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ABSTRACT  
Offshore wind plays a pivotal role in enhancing Europe's energy security and achieving energy decarbonization goals. 
However, expediting offshore wind deployment necessitates efficient and economical site investigation surveys. To 
address this challenge, we introduce a novel approach utilising a deep neural network (DNN) to establish correlations 
between geotechnical cone penetrometer test (CPT) data and shear wave velocity (𝑉!) from seismic CPT. Subsequently, 
porosity and P-wave velocity (𝑉") are derived using a 𝑉! to bulk density correlation and a dynamic poroelastic model. The 
DNN is trained and tested on a dataset comprising 5284 instances of public-domain geotechnical CPT test data, including 
depth, tip resistance, sleeve friction, and 𝑉! from seismic CPT. During testing, the DNN model demonstrates a mean 
absolute error of 55 m s-1 between predicted and measured 𝑉! values. The uncertainty in 𝑉! predictions is attributed to 
factors such as (i) limited training data for some soil types such as gravelly sands, (ii) intricate relationship between 
geotechnical CPT features and seismic properties influencing 𝑉!, (iii) the presence of CPT features and 𝑉! combinations 
that lie well outside the region from most combinations (i.e. outliers), and (iv) CPT features and 𝑉! measurements that are 
averaged over different depth ranges. The derived porosity and 𝑉"	exhibit centimetre-scale resolution, facilitating 
improved alignment between soil unit depths inferred from geophysical and CPT data. Future work will focus on refining 
the DNN through filtering, pre-processing, and incorporating additional site data and input features such as pore fluid 
pressure and porosity measurements. 
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1. Offshore wind context 
To meet the targets of the Paris Agreement, offshore 

wind capacity needs increasing from 40 GW in 2020 to 
2000 GW by 2050 globally (IRENA, 2021; GWEC, 
2021) and from 12 GW in 2020 to 60 GW by 2030, with 
a vision for 340 GW installed by 2050, in the EU (EU-
COM, 2020).  

In the report “How to succeed in the expanding global 
offshore wind market” from McKinsey (2022) the 
following question is implicit: how can the world achieve 
such sharp increase in offshore wind deployment? 
Achieving 2000 GW of installed offshore wind capacity 
requires more than 500000 km2 of ocean (Putuhena et al., 
2023), roughly twice the size of the UK. Currently, it 
takes an average of 5-10 years for an UK offshore wind 
farm to become operational. Six months saving from this 
time in a UK offshore wind farm with a capacity of 1GW, 
by eliminating or reducing a phase of the soil 
investigation, could reduce 2.2 Mt of CO2 equivalent in 
emissions by getting the GW onstream sooner, relative to 
the same energy generated from fossil fuels (532 tCO2e 
per GWh versus 6 tCO2e from offshore wind; DESNZ, 
2023; Orsted, 2023).  

Offshore wind turbine foundations contribute to 
about 8% of the levelized cost of energy (LCOE) of an 
offshore wind farm. This is £280 million (assuming 
monopile foundations) for 1 GW wind farm with 10 MW 
turbines at 30 to 40 m water depth (Catapult, 2019). 
Dogger Bank, the biggest offshore wind farm operating 
in the UK, has an installed capacity of 3.6 GW supplied 
by 277 turbines of 14.7 MW with a cost of about £1 
billion. Even a small saving of 1% in turbine foundation 
costs from implementing less conservative designs 
driven by a better understanding on geotechnical 
engineering parameters and their variability could 
generate an initial cost saving of £10 million; and 
potentially more significant additional savings by 
ensuring an optimized design for stiffness and capacity to 
increase reliability and fatigue life.  

All foundation and anchor designs require 
geotechnical parameters as input, which are currently 
acquired through an offshore geotechnical site 
investigation with in-situ testing and sampling for later 
laboratory testing. Current methods have evolved from 
the offshore hydrocarbons industry and are not fit for 
purpose to characterise the much larger areas required for 
offshore wind, or provide the versatility needed for 
micro-siting turbines within a farm post-survey.  



 

Acceleration of offshore wind deployment requires 
optimised and more digital approaches and design 
strategies that can bring cost-reduction from 
technological upscaling and minimise environmental 
impact (Greaves et al., 2022). 

2. Background 

2.1.  Offshore geophysical and geotechnical 
site survey 

Compressional, i.e. P-wave, seismic reflection 2D 
data is routinely acquired, and 3D data is increasing 
acquired, during the site selection phase of an offshore 
wind project. Two-dimensional shear, i.e. S-wave, data 
are not collected for offshore site survey, but 1D profiles 
can be acquired by seismic cone penetrometer testing. 
One-dimensional profiles of mechanical seabed 
resistance are acquired by a standard cone penetrometer 
test (CPTu), which measures tip cone resistance (𝑞#), 
sleeve friction (𝑓!), and generally penetration pore fluid 
pressure (𝑢).  

P-wave data and the associated P-wave velocity (𝑉"), 
is affected by both the response of the pore fluid and the 
soil skeleton, which complicates the interpretation of the 
data and correlation with geotechnical properties. S-wave 
data and the associated S-wave velocity (𝑉!), is primarily 
affected by the response of the soil skeleton and provides 
a more direct link to the geotechnical properties shear 
stiffness of the soil at small strains (𝐺, sometimes termed 
dynamic shear stiffness or 𝐺$%& in the geotechnical 
literature) and undrained shear strength (Vardy et al., 
2017). S-wave velocity and 𝐺 are key parameters for the 
prediction of ground deformation and soil-foundation 
response to cyclic loading. P- and S-wave velocity can be 
defined by the bulk and shear moduli of the soil at small 
strains (𝐾 and 𝐺) and the bulk density of the soil (𝜌) 
through Eq. 1a and b, respectively: 

𝑉" = +'() *+ ,
-

	 	(1a)	

𝑉! = +,
-
	 	(1b)	

The application of advanced techniques such as 
elastic full waveform inversion to (ultra) high frequency 
reflection seismic data can solve decimetre-scale changes 
in 𝑉" (e.g. Provenzano et al., 2018). However, such data 
is not routinely acquired and, if it is available, such 
advanced techniques are not common practice due to the 
computational and personnel expense. Currently, smooth 
𝑉" distributions of the interval velocities derived from 
normal move-out correction (with metre to decametre-
scale resolution) are applied for time-depth conversion. 

Generally, direct measurements of 𝑉! in seismic CPT 
are only collected at 10-15% of the CPT locations, so are 
sparse and insufficient to derive local empirical relations 
between geotechnical CPT data and 𝑉! that are 
statistically significant. S-wave velocity can also be 
measured in the lab via the resonant column or bender 
elements, but getting high-quality, undisturbed samples 
can be challenging and expensive, particularly in soft 

soils, and only provide discrete data points. As a result, 
empirical relations from other locations are used to 
estimate 𝑉! or 𝐺 from geotechnical CPT features. These 
relations use cone tip resistance in its various forms (e.g. 
𝑞#, 𝑞., 𝑞/0.) to derive 𝑉! (e.g. Duan et al., 2019), as both 
are controlled by relative density, effective stress, and 
soil fabric. However, even if the best performing existing 
empirical relation is selected for the given site, this 
common solution can be sub-optimal and the error 
(thereon defined as the difference between predicted and 
true values) significant. An alternative method for 
deriving 𝑉! or 𝐺 and 𝑉" from geotechnical CPT features 
is therefore attractive, and is explored in this paper using 
DNN and poroelasticity theory. 

2.2. Poroelasticity 

Dynamic poroelasticity theory (Gassman, 1951; Biot, 
1956a, b) and grain contact theory (e.g. Walton, 1987) 
are routinely applied in geophysics and reservoir 
engineering to link the wave velocities 𝑉" and 𝑉! to rock 
properties such as porosity or pore fluid and hydrate 
saturation (e.g. Marin-Moreno et al., 2017). 

Even though porosity clearly influences both 𝑉" and 
𝑉! of shallow seabed soils (Fig. 1), i.e. the top 100 m of 
seabed, the use of these theories and related models, for 
shallow seabed applications comprising uncemented 
soils at low effective stress is rare, and few publications 
assessing their performance exist (e.g. Dvorkin et al., 
1999; Lee, 2010). Three possible reasons are: (i) poor 
knowledge transfer between the geotechnical and 
geophysical communities; (ii) limited understanding on 
how uncertainties in the physical representation of these 
models and input physical parameters such as 
coordination number (the average number of grain 
contacts per grain) and elastic moduli of the solid grains 
propagate to the geotechnical properties; and (iii) the 
magnitude of strains and loading frequency of P and S-
wave data are substantially smaller and larger 
respectively than those used for geotechnical design (e.g. 
Bazle et al., 2006), which adds uncertainty in relating 
geophysical to geotechnical parameters. 

 
Figure 1. Synthetic results from three poroelastic analytical 

models assuming a clayey sand (clay content up to 20%) 
and 10% uncertainty in porosity (grey zone). The general 
trend of increasing 𝑉! and 𝑉" with depth is caused by the 

associated increase in effective stress.  

Porosity (𝜑), which can be expressed as a void ratio, 
𝑒 = 𝜑 (1 − 𝜑)⁄ , is a key parameter for soil type 



 

characterisation and in geotechnical design of offshore 
wind fixed and floating foundations. Porosity affects the 
total stress through the bulk density, bulk and shear 
stiffness and shear strength, drainage and pore pressure 
dissipation through the permeability, and relative density 
of coarse-grained soils. Despite its importance, 
geotechnical design still relies on porosity data at discrete 
depth intervals and from borehole samples with 
separations between boreholes of hundreds of metres to 
kilometres. 

Here we present an approach that combines machine 
learning via deep neural network (DNN) with a dynamic 
poroelasticity model to correlate measured CPT 
parameters to 𝑉! , 𝑉" and porosity at centimetre-scale with 
an uncertainty measure. 

3. Method 
The proposed workflow consists of three main stages: 
1. Training of DNN using geotechnical CPT data 

and 𝑉! from seismic CPT data, followed by 
validation and testing of the DNN to predict 𝑉! at 
centimetric scale from geotechnical CPT data.  

2. Uncertainty quantification of the predicted 𝑉! 
from the DNN compared to true values using 
conformal prediction; 

3. Estimation of porosity (𝜑) and 𝑉" with uncertainty 
measure using the predicted 𝑉! and its uncertainty, 
an empirical correlation between bulk density (𝜌) 
and 𝑉!, and a poroelastic model relating 𝜑 and 𝑉! 
to 𝑉".  

3.1. Training of DNN & prediction of 𝑽𝒔  

 DNN architecture 

We use the TensorFlow ecosystem and the Keras 
neural network library built-in Python to implement a 
DNN for a regression problem (TensorFlow, 2023). Our 
problem involves mapping the selected CPT data input 
features (depth; corrected tip resistance, 𝑞.; sleeve 
friction, 𝑓!; soil behaviour type index, 𝐼#, Eq. 2a, 
Robertson, 2009) to 𝑉! (output) (Fig. 2).  

𝐼# = {[3.47 − log(𝑄.)]2 + [log(𝐹3) + 1.22]2}4.6	 (2a)	

The normalized cone resistance 𝑄. and normalized 
friction ratio 𝐹3 in Eq. 2a are given by 

𝑄. =
7!89"
9"#

	 (2b)	

𝐹3 = 100 F :$
7!89"

G	 (2c)	

where 𝜎; and 𝜎;<  are the vertical total and effective 
stress, respectively. 

 
Figure 2. Schematic of the DNN architecture. Nomenclature: 

depth, z; corrected tip resistance, 𝑞#; sleeve friction, 𝑓";  
soil behaviour type index, 𝐼$; shear wave velocity, 𝑉". 

The DNN consists of a pre-processing layer that 
normalizes the different input features to have a 
distribution around 0 with standard deviation of 1, three 
hidden non-linear layers with ReLU activation functions, 
and a linear single output layer. The hyperparameters (i) 
units for each of the three hidden layers (cases: 16, 32, 64 
or 128 units) and (ii) the learning rate for the Adam 
optimization algorithm (ranging between 10-4 to 10-2) are 
obtained using the Bayesian optimization algorithm 
within the KerasTurner (2023) hyperparameter 
optimization framework. We choose the mean absolute 
error as a loss function as it is less sensitive to outliers 
(here referred to CPT features and 𝑉! combinations that 
lie well outside the region from most combinations) than 
the mean squared error.  

 DNN dataset 

The CPT and seismic CPT data used to train, validate, 
and test the DNN was downloaded from two public-
domain sources of geodata from real sites located 
offshore Netherlands, and in Austria and Germany 
(RVO, 2023; Oberhollenzer et al., 2021). Prior to 
training, the data were pre-processed to select only the 
geotechnical CPTs that had near coincident seismic CPTs 
(𝑉! data). Having identified the subset of near coincident 
geotechnical and seismic CPT, the set was further filtered 
as geotechnical CPT data is acquired every 2 cm and 
seismic CPT gathers 𝑉! data every 1 m, so geotechnical 
CPT data closest in depth to 𝑉! data was selected.  

The final dataset consisted of 5284 instances (Fig. 3) 
with 1526 instances from the Dutch sector of the North 
Sea (RVO, 2023) and 3758 instances from onshore tests 
in Austria and Germany (Oberhollenzer et al., 2021), 
covering a wide range of soil types (Fig. 4). The dataset 
was randomly split into 80% for the training set, 10% for 
the validation set, and 10% for the test set. The validation 
set is used to find the optimum hyperparameters and the 
test set is also used as a calibration set for uncertainty 
quantification with conformal prediction (Section 3.2).  

 
Figure 3. Scatter plots showing the joint distribution of each 

pair of parameters used in the DNN for the combined 
dataset of 5284 instances. The main diagonal shows the 

frequency distribution plots of each parameter.  



 

 
Figure 4. Soil types for the 5284 instances according to 

Robertson’s (1990) soil type classification chart (green 
dots for Oberhollenzer et al., 2021; brown dots for RVO, 

2023). Numbers in red indicate the different soil type 
regions: 1, sensitive clay and silt; 2, organic soil; 3, clay; 
4, silt mixture; 5, sand mixture; 6, sand; 7, gravelly sand; 
8, very stiff overconsolidated sand to clayey sand; 9, very 

stiff overconsolidated clay to silt.    

3.2. Uncertainty quantification of 𝑽𝒔 

We use conformal prediction to provide distribution-
free uncertainty intervals that are guaranteed to contain 
the true value of 𝑉! with a user-defined probability 
(Angelopoulus and Bates, 2022; Eq. 3). This uncertainty 
quantification framework is ideal for black-box machine 
learning applications, in our case a pre-trained DNN. For 
example, if a user defines a confidence level of 90% in 
predicting 𝑉! from CPT features with the proposed DNN, 
conformance prediction ensures that the derived 
uncertainty intervals of a new prediction contain the true 
𝑉! in at least 90% of the cases, and so produces 𝑉! 
predictions outside the intervals in 10% or less of the 
cases. Simplifying, this framework offers a measure of 
how confident a machine learning model is in a new 
prediction by controlling the probability of making errors 
based on past experience.  

ℙ = K𝑌.0!. ∈ 𝐶(𝑋.0!.)P ≥ 1 − 𝛿	 (3)	

In Eq. 3, 𝑋.0!. and 𝑌.0!. are the test input and unknown 
test output, respectively, 𝛿 ∈ (0,1) is the user-defined 
error rate, 1 − 𝛿 is the confidence level, and 𝐶 is the 
prediction interval which is defined as  

𝐶(𝑋.0!.) = {𝑦 ∶ 𝑠(𝑋.0!., 𝑦) ≤ 𝑞X}	 (4)	

In Eq. 4, 𝑠(𝑋.0!., 𝑦) ∈ ℝ is a user-defined score 
function that encodes a heuristic notion of uncertainty 
between the DNN-predicted value and the true value, and 
𝑞X is the quantile of scores defined as  

𝑞X = (/(>)(>8@)
/

	 (5)	

where 𝑛 is the number of data instances in a 
calibration dataset.  

We apply what is known as split or inductive 
conformal prediction, which requires splitting the data 
into training and calibration datasets. At test time, 𝑌.0!. is 
unknown and so the score function and quantile level are 
computed using the calibration dataset not seen during 
the DNN training. Here, we consider that the calibration 
dataset and the test set are the same.  

We employ Sousa's (2022) implementation of both 
the naïve conformal prediction, to provide intervals with 
constant 𝑉! uncertainty with depth, and of the 
conformalized residual fitting, to provide adaptive 
intervals with variable 𝑉! uncertainty with depth.  

3.3. Estimation of porosity and 𝑽𝒑 

We use the predicted 𝑉! and Mayne’s (2007) 
empirical correlation between bulk density (𝜌) and 𝑉! to 
estimate porosity (𝜑) (Eq. 6). This is the only empirical 
correlation employed in the proposed method.  

𝜌 = 10𝑔 ]4.17	ln _𝑉! F
"%
9"#
G
4.26

` − 4.03a	 (6a)	

𝜑 = -&8-
-'8-

	 (6b)	

where 𝑔 is gravitational acceleration (9.81 m s-2), 𝑝% 
is atmospheric pressure in the same units as 𝜎;< , and we 
assume densities of solid grains (𝜌B) and fluid (𝜌:) of 
2650 kg m-3 and 1030 kg m-3, respectively. 

Looking at Eq. 6a without previous consideration of 
uncertainty in the input parameters and the form of the 
correlation, one may be tempted to re-arrange it and 
estimate 𝑉! from 𝜌. This should be avoided, as 
uncertainty in 𝜌 will propagate exponentially to 𝑉! 
uncertainty, and likely provide unrealistic results. For 
example, if we assume a 𝑉! of 300 m s-1 with a 10% 
uncertainty and 𝜎;<  of 200 kPa (approximately the 𝜎;<  at 
20 m below seafloor under hydrostatic conditions) this 
results in a 𝜌 of 1900±44 kg m-3 (2% uncertainty). In 
contrast, if we assume a 𝜌 of 1900 kg m-3 with a 10% 
uncertainty at the same effective stress of 200 kPa this 
results in a 𝑉! of 300± 174 m s-1 (58% uncertainty). 

To estimate 𝑉" we use a poroelastic model (Lee, 2010) 
defined by Eqs. 7 and 8. This particular formulation was 
selected as it only requires one fitting parameter, the 
consolidation factor (𝛼). The parameter 𝛼 is related to the 
degree of consolidation and effective stress and its 
general behaviour is known, for example it becomes 
small as the degree of consolidation and effective stress 
increases. However, its exact behaviour depends on site-
specific conditions and so it is effectively a free/fitting 
parameter (Lee, 2005). 

𝐾 = 𝐾BK1 − 𝛽"P + 𝛽"
2 fCD(8EF

'&
+ E

''
g
8>
	 (7a)	

𝐺 = 𝐺B(1 − 𝛽!)		 (7b)	

In Eq .7, 𝐾 and 𝐺 are the bulk and shear moduli of the 
soil as defined in Eq. 1, 𝐾B and 𝐾: are the bulk modulus 
of the solid grains and the fluid, respectively, and 𝐺B is 
the shear modulus of the solid grains. The Biot 
coefficient in the bulk modulus (𝛽"), and the coefficient 
(𝛽!) in the shear modulus can be defined as 



 

𝛽" =
E(>(G)
(>(G∙E)

	 	(8a)	

𝛽! =
E(>(IG)
(>(IG∙E)

	 	(8b)	

where  

𝜔 = >(2G
>(G

	 	(8c)	

It should be noted that whereas 𝛽" has the real 
meaning of the Biot’s coefficient, which is defined as the 
ratio of pore-volume change to bulk volume change at 
constant pressure, 𝛽! is just a convenient way to express 
𝐺 in the same way as 𝐾 (Lee, 2005).  

Using Eq. 7 requires site-specific measurements of 
the effective moduli of the solid grains. Indeed, these are 
key parameters in the model that can vary substantially 
depending on the mineralogy composing the solid grains. 
For a given site, we can estimate a depth profile of 𝐾B 
and 𝐺B using the 𝐼# obtained from the CPT data. To do 
this we propose the following relations: 

𝐾B =

⎣
⎢
⎢
⎢
⎡
𝐾!%/J = 37	𝐺𝑃𝑎					if					𝐼# < 1.31
𝐾$K& = 𝐾!%/J + F

')*%+8'$%,-
2.L68>.*>

G ∙ …
… (𝐼# − 1.31)	if	1.31 < 𝐼# < 2.95
𝐾#M%N = 23	𝐺𝑃𝑎						if					𝐼# > 2.95⎦

⎥
⎥
⎥
⎤
		 (9a)		

𝐺B =

⎣
⎢
⎢
⎢
⎡
𝐺!%/J = 44	𝐺𝑃𝑎					if					𝐼# < 1.31
𝐺$K& = 𝐺!%/J + F

,)*%+8,$%,-
2.L68>.*>

G ∙ …
… (𝐼# − 1.31)	if	1.31 < 𝐼# < 2.95
𝐺#M%N = 8	𝐺𝑃𝑎						if					𝐼# > 2.95 ⎦

⎥
⎥
⎥
⎤
	 (9b)	

where the bulk and shear moduli for sand correspond 
to those of quartz, and for clay to those of a mixture of 
clay minerals (values obtained from Mavko et al., 2009). 
The 𝐼# values of 1.31 and 2.95 correspond to the limits 
below and above which the soil is classified as sand and 
clay, respectively, according to e.g. Robertson's (1990) 
CPT-based soil classification. The 𝐼# values in between 
these limits are classified as soil mixtures of sand, silt and 
clay and above 3.6 are, in fact, classified as organic soil. 
Here we implicitly assume that an organic soil has the 
same solid grain moduli than clay, but Eq. 9 allows 
adding an explicit definition of solid grain moduli for 
organic soils, if required. 

Combining Eq. 1b, Eq. 7b, and Eq. 8b-c and using the 
predicted 𝑉! and estimated 𝜌,	𝜑, and 𝐺B , the parameter 𝛼 
can be obtained by solving Eq. 10. Note that only the 
positive solution of Eq. 10 is physically valid.  

2𝛼2 + (1 − 𝐶)𝛼 − 𝐶 = 0	 (10a)	

where 

𝐶 =
O>8.$∙

0 1
2&

P8E

EO.$∙
0 1
2&

P
	 (10b)	

To calculate 𝐾 with Eq. 7a we need 𝐾:. In this case, 
we assume a constant value for water of 2.3 GPa but a 
pressure, temperature and salinity depending effective 𝐾: 
(for a mixture of pore fluids) can also be calculated 
externally and introduced here (e.g. Marin-Moreno et al., 
2017). Finally, 𝑉" can be obtained from Eq. 1a. 

4. Results  

4.1. Performance of DNN 

This section presents the performance of the DNN to 
predict 𝑉! from geotechnical CPT data. The optimum 
DNN architecture produces a prediction with a mean 
absolute error ranging between 59±2 m s-1, depending on 
the randomly selected training set, which also influences 
the optimum hyperparameters found. However, because 
of the size of the entire dataset, the influence of the 
random splitting of sets is minor as it only produces a 
change of ±2 m s-1.  

Figure 5 shows how the mean absolute error evolves 
with epoch for an optimized model that produces an error 
of 57.5 m s-1 in the evaluation set, after trying 50 model 
combinations, and of 55 m s-1 in the testing set (Fig. 6). 

The optimized DNN model can be considered a good 
model in terms of fitting after 100 epochs, as the error in 
both the training and validation sets almost plateau (Fig. 
5). One of the goals of the validation set is to be able to 
check for overfitting, i.e. if fitting in the training set 
improves with increasing number of epochs but it does 
not in the validation set. Overfitting negatively affects the 
generalization of the DNN to unseen data, and Fig. 5 
clearly shows that it is not happening; this is a positive 
result. An interesting observation is that the error in the 
validation and testing sets are slightly lower than in the 
training set. This observation, although unexpected as the 
model learns from the training set and we should expect 
it performs better in this set, is likely because the three 
sets are drawn from the same underlaying data 
distribution and the size of the validation and testing sets 
are significantly smaller than the size of the training set 
(10% versus 80% of the whole dataset).   

 
Figure 5. Mean absolute error evolution with epoch 

associated to the optimal hyperparameter combination 
shown in the inset table.  

Figure 6 shows the correlation of predicted 𝑉! with the 
true values measured from the seismic CPTs for the test 
set. Clear clustering about the 1:1 line is evident, albeit 
with some significant scatter. It is also evident that the 
model tends to underpredict the 𝑉! for true values above 
400 m s-1, which correspond to sands with high 𝑞. and 
gravelly sands (zones 6 & 7 in the Robertson chart shown 
in Fig. 4). 



 

 
Figure 6. Predictions versus true values of 𝑉" and associated 

histogram for the testing set. The mean absolute error for 
the test set is 55 m s-1. No data points are under the inset. 

4.2. Uncertainty in 𝑽𝒔, 𝑽𝒑 and porosity 

We illustrate the predictions of 𝑉!, 𝑉" and porosity for 
a randomly selected CPT from the Hollandse Kust West 
Wind Farm Zone, drawn from the RVO (2023) open-
source data set. Figure 7 shows that the DNN-based 
prediction of 𝑉! generally matches well the true 𝑉! values. 
For this example, a 70% confidence level for the 
conformal prediction intervals (i.e. at least 70% of data 
should be contained within the intervals; see section 3.2) 
provides full coverage of the true 𝑉! values. The mean 
absolute uncertainty for the constant 𝑉! intervals (naïve 
conformal prediction) is ±117 m s-1 and for the variable 
intervals (conformalized residual fitting) is ±147 m s-1. 
For this example, the shape of the 𝐼# profile is very 
similar qualitatively to the 𝑉! profile, while remarkably 
different to the 𝑞., and 𝑓! profiles. Based on this just one 
example, we should be cautious about extracting a 
general implication for this observation. However, this 
aspect is also implicitly shown by the similar shape of the 
𝐼# thresholds and the contour shapes of the shear wave 
velocity factor or shear modulus factor when plotted in 
Robertson’s soil type chart (Robertson, 2009).  

 
Figure 7. CPT and seismic CPT data (black dots) for test 002 

in the Hollandse Kust West Wind Farm Zone and 
predicted 𝑉" with constant and variable conformal 

intervals at 70% confidence level.  

Figure 8 shows the estimated 𝑉" and porosity and their 
upper and lower uncertainty bounds. These uncertainty 
bounds were obtained by introducing the variable upper 
and lower uncertainty bounds of the predicted 𝑉! (Fig. 7) 
into step 3 of the workflow (Section 3.3). Uncertainty in 
𝑉! predictions drive a mean absolute uncertainty in the 
predicted 𝑉" and porosity of ±145 m s-1 and of ±0.15, 
respectively.   

 
Figure 8. Seismic CPT data (black dots) for test 002 in the 

Hollandse Kust West Wind Farm Zone and predicted 𝑉", 
𝑉! and porosity with upper and lower uncertainty bounds.  

5. Discussion 
There is increasing interest in using machine learning 

algorithms for 𝑉! prediction from CPT data (e.g. Chala 
and Ray, 2023 and references therein), partly due to the 
increase of publicly available soil investigation data that 
enable training and testing of different methods. Some of 
the studies that evaluate the performance of different 
machine learning algorithms disregard the actual 
complexity of the underlying and unknown relation 
between CPT features and the target 𝑉!. This is because 
the models are trained and evaluated with 𝑉! labels 
calculated from an imposed empirical correlation, based 
on the same CPT data comprising the features, instead of 
actual 𝑉! data (e.g. Chala and Ray, 2023). Our focus in 
this work was on assessing the effectiveness of a popular 
machine learning algorithm such as DNN in predicting 
real 𝑉! data, i.e. without a pre-imposed behaviour.  

Estimating 𝑉! and its uncertainty using DNN and 
conformal prediction provides an attractive pathway 
towards high-fidelity characterization of the seabed at 
centimetre-scale. However, as in all DNN applications, 
the accuracy of the predictions depends upon the amount 
and quality of the training dataset. Even though the 
amount of data is reasonably large and variable, the 
model tends to underpredict the 𝑉! for soils with true 𝑉! 
values above 400 m s-1, corresponding to sand with high 
𝑞. and gravelly sand. This might be partly caused by poor 
data coverage for these soils, which also partly explains 
the wide uncertainty intervals produced with conformal 
prediction, even considering an arguably low confidence 
interval of 70% (a higher confidence interval of let us say 
95% would provide wider intervals). Hence, to provide 
higher fidelity predictions of 𝑉! and, most importantly, 



 

generalization to other sites, the dataset should be 
extended to include a larger representation of sand with 
high 𝑞. and gravelly sand (Fig. 4, upper region 6 and 
region 7), and very stiff overconsolidated sand to clayey 
sand and clay to silt (Fig. 4, regions 8 and 9) which are 
currently missing. 

In addition to data scarcity for specific soil types, 
other reasons that explain the wide uncertainty intervals 
are: (i) the complex relationship between the CPTU 
features (depth, 𝑞., 𝑓!, and 𝐼#) and target 𝑉!; (ii) the 
presence of outliers that have not been removed from the 
data; (iii)	CPT features being influenced by sediment 
type properties over variable depth ranges different to 
those for	𝑉!. To address (i), we can include other features 
such as pore pressure. In this work we did not include 
pore pressure measurements because 43% of the 
instances used from Oberhollenzer’s et al. (2021) dataset 
lack them, and we wanted the DNN’s input layer to have 
the same number of real data instances per feature. 
Addressing (ii) would require some a-priori filtering of 
data outliers by expert or engineering judgement, which 
in this study we consciously avoided to explore a 
scenario that minimizes subjectivity. It is known that the 
measured 𝑞. is actually an average of the tip resistance 
across the tip influence zone, which is in the order of 
several cone diameters (decimetres to a few meters) 
depending on soil type. Similarly, 𝑉! measurements from 
seismic CPT are an average of the shear-wave properties 
of soils over a metre distance in depth. Hence, to address 
(iii), 1 m moving average with depth for 𝑞., and possibly 
also for 𝑓!, might be applied during the pre-processing 
phase to generate the dataset.  

Our proposed method provides predictions of 𝑉" and 
porosity that are causally linked to the CPT data and the 
predicted 𝑉! through Lee's (2010) theoretical poroelastic 
model, and so enhance on-going efforts on data-driven 
only ground models (e.g. Vanneste et al., 2022). Our 
proposal should be used in combination with the 𝑉" 
estimated from seismic data and laboratory 
measurements of porosity. This can help providing a 
better alignment between the depths of the 
geophysically-inferred soil units and the CPTu-inferred 
soil units. Unfortunately, we did not have access to the 
raw seismic data to evaluate the estimated 𝑉", and 
including porosity measurements is work in progress. 
Indeed, porosity measurements could also be included as 
an input feature in the DNN.  

6. Conclusions 
The seabed where most offshore wind turbines are 

and will be developed is highly heterogenous with 
distinct lateral and depth variations in stratigraphy, soil 
types and their geotechnical properties. This spatial 
variability can only be well-captured by combining 
metric to decametric resolution geophysical data, CPTu 
data (centimetric resolution), and data from lab tests in 
well-selected soil samples. The proposed workflow 
integrates some of these different datasets and spatial 
resolutions for 𝑉!, 𝑉" and porosity estimation with 
uncertainty measure. However, this is work in progress, 
and the DNN needs refinement including further filtering 
and/or pre-processing of the data used, adding new site 

data from other areas to avoid sparse data regions, and 
testing other input features, such as pore pressure and/or 
porosity measurements, to capture better the complex 
relation between 𝑉! and CPT data. This concept can 
inform requirements of high-resolution geophysical 
surveys and enable early extraction of synthetic 
geotechnical parameters for engineering design. The 
overall ambition of the on-going work is to reduce the 
amount of geotechnical investigation required for a given 
site, and enable flexibility of windfarm layout post 
survey, in both cases reducing costs, increasing reliability 
and accelerating offshore wind deployment.  
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