same problem using the Finite Volume Method, enabling
us to note a good agreement and consequently validate the PINN model. The results for 41
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N.D. Gonçalves and J. de Sá Rodrigues

distribution points are presented in Fig. 6.
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Figure 6: Temperature comparison between: (a) the Finite Volume Method approach and (b)
the PINN approach to predict the temperature as function of time along the rod point’s x = 0
(red line), x = 0.5 (green line) and x = 1 (blue line).

A similar analysis can be performed for the temperature profile prediction as a function of
time along the entire rod domain, as shown in Fig. 7, for the case of 41 distribution points.
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Figure 7: Temperature profile comparison between: (a) the Finite Volume Method approach
and (b) the PINN approach to predict the temperature as function of time along the rod profile.
t = 0 s (red line), and t = 2 s (blue line).

4.2 DQL Results

Once the PINN is trained, it is possible to train the policy model with the Deep Q-learning
algorithm. The training was performed on the same processor already referred, it took about
18”, 14”, 11” and 11”, respectively, for 5, 11, 21 and 41 nodes using the FVM, whereas the
PINN model took 51”, 36”, 27” and 27”, respectively. The simulation to test the DQL control
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took around 0.67” with FVM whereas with the PINN took around 1.11”.
The control strategy was set to be a bang-bang approach. The reference temperature was

set to T = 0.5 at x = 0.5.
To set a baseline, a bang-bang controller, i.e., the heating, is turned on when the temperature

at x = 0.5 is equal to or lower than the goal temperature T = 0.5. The evolution of the
temperatures at three points (x = 0, x = 0.5 and x = 1) was monitored, and from this evolution
with FVM versus PINN model (see Fig. ??) it seems that PINN enables a more stable control
when coarser meshes are used, with FVM improving its performance with mesh refinement.
However, it should be noted that the PINN hyperparameters can be changed with a deeper
study to improve this behaviour.

To evaluate the performance of the control strategy, the temperature profiles at three different
locations of the rod, x = 0, x = 0.5 and x = 1 are recorded. Fig.8, presents a comparison between
the use of the Finite Volume Method and the PINN method in conjunction with the DQL method
to control the x = 0.5 temperature. The rod was set to have 41 distribution points.
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Figure 8: Temperature comparison between: (a) the Finite Volume Method approach and (b)
the PINN approach with the control strategy and the DQL implementation. x = 0 (red line),
x = 0.5 (green line) and x = 1 (blue line).

When FVM and PINN were compared, several PINN hyperparameters were tested. The
control that looked at a forecast of 11 time steps in the future gave better results.

Finally, the temperature of the control point (x = 0.5) obtained with the different meshes
was analysed, considering its mean value and its standard deviation on the last 150 (of 200)
time steps. These values (mean and standard deviation) are represented in Fig. 9 against the
mesh element size dx.
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Figure 9: Temperature mean (a) and standard deviation (b), at the control point (x = 0.5) as
function of the element size.

5 CONCLUSIONS

In this work, a Physics-Informed Neural Network was successfully trained, enabling its use
outside of edge computing hardware and minimising the requirements for resource-demanding
equipment.

This model was validated by comparison with a Finite Volume Method solver, proving its
worthiness to predict dynamic behaviour.

The implementation of a PINN model with a Deep Q-learning algorithm, allowed for the
computation of a control policy that satisfied the reference requirements, and was compared
with a Bang-Bang control strategy.

In spite of presenting a 1D problem as the case of study, the results obtained enable one to
show that this strategy is an interesting alternative implementation to use for more complex
control problems.
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