
The 9th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2024

3–7 June 2024, Lisboa, Portugal

A THOROUGH ANALYSIS OF DEFLATION TECHNIQUES
APPLIED TO CFD: FROM RPM TO BOOSTCONV AND

BEYOND

JEREMY KALFOUN1, GUILLAUME PIERROT2 AND JOHN CAGNOL3

1 Université Paris-Saclay, CentraleSupélec, MICS and FdM CNRS FR-3487
ICON Technology & Process Consulting
e-mail: jeremy.kalfoun@centralesupelec.fr

2 ICON Technology & Process Consulting
email: g.pierrot@iconcfd.com, www.iconcfd.com

3 Université Paris-Saclay, CentraleSupélec, MICS and FdM CNRS FR-3487
e-mail: john.cagnol@centralesupelec.fr

Key words: CFD, Convergence acceleration, Deflation methods, Fixed-Point iterations, Sta-
bilization of solution algorithms

Summary. Iterative methods such as Fixed-Point Iterations arising from the discretization of
PDEs by standard methods (FE, FV, etc.) offer their share of challenges when applied to large
systems due to their poor conditioning. Slow convergence, limit cycle oscillations and, in the
worst case, divergence are regularly observed. Deflation-based techniques such as the Recursive
Projection Method (RPM), are particularly appealing for tackling these kinds of issues without
sacrificing the physical fidelity as they allow for the discrimination in between slow and fast
modes, the first one being solved implicitly while the baseline algorithm is still relied upon to
solve the latter. More recently, an alternative approach, called BoostConv, has emerged around
the same idea, although the connection between the two has received little attention. In this
paper, we offer to comprehensively revisit this family of methods for fixed-point iterations, giving
rise to a new unified framework that encompasses both approaches and more and brings to light
a number of as yet unexplored degrees of freedom, auguring further potential improvements in
terms of performance and robustness. The present analysis focuses on three primary elements:
choice of a projector, trouble modes recruitment, and rescue mode. A comparison of existing
approaches is provided along with the benefits of proposed new variants on a selection of random
matrices and CFD cases with different levels of complexity for the sake of completeness.

1 Introduction

Iterative methods for solving large linear systems Ax = b (or nonlinear Axx = b) have been a
topic of intense research since the very begining of numerical analysis. The goal of these methods
is to find a numerical solution to the system of equations with as few iterations as possible, while
ensuring stability and accuracy of the solution. In particular, these linear systems are found
when discretizing a set of Partial Differential Equations (PDE) with Finite Element or Finite
Volume methods which is, for example, the case in Computational Fluid Dynamics [1].

Jeremy KALFOUN, Guillaume PIERROT and John CAGNOL

A number of different approaches have been developed for solving linear systems. Among
them, two families of methods have been widely studied: fixed-point iterations and Krylov
subspace methods which lies inside the projection methods framework [2, 3].

Since it’s simpler and more flexible to implement, in a Matrix-Free environment, fixed-point
iterations are often preferred. This is the case for SIMPLE-like algorithms, PISO inner-loops,
etc. They consist of iteratively calculating xk+1 as a function of xk that can be written on the
form xk+1 = Gxk + b where G is a given iteration matrix. If the spectral radius of G is strictly
less than one then the method is guaranteed to converge [2], and the convergence rate directly
depends on the largest eigenvalue’s modulus. On the other hand, if the spectral radius is greater
than one, the method will diverge. Other issues such as slow convergence due to eigenvalues
of the iteration matrix very close to the unit circle or limit cycle oscillations due to non-linear
effects are often observable.

To recover or speed up the convergence, deflation methods have been introduced. They are
based on a divide and conquer idea. The solution space is divided into a (hopefully small)
troublespace and an easygoing-space, and the solution algorithm applies different strategies to
each of them. The troublespace can be approached in different ways. It can be done a priori
by using coarse grids as low frequency modes in space are often the troublemaking ones, it
is linked to subdomain deflation and multigrid methods [6] or by recycling previous solutions
to guesstimate the starting point and deflate the search directions which is linked to model
reduction. It can also be done on the fly by massaging the Krylov vectors to approximate
dominant eigenvectors. From now on we will refer to this approach as ”Krylov Deflation” [7, 4].
All these types of deflation can be applied in the context of the Krylov method, but no general
framework exists in the context of fixed-point iterations.

In this work, a general framework of Deflated Fixed-Point Iterations (DFPI) is presented,
which will prove to cover a number of methods that do not appear to be deflation at first glance
(e.g. RPM). It enables obtaining general results on convergence, exploring degrees of freedom,
discussing the choice of projectors, trouble-space, vector recruitment and having a simplified
general implementation. Finally, the Deflated Fixed-Point Iterations framework will be applied
to random matrices to expose the different behaviors and CFD cases.

2 DFPI Framework

The aim of Deflated Fixed-Point Iterations is to find an approximate solution of the matrix
system:

Ax∞ = b (1)

where A ∈ MN (R) non-singular and b ∈ RN are known, while x∞ ∈ RN is the solution of the
system. The non-linear aspects are to be covered in a future work. From now on we’ll focus on
the linear framework in order to settle the main concepts and results

2.1 Formulation of the DFPI

The usual Preconditioned Fixed-Point iterations (Richardson methods) to solve the linear
system 1 can be read:

xn+1 = xn + P−1(b−Axn)

= xn + P−1A(x∞ − xn)
(2)

2

Jeremy KALFOUN, Guillaume PIERROT and John CAGNOL

with P ∈ GlN (R). The convergence of these iterations depends on the largest eigenvalue in
modulus of Id− P−1A [2].

Let’s define a projection space approaching the troublespace Z = span {Zi}i=1,...,M , Zi ∈ RN

with M << N , and a projection QR on Z.
The projection QR is fully defined by the projection space Im (QR) = Z and ker (QR). As we

only have access to Ax∞ and not x∞ on its own, ker (QR) is defined throughout the subspace
Y = A−T (ker (QR))

⊥. By definition,

∀x ∈ RN ,∀y ∈ Y ,
〈
(Id−QR)x,A

T y
〉
= 0

And we recognize the Petrov-Galerkin projection [2]

∀x ∈ RN , ∀y ∈ Y , ⟨AQRx, y⟩ = ⟨Ax, y⟩

⇒ QR = Z
(
Y TAZ

)−1
Y TA

where N × M matrices Z and Y , are constructed such that column vectors form a basis of
subspaces Z and Y . Some particular cases worth mentioning:

• The Galerkin projection when Y = Z,

• The Least Square projection when Y = AZ,

• The Orthogonal projection when Y = A−TZ

As a general deflation method, the idea of the DFPI is to solve directly onto the trouble-space
and iterate on the easygoing one. This is achieved by re-projecting the current error xn − x∞

on ker (QR) at the beginning of each iteration:

xn+
1
2 = (Id−QR)x

n +QRx
∞

Then, the iteration from the baseline algorithm is performed:

xn+1 = xn+
1
2 + P−1A

(
x∞ − xn+

1
2

)
This leads to the first formulation of the Deflated Fixed-Point Iterations (DFPI):{

xn+
1
2 = xn +QR (x∞ − xn)

xn+1 = xn+
1
2 + P−1A (Id−QR) (x

∞ − xn)
(3)

Equivalently, the projection of the error onto ker (QR) can be performed after iterating. This
leads to a post-projection formulation. The deflated fixed point iterations can be implemented
as a blackbox which performs a projection before or after iterating with the usual fixed-point
algorithm.

A preconditioner formulation can also be derived. Let’s define QA
L ∈ MN (R) such as QA

LA =
AQR

Proposition 1. If matrix
(
A−1QA

L + P−1
(
Id−QA

L

))
is non-singular, DPFI (Eq. 3) can be writ-

ten as Fixed-Point iterations with a modified preconditioner P =
(
A−1QA

L + P−1
(
Id−QA

L

))−1

3

Jeremy KALFOUN, Guillaume PIERROT and John CAGNOL

Proof. The main formulation of the DFPI can be written:

xn+1 = xn +QR (x∞ − xn) + P−1A (Id−QR) (x
∞ − xn)

= xn +
(
A−1QA

L + P−1
(
Id−QA

L

))
A (x∞ − xn)

This formulation is equivalent to the previous ones. The modified preconditioner P behaves
like A on the trouble-space and like P on the easygoing-space.

2.2 Convergence of the DFPI

Proposition 2. If iterations Eq. 3 converges and
(
QR + P−1A (Id−QR)

)
is non-singular, then

they converge to the solution of Eq. 1 for any projection.

Proof. In Section 2.1, the main formulation of the DFPI has been written as fixed-point iterations
with a modified preconditioner P . If these iterations converge, the limit will be the solution if P
is well defined and non-singular which is the case if QR + P−1A (Id−QR) is non-singular.

Proposition 3. Z stable by P−1A is a sufficient condition for
(
QR + P−1A (Id−QR)

)
to be

non-singular

Proof. x ∈ RN such that
(
QR + P−1A (Id−QR)

)
x = 0

⇒ (Id−QR)P
−1A (Id−QR)x = 0

⇒P−1A (Id−QR)x = z ∈ Z

If Z is stable by P−1A, then (Id−QR)x = A−1Pz ∈ Z and so (Id−QR)x = 0. And finally
QRx = 0, leading to x = 0 and P defined and non-singular.

Just as iterations with preconditioner P converge if and only if ∀λ ∈ Sp
{
Id− P−1A

}
, |λ| < 1,

iterations with P will converge if and only if:

∀λ ∈ Sp
{
Id−

(
QR + P−1A (Id−QR)

)}
, |λ| < 1

Let’s consider Z such that it contains all the generalized eigenvectors associated to trouble
making eigenvalues of Sp

{
Id− P−1A

}
. Let’s write λi, 1 ≤ i ≤ M these eigenvalues, and

Sp
{
Id− P−1A

}
= {λi}1≤i≤N ,M < N . With Z stable, for any projection:

Proposition 4. Sp
{
Id−

(
QR + P−1A (Id−QR)

)}
= (0, 0, ..., 0, λM+1, ..., λN) and so itera-

tions with preconditioner P converge at a rate given by the largest non-deflated eigenvalue in
modulus.

Proof. One can show that eigenvalues of the matricesM = P−1A andN = QR+P−1A (Id−QR)
are the union of eigenvalues of:

•
(
(Id−QR)P

−1A (Id−QR)
)
|ker(QR)

•
(
QRP

−1AQR

)
|Im(QR) for M and QR|Im(QR) for N

4

Jeremy KALFOUN, Guillaume PIERROT and John CAGNOL

Hence Sp
{
Id−

(
QR + P−1A (Id−QR)

)}
= (0, 0, ..., 0, λM+1, ..., λN) where (λM+1, ..., λN)

are eigenvalues of
(
(Id−QR)P

−1A (Id−QR)
)
|ker(QR) and so iterations with preconditioner P

converge.

An example where convergence is recovered for a 900 × 900 random sparse matrix is shown
in Figure 1. A diagonal preconditioner is used and Z is enhanced a posteriori with dominant
eigenvectors. The largest eigenvalue modulus is |λmax| = 16.78 (not shown on the figure for
the sake of clarity, as for smallest eigenvalues). The red eigenvalues correspond to those of the
base iteration matrix that do not appear in the modified iteration matrix at the end. The black
ones are in both iteration matrices. Each drop in the residuals and in their slope correspond
to Z enhancement with a dominant eigenvector (or pair of conjugate ones). Three different
projections are used, and remarkably enough, the choice of projection does not seem to have
much impact, the three of them leading to very similar results.

Figure 1: Test case on a random sparse matrix. Left : Eigenvalues of the iteration matrices.
Right : Residuals plot for several projections

3 RPM and BoostConv

In this section, we show how two well-known methods for stabilizing fixed-point iterations,
RPM and BoostConv, fit within the Deflated Fixed Point Iterations framework. Although these
methods are typically applied to general non-linear cases, we will focus on their application
within the linear framework for the purposes of our study. For the sake of simplicity, we assume
the spaces are fixed. The issue of recruiting eigenvectors will be addressed in a subsequent
paragraph.

3.1 RPM in the DFPI framework

The Recursive Projection Method (RPM) was first introduced by Schroff and Keller [8] to
stabilize fixed-point iterative methods by using Newton iterations on the unstable space and
fixed point iterations on the algebraic complement. A description and evaluation of the method
is conducted in [9]. The method is based on the fixed-point iterations which, in the case of
Preconditioned Richardson Iterations, is written:

5

Jeremy KALFOUN, Guillaume PIERROT and John CAGNOL

xn+1 = F (xn) = xn + P−1A (x∞ − xn) (4)

By introducing the subspace Z formed by the eigenvectors associated to dominant eigenvalues,
and the orthogonal projection O on Z, the iterative scheme is modified as follows in the usual
case of additive RPM:

xn = x̂n + x̃n = Oxn + (Id−O)xn

x̂n+1 = OF (x̂n+1 + x̃n)

x̃n+1 = (Id−O)F (x̂n + x̃n)

(5)

In our work, we present multiplicative RPM, where x̂n+1 is used to calculate x̃n+1, as it has
been calculated in the previous step:

x̃n+1 = (Id−O)F (x̂n+1 + x̃n)

Correspondence between DFPI and multiplicative RPM is more straightforward as it does not
require the introduction of a new projection QL and the hypothesis that Z is stable by P−1A
(inherent to RPM in any case). In the following, we will focus on multiplicative RPM, but a
similar reasoning exists for additive RPM.

In classical non-linear RPM, x̂n+1 is calculated implicitly using a Newton iteration. In the
linear case, only one Newton step is necessary.

Developing the fixed-point iteration for x̂n+1:

x̂n+1 = O
(
x̂n+1 + x̃n + P−1A

(
x∞ − x̃n − x̂n+1

))
Using the fact that Ox̂n+1 = x̂n+1, Ox̃n = 0 and x̃n = xn − x̂n:

O
[
P−1A (x∞ − xn)− P−1A

(
x̂n+1 − x̂n

)]
= 0

It means that ∀j ∈ [1, ...,m],
(
P−1A

[
(x∞ − xn)−

(
x̂n+1 − x̂n

)]
, Zj

)
= 0 with x̂n+1 − x̂n ∈ Z

which means that x̂n+1 − x̂n is the Galerkin projection of x∞ − xn associated to P−1A on Z:

x̂n+1 = x̂n +Qξ (x
∞ − xn) (6)

In the case of multiplicative RPM, x̃n+1 = (Id−O)F (x̂n+1 + x̃n):

⇒ x̃n+1 = x̃n + (Id−O)P−1A
(
x∞ − x̃n − x̂n+1

)
= x̃n + (Id−O)P−1A (x∞ − x̃n − x̂n −Qξ (x

∞ − xn))

= x̃n + (Id−O)P−1A (Id−Qξ) (x
∞ − xn)

But ∀x ∈ RN , ZTA (Id−Qξ)x = 0, and so:

OP−1A (Id−Qξ) (x
∞ − xn) = Z

(
ZTZ

)−1 [
ZTP−1A (Id−Qξ) (x

∞ − xn)
]
= 0

⇒ x̃n+1 = x̃n + P−1A (Id−Qξ) (x
∞ − xn)

Taking {
xn+

1
2 = x̃n + x̂n+1

xn+1 = x̃n+1 + x̂n+1{
xn+

1
2 = x̃n + x̂n +Qξ (x

∞ − xn) = xn +Qξ (x
∞ − xn)

xn+1 = x̃n + x̂n+1 + P−1A (Id−Qξ) (x
∞ − xn) = xn+

1
2 + P−1A (Id−Qξ) (x

∞ − xn)
(7)

which correspond to the main formulation of the DFPI.

6

Jeremy KALFOUN, Guillaume PIERROT and John CAGNOL

3.2 BosstConv in the DFPI framework

The BoostConv method is presented by its author Citro [10] as based on the minimization
of the residual norm at each integration step and described as inspired by the Krilov methods
in order to stabilize the computation of unstable steady states. It is also implemented in [11]
where satisfactory results are presented.

The method is widely described in [10]. It starts from an iterative algorithm to solve Eq. 1:

xn+1 = xn + P−1rn

with rn = b − Axn. This corresponds to the Preconditioned Fixed-Point Iterations. These
iterations, and more precisely the residual, are modified by the method as follows:

xn+1 = xn + P−1ξn1 (8a)

ξn1 = ξn0 + ρn (8b)

ρn = rn −AP−1ξn0 (8c)

ξn0 = argminξ∈Z0
||rn −AP−1ξ||2 (8d)

where Z0 is spanned by a certain set of vectors (ui in [10]).
The minimization problem defined in Eq. 8d can be written differently, with a change of

variable ζ = P−1ξ and writing rn = A(x∞ − xn):

P−1ξn0 = argminζ∈Z ||A ((x∞ − xn)− ζ)||2 (9)

with Z being the subspace given by P−1Z0. The solution of this minimization problem is none
other than the Least Square Projection of (x∞ − xn) on Z. Hence, the solution is written:

P−1ξn0 = QLSQ
R (x∞ − xn) (10)

with the Least square projection operator on the subspace Z:

QLSQ
R = Z

(
ZTATAZ

)−1
ZTATA

Then the correction ρn = rn −AP−1ξn0 is applied to ξn0 such that

ξn1 = ξn0 + rn −AP−1ξn0

= PQR(x
∞ − xn) +A(x∞ − xn)−AQR(x

∞ − xn)

(with QR = QLSQ
R)

Hence, the modified iteration in Eq. 8a can be read as:

xn+1 = xn + P−1ξn1

= xn +QR(x
∞ − xn) + P−1A (Id−QR) (x

∞ − xn)

Finally, the BoostConv iterations can be written as follows:{
xn+

1
2 = xn +QR (x∞ − xn)

xn+1 = xn+
1
2 + P−1A (Id−QR) (x

∞ − xn)
(11)

which corresponds exactly to the iterations presented in Eq. 3.
Both RPM and BoostConv are the same methods with a different projection.

7

Jeremy KALFOUN, Guillaume PIERROT and John CAGNOL

4 Eigenvectors Selection

The first observable difference between RPM and BoostConv is the projection they use. But
as previously mentioned, it does not consistently affect the results. The selection strategy of the
eigenvectors plays a crucial role. While both methods store increments to approach the dominant
eigenvectors using a generalized power iteration method, BoostConv adds a vector at each
iteration, whereas RPM waits approximately 100 iterations to select a few well-approximated
eigenvectors.

Both strategies have their own advantages and disadvantages. RPM is more selective and par-
simonious in its recruitment, enriching the projection base only with sufficiently well-approximated
generalized eigenvectors, while BoostConv, like GMRES, indiscriminately recruits all Krylov
vectors until the storage is saturated.

In this work, a Just-in-time strategy is introduced and consists of two steps:

• Establishing a working subspace until a certain level of stability is achieved

• Using the Rayleigh-Ritz method to approximate the eigenvectors within this subspace and
determining whether to enrich the subspace based on a stability criterion

The second step consists of calculating eigenvectors of the small projected iteration matrix
Mp = ZT

t

(
Id− P−1A

)
Zt. Writing µi an eigenvalue of Mp associated to vi, the Ritz pair

(µi, Ztvi) is an approximate solution of the eigenvalue problem on the iteration matrix.
Then, ||

(
Id− P−1A

)
Ztvi−µiZtvi||2 gives an indication on how good the approximate eigen-

vector Ztvi is. It can be added to Z if smaller than a given tolerance and if the associated
eigenvalue modulus is greater than a certain limit.

This method enables the storeage of dominant eigenvectors as soon as possible while ensuring
accuracy and stability of Z.

Three strategies are applied on a random sparse matrix case as before Fig. 2. The number
of stored vectors is limited to 36. We utilize three tolerance levels: a loose tolerance, where
a vector is added every two iterations; a tight tolerance, involving a significant number of
iterations before adding eigenvectors; and an intermediate tolerance, which corresponds to our
’Just-in-time’ strategy.

Figure 2: Residuals for several eigenvectors selection strategy on a random sparse matrix.

8

Jeremy KALFOUN, Guillaume PIERROT and John CAGNOL

While the loose tolerance proves more efficient in the initial iterations, the tight tolerance
demonstrates superiority towards the end. The intermediate tolerance combines the best of both
approaches by adding eigenvectors as soon as possible, ensuring subspace stability without the
need to wait for a specific number of iterations.

5 Rescue Mode

The Krylov method GMRES without restart is guarantied to converge. Here, in some cases,
when dominant eigenvectors are associated to very large eigenvalues, the algorithm can blow up
almost immediately before we even had the time to recruit a first stable vector. To avoid this, a
rescue mode has been designed. The approach involves iterative updates without updating the
solution directly, instead normalizing the residual used in each iteration while aligning with the
dominant eigenvector.

This is achieved by modifying the residual in the DFPI iterations:

xn+1 = xn + P−1r̃n (12)

where r̃n = αn
(
rn + r̃n−1 − rn−1

)
and r̃0 = r0. αn can be chosen as 1

||xn−xn−1|| .

Doing so, Arnoldi iterations are performed to keep aligning with the dominant eigenvector
without diverging. Once a decent approximation of the dominant eigenmode has been achived,
the basis is enriched and standard DFPI iterations are applied again if no further divergence is
detected. An example of the rescue mode is demonstrated in a similar test case as before, but
with larger eigenvalues.

Figure 3: Residuals for several eigenvectors selection strategy on a random sparse matrix.

6 CFD Case

Finally, DFPI are tested on a well known CFD validation case, known as the transonic bump.
A dual time-stepping methodology is used and DFPI are performed during the linear inner loop.
For a given tolerance on the residuals, a 40% decrease in the number of iterations is observed.
When tolerances are tightened, which can be necessary in industrial cases, the improvement is
even more pronounced.

9

Jeremy KALFOUN, Guillaume PIERROT and John CAGNOL

Figure 4: DFPI applied to the transonic test case.

Figure 5: DFPI applied to the transonic test case with tighter tolerance.

7 Conclusion

This paper introduces a general framework for deflation methods in the linear setting, accom-
panied by a convergence proof for any projection. This framework encompasses several existing
methods, such as BoostConv and RPM, for trouble-space computed on the fly from Krylov
vectors. These methods differ primarily in their projection and vector selection strategies. We
present an optimized method for eigenvector selection and a rescue mode that guarantees pre-
vention of divergence. This general framework has demonstrated favorable results on random
matrices and a transonic bump CFD case. Future work is underway to cover the non-linear
case, context adaptative tolerance, and implementation in an industrial CFD code.

Acknowledgments

We would like to thank Jacques Papper and other colleagues from ICON Technology &
Process Consulting and from the MICS for the fruitful, constructive and enlightened discussions
that enabled us to make progress on this project.

10

Jeremy KALFOUN, Guillaume PIERROT and John CAGNOL

REFERENCES

[1] Anderson, J. D. and Wendt, J. 1995. ”Computational fluid dynamics.” In Springer 206.

[2] Saad, Y. 2003. ”Iterative methods for sparse linear systems.” SIAM.

[3] Saad, Y. and Schultz, M. H. 1986. ”GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems.” In SIAM Journal on Scientific and Statistical
Computing 7(3), 856-869.

[4] Frank, J. and Vuik, C. 2001. ”On the construction of deflation-based preconditioners.” In
SIAM Journal on Scientific Computing 23, 442-462.

[5] Campobasso, M. S. and Giles, M. B. 2003. ”Effects of flow instabilities on the linear analysis
of turbomachinery aeroelasticity.” In Journal of propulsion and power 19(2), 250-259.

[6] Wesseling, P. 1995. ”Introduction to multigrid methods.” Wesseling, P. (1995). In NASA-
CR-195045.

[7] Nicolaides, R. A. 1987. ”Deflation of conjugate gradients with applications to boundary
value problems.” In SIAM Journal on Numerical Analysis 24(2), 355-365.

[8] Shroff, G. M. and Keller, H. B. 1993. ”Stabilization of unstable procedures: the recursive
projection method.” In SIAM Journal on numerical analysis, 30(4), 1099-1120.

[9] Görtz, S. and Möller, J. 2004. ”Evaluation of the recursive projection method for efficient
unsteady turbulent cfd simulations.” In 24th International Congress of the Aeronautical
Sciences, 1-13.

[10] Citro, V. , Luchini, P. , Giannetti, F. and Auteri, F. 2017. ”Efficient stabilization and
acceleration of numerical simulation of fluid flows by residual recombination.” In Journal
of computational physics 344, 234-246.

[11] Dicholkar, A. , Zahle, F. , and Sørensen, N. N. 2022. ”Convergence enhancement of
SIMPLE-like steady-state RANS solvers applied to airfoil and cylinder flows.” In Journal
of Wind Engineering and Industrial Aerodynamics 220.

11

	Introduction
	DFPI Framework
	Formulation of the DFPI
	Convergence of the DFPI

	RPM and BoostConv
	RPM in the DFPI framework
	BosstConv in the DFPI framework

	Eigenvectors Selection
	Rescue Mode
	CFD Case
	Conclusion

