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En las últimas décadas, el avance en términos de capacidad computacional ofrece la posibilidad de analizar 
más detalladamente el comportamiento de los materiales. Por un lado, es posible caracterizar y analizar los 
materiales en una dimensión más pequeña y capturar micro o nanocambios. Por otro lado, la capacidad de 
memoria computacional permite realizar análisis numéricos, y en particular de elementos finitos, con miles 
de millones de nodos, lo que permite obtener resultados lo más exacto posible. 

En este sentido, el objetivo de este trabajo es la modelización numérica del comportamiento a nivel micro 
de materiales no homogéneos, con especial atención a los materiales compuestos, en condiciones de carga 
termo-mecánica.  

Dado el elevado coste computacional de estos análisis, en este trabajo se proponen dos procedimientos 
multiescala computacionalmente eficientes capaces de predecir la respuesta mecánica no lineal de 
materiales compuestos. Esto se logrará mediante la construcción de una base de datos (DB) calculada a 
priori. A través de las definiciones de un parámetro de daño equivalente (݀௘௤), función de la tensión global 
en la microescala. La DB se construye a partir de la realización de una serie de pruebas virtuales en la 
microscala consistentes en aplicar una deformación y obtener la tensión homogenizada asociada, así como 
el nivel de daño equivalente ݀௘௤ . Posteriormente, el comportamiento de la estructura, a nivel macro, se se 
podrá obtener a partir de los resultados almacenados en la DB, sin ser necesaria la resolución del micro-
modelo. 
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In the last decades, the improvements in terms of computational power provides the capability to analyze 
with more detail the materials behavior. On one hand, going deeper in the materials to study an increasingly 
smaller dimension and capture micro- or nano- changes. On the other hand, the increasing computational 
memory allows to perform finite elements analysis with millions of nodes, that permits to obtain more accurate 
results. 

In this scenario, the focus of this work is the numerical modeling of the microscale behavior of 
inhomogeneous materials, with special attention to composite materials under thermo-mechanical loading 
conditions. This work also proposes and implements optimization tools, at a constitutive law level, as well as 
the level of both, macro- and micro-structural algorithms.  

The study presents two computationally efficient multiscale procedures cables of predicting the mechanical 
non-linear response of composite materials. This is achieved, using an RVE Data Base (DB) calculated a-
priori. Through the definitions of an equivalent damage parameter (݀௘௤), function of the global stress at the 
microscale, a series of strain controlled virtual tests of the RVE are performed storing in the DB the 
homogenized stress and strain state reached at certain levels of ݀௘௤ . Afterwards, the solution of the 
macroscale structure can be solved using the interpolation of the stored data. 
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 Introduction 
Nowadays, numerous materials used in engineering industrial 
field, as well as in biological and biomedical area, are 
characterized by two or more constituents, also called phases. 

Carbon fiber composites, polycrystalline structures, concrete, 
bone or wood are only some examples of components where 
the constituents could be distinguished at certain length scale. 
These materials are called inhomogeneous. The length scale as 
well as the type of constituents are only some example of 
possible criterion to classify them. Indeed, microstructure take 
an important role during the analysis of the material because of 
the topology and the properties of each phase that determines 
its behavior. 

It is also possible to say that defining a microscale structure 
means to study the behavior of each phase in order to determine 
the overall behavior of the global structure in terms of physical 
properties such as mechanical, thermal, electrical, etc. 

Geometry, structure, properties and behavior of the 
inhomogeneous materials could be separated in two different 
fields depending on its length scale. On one hand, the 
microscale (or fine-scale) corresponds to the microstructure 
where each phase is distinguishable. On the other hand, the 
macroscale (or coarse-scale) is the largest scale (and length) of 
the model, in contrast to the microscale that represents the 
lowest scale. 

The most important assumption that has to be made when 
studying the micromechanical models is the scale separation 
between micro and macro structures. That assumption allows to 
separate the contribution of the microscale, defined as 
fluctuation part, from the macroscale ones, the constant part.  

As it is explained in Bohm [1] these two contributions can be 
distinguished as fast and slow variables, where the fast 
variables, microscale fluctuations, can influence the behavior of 
the macroscale only through their volume average. Instead, the 
slow variables, the macroscale contribution, are not significant 
at the microscale level and can be considered as locally 
constant.  

Otero et al. [2] and Petracca et al. [3], also provides an efficient 
multiscale strategy that, in case of first-order homogenization 
(FE2), ensures the macro and micro mesh independence taking 
into account the conservation of the energy dissipation of 
through the scales. 

 Multiscale Methods 
One of the most popular multiscale methods is the first-order 
homogenization. In this procedure, the strain obtained when 
analyzing the macroscopic structure is used to define the 
boundary conditions, applied on a Representative Volume 
Element RVE, to solve the Boundary Value Problem (BVP) at 
the microscale.  

The basic principles of homogenization method were provided 
by Suquet [4] to obtain the constitutive equation for the 
homogenized properties of a heterogeneous material. The unit 
cell is defined as a microscopic subregion that is representative 
of the entire microstructure in an average sense. The RVE is 

employed to obtain the effective properties for the homogenized 
material because it is assumed that it must contain a sufficient 
number of heterogeneities [5] [6]. 

The solution of the problem at the microscale, under such 
conditions, acts as an equivalent constitutive law for the 
macroscale, and it provides material stiffness and stresses as 
the volume average of the microscopic ones. This equivalent 
constitutive law is used in all the integration points of the 
macroscopic model to obtain the global response of the 
structure. When dealing with nonlinear microstructures, it will 
lead to an iterative procedure in which the RVE must be solved 
for different boundary conditions until both scales reach 
equilibrium, ensuring consistency between the micro- and 
macroscale solutions. 

The first-order homogenization technique developed assumes a 
scale separation between the macro and the microscale, that is, 
the characteristic length of the microscale should be much 
smaller than the length of the macroscale elements, L: l<<L [7].  

The main steps of the classical FE2 technique can be resumed 
in the figure below. On each integration point of the discretized 
macroscale domain, the macroscopic strain tensor provides the 
input variables for the microscale domain. Then, the solution of 
the microscopic behavior of the RVE provides the macroscopic 
output and properties of the equivalent homogeneous medium. 

 
Figure 1. Representative homogenization scheme. 

In this paper, for the sake of simplicity, the procedure assumes 
small displacements and a quasi-static behavior in both macro 
and micro scales. However, the methodology proposed can be 
extended to other cases. 

 Discrete Multiscale Threshold 
Surface (DMTS) and Discrete 
Multiscale Constitutive Model 
(DMCM) 

The purpose of this paper is to provide two multiscale 
optimization techniques, directly derived from the classical first 
order multiscale theory. Considering these two methods, the 
main hypothesis is to construct a stress-strain state collector 
based on multiple RVE simulations able to describe the 
microscale behavior. Using an Equivalent Damage Parameter 
(݀௘௤), index of the difference between the real and the elastic 
stress, the Discrete Multiscale Threshold Surface (DMTS) will 
identify with a finite number of points within the strain space the 
initiation of the non-linearity of the RVE. The DMTS is intended 
to reduce the computational cost of FE2, by identifying, during 
the analysis, where the RVE generation is needed and where 
the homogenized elastic properties are sufficient to obtain the 
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macroscale response. As an extension of the DMTS, the 
Discrete Multiscale Constitutive Model (DMCM) aims to 
describe the complete behavior of the microstructure identifying 
multiple threshold surfaces related to increasing levels of ݀௘௤ 
decoupling the analysis from the FE2 methods.  

Below, the authors will describe in detail all the aspects of both 
methods, providing examples and algorithms used for the 
numerical implementation. 

 Strain database definition 
In general, due to the complexity of the RVE, we cannot know 
a-priori the real stress behavior of the microscale. To overcome 
this problem, we will study the strain space doing a preliminary 
analysis of the RVE for different loading cases storing the stress 
response of the structure. These strains, defined as strain 
histories, are in the multidimensional spaces (ߝ௫௫ , ௬௬ߝ ,  ௫௬) forߛ
2D or (ߝ௫௫ , ௬௬ߝ , ௭௭ߝ , ௫௬ߛ , ௬௭ߛ   .௫௭) for 3D mechanical problemsߛ,

To make accessible this information during the analysis we will 
store the strain histories in a Homogenized Strain Database. In 
this chapter, for simplicity, we will only describe the 2D case, but 
it is perfectly extendable to 3D. 

To obtain a complete definition of the microscale behavior we 
will impose as strain histories the value of evenly spaced point 
projected on the sphere of unitary radius centered in the origin 
of the axes (ߝ௫௫ , ௬௬ߝ ,  ௫௬). We can uniquely define these pointsߛ
in 3D spherical coordinates system as the combination of three 
parameters (ߠ,߮,  as we can see in the Figure 2, where the ,(ߣ
angles ߠ and ߮ represents the direction of the strain loads that 
we applied to the microscale and ߣ is the unitary strain intensity. 

Then we can obtain the components of the strain vector in 
cartesian coordinates as: 

൞
௫௫ߝ = ߣ ⋅    (ߠ)ݏ݋ܿ

௬௬ߝ = ߣ ⋅ (ߠ)݊݅ݏ ⋅ (߮)ݏ݋ܿ
௫௬ߛ = ߣ ⋅ (ߠ)݊݅ݏ ⋅ (߮)݊݅ݏ

     (1) 

ߣ = ‖ߝ‖ = ටߝ௫௫ଶ + ௬௬ଶߝ + ௫௬ଶߛ     (2) 

From Eq. 1 we can observe that the strain is periodic with sin 
and cos functions of ߠ and ߮ and these two angles can be 
varying between [−ߨ,ߨ]. The subdivision of this interval 
determines the number of analyses to preform and the precision 
of the discretization. 

 
Figure 2. Total number of analysis for 2D and 2D Reduced case and 

3D Strain Space. 

Introducing the parameter  ݉ ∈  [1, ݂݅݊[ as subdivision of the 
interval [0,ߨ] we can uniquely define the strain direction with a 
pair of integer parameter ∈ [−݉,݉], that we will call tag. With 
this method, each point was equally spaced from the other and 
the angles ߠ and ߮  varying between [ିగ

௠
, గ
௠

]. In that way, we can 
observe that the total amount of analysis is (2 ⋅ ݉ + 1)ଶ. 
Considering the superposition of the same resulting strain 
direction the amount of strain histories will be reduced to (2 ⋅
݉)(݉− 1)+2. Despite this reduction, we will remark that using a 
high value of m implies an exponential increasing of the 
analysis, see Figure 2 above.  

Once the strain loading directions are computed, we apply them 
to the RVE doing a classical First Order Multiscale Analysis [8]. 
During the analysis all the degrees of freedom are fixed and for 
each ݊ time step we will solve the microscale problem, 
evaluating the homogenized stress and constitutive tensor. With 
this information we can determine the corresponding value of 
equivalent damage at each time step. 

 Equivalent damage definition  
During a classical full multiscale analysis, the RVE is solved at 
each time step even if the linear elastic limit of the material is 
not achieved. In terms of optimization, it represents wasted time 
consumption. In this paper, we will introduce a key parameter, 
called equivalent damage, that provide this limit as the relation 
between the homogenized stress and the corresponding elastic 
one. This parameter is defined as:   

݀௘௤ = ∥ఙ೐೗ିఙೝ೐ೌ೗∥
∥ఙ೐೗∥

,݀௘௤ ∈ [0,1]    (3) 

where ߪ௥௘௔௟ is the homogenized stress, ߪ௘௟ =  is the elastic ߝ:௘௟ுܥ
stress and ܥ௘௟ு is the Homogenized Constitutive Elastic Tensor. 

The discretization of the RVE response with a unique parameter 
is needed for the interpolation of the DB information. In this way, 
we can obtain the stress flux surface at certain equivalent 
damage level and reconstruct the RVE behavior for any strain 
direction interpolating the stored homogenized stress data. 

 Discrete Multiscale Threshold Surface 
Fixing the ݀௘௤ equal to 0.1, that the author defined as the linear 
elastic threshold of the microstructure, the Discrete Multiscale 
Threshold Surface is represented by the corresponding stress 
at each tag studied. 

In Figure 3 and 4 we report a 3D visualization of a portion of the 
DMTS and the algorithm of the proposed method, where the 
point E represents the intersection of the direction of the stress 
and strain with the elastic limit surface. The points A, B, C, D 
correspond to the nearest tag surrounding this direction used to 
interpolate the results. 

 Discrete Multiscale Constitutive Model 
Starting from the model presented above, the second proposed 
method is an extension of the DMTS. Indeed, DMCM provides 
a complete definition of RVE behavior storing in a Database the 
stress-strain response related to the equivalent damage 
parameter defined previously.  
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(a)                                              (b) 

Figure 3. Graphical representation of (a)Strain Space and (b) Stress 
Space for DMTS. 

 
Figure 4. DMTS Algorithm. 

Instead of only one value, corresponding to the elastic limit, for 
the DMCM multiple threshold surfaces are computed. The non-
linear behavior of the RVE will be discretized with a series of 
equivalent damage levels ranging from 0 to 1. In this way, during 
the RVE analysis the strain increment is iteratively adapted to 
reach the correct strain increment (for each strain direction) that 
gives an iso-Damage surface. After that, FE2 analysis are no 
longer needed. Indeed, an additional interpolation method over 
the stored threshold surfaces could be performed to predict the 
behavior of the macrostructure at each integration point. 

The figure below can provide how the proposed algorithm works 
with a graphical representation.  

       
(a)                                         (b) 

Figure 5. Graphical representation of (a)Strain Space and (b) Stress 
Space Evolution for DMCM. 

The points E and E’ represent the intersection of the direction of 
the stress and strain with the surfaces at damage i and ii. The 
points A,B,C,D and A’,B’,C’,D’ corresponds to the nearest tag 
that is surrounding this direction for the different level of 
damage. 

The value of strain and stress for the points E and E’ were 
determined by interpolating the data from the DB of the nearest 
tag for each level of damage. In that way we can reconstruct the 
stress strain response of the RVE for any possible direction in 
the strain space. 

The DMCM algorithm could be resumed in the figure 6: 

 
Figure 6. DMCM Algorithm. 

We will remark that, creating the DB with strain-controlled 
analysis, the reference surfaces in the strain space are 
concentric; on the other hand, in the stress space this is not 
obvious and depends on the geometry and the constitutive laws 
involved in the RVE. 

The DB scheme provides at first level the tag. Then, for each 
tag, we will store the information of ߪ and ߣ(lambda) at different 
values of equivalent damage.  

 
Figure 7. DMCM algorithm. 

Considering the number of analyses needed for the creation of 
the stress-strain DB, which is proportional to the discretization 
parameter m, it is obvious that as long as the number of RVEs 
needed by the macroscale structure is higher than the number 
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of Strain Histories, the advantages of the proposed method 
increases. 

 Reinforced composite stiffener 
section 

In this section we analyze a reinforced composite beam 
comparing the three proposed methods: FE2, DMTS and 
DMCM. The microscale used is a long fiber reinforced 
composite, composed by F155 Epoxy Resin matrix and Carbon 
fiber (simulated as elastic material for simplicity). The geometry 
of the RVE was composed by 5 symmetric inclusions as it is 
shown in Figure 8 and the mesh used for the micro scale is 
composed by 272 small displacement linear elements with 305 
nodes. The analysis was performed by using plane stress theory 
and considering 200mm as thickness for the stiffener. 

The geometry and boundary conditions of the beam are also 
described in Figure 8. The macroscale structure is composed by 
1075 triangular elements and 678 nodes subjected to a vertical 
displacement ݑ௬. In order to simplify the analysis, in case of Full 
Multiscale and DMTS methods, only 84 elements are 
considered with double scale, using elastic homogenized 
properties in the rest of the structure. 

 

 
Figure 8. Reinforced composite stiffener section and RVE geometry 

and mesh. 

F155 Epoxy Resin Mechanical Properties 

Young Modulus 3.24e3 MPa 

Poisson Ratio 0.32  

Stress Traction Limit 80 MPa 

Traction Fracture Energy 0.73 J/mm2 

Stress Compression Limit 240 MPa 

Compression Fracture Energy 2.19 J/mm2 

Carbon Fiber Mechanical Properties 

Young Modulus 235e3 MPa 

Poisson Ratio 0.21  

Table 1. Mechanical properties of composite RVE. 

Below (Figure 9) are reported the sections of the elastic limit 
surface for d=0.01 and the stress evolution for d=0.1,0.5 for the 

composite. Figure 10 shows the force-displacement curves of 
DMTS and DMCM methods. As it can be seen, they overlap and 
achieve the same maximum value of force of the FM2 case. 

Finally, in Figure 11 is shown the equivalent damage distribution 
on the stiffener and in the microstructure for the different models 
developed.  

 

 
Figure 9. RVE Stress Evolution Surfaces. 

 

 
Figure 10. Comparison Force-Displacement curves. 

 

 
(a)                           (b)                      (c) 

Figure 11. Equivalent damage distribution for (a) FE2, (b) DMTS, (c) 
DMCM. 

In case of reinforce composite stiffener, computational effort 
decreases significantly using the optimization method proposed 
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in this paper. Indeed, as we can see in Table 2, we obtain a 
speed-up of 4.7 and 661.2 for DMTS and DMCM method 
respectively. Despite of the 70 RVEs generated in the DMTS, 
against the 84 of the FE2, we are still having advantages using 
this method. 

Type Time [s] Memory 
[MB] 

Active 
RVEs 

Time 
Speedup 

FE2 40,267.5 152.2 84/1075 - 

DMTS 8,609.9 108.7 70/1075 4.7 

DMCM 60.9 33.1 0/1075 661.2 

Table 2. Comparison of time and computational cost. 

Moreover, DMCM it is clearly faster than FM2 and DMTS as 
well. The linear interpolation of the RVE strain history can 
provide a non-linear behavior of the macrostructure, able to 
reproduce crack initiation and propagation. 

 Conclusions 
First order multiscale homogenization method can fully describe 
both linear and non-linear behavior of complex microstructures 
and the impact they have on the macroscale response. 
However, the computational cost required to analyze large 
structures is not negligible. In the last years, many optimization 
methods have been developed to overcome this problem. In this 
paper, the authors propose two optimization techniques that can 
provide a significant speed-up compared to the classical FE2 
without loss of accuracy on the final results. From the RVE FE 
analysis, the Discrete Multiscale Threshold Surface gives the 
linear elastic limit to determine where the 2-scale computations 
are required at the structural level, while the DMCM can conduct 
the analysis without solving the micro-scale model, since it can 
describe both linear and nonlinear regimes. The keys of both 
methods are the precomputed Stress-Strain DataBase and the 
equivalent damage parameter, essential to reconstruct the 
correct behavior of the structure.  

DMTS and DMCM methods are validated by a reinforced 
composite stiffener, showing the capability and robustness of 
these techniques. The achieved speed-up of more than 600 
times respect to FE2 and the accuracy of the results, justifies 
the time spent to obtain the Stress-Strain DataBase. 
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