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Abstract. It is well known that the entropy elasticity of rubberlike materials and Brownian mo-
tion are described by formally analogous equations as both originated from thermal fluctuations.
In rubberlike materials, the shear modulus is conventionally considered to be proportional to the
absolute temperature and the proportionality factor is the number density of polymer chains for
an affine polymer chains’ network model. On the other hand, the self-diffusion coefficient
of Brownian motion is described as the product of the mobility and the absolute temperature.
However, for the polymer chains’ network in a solvent, the interaction between the polymer
chains and the solvent molecules occurs and the collective diffusion coefficient of the solvent
molecules should be different to the self-diffusion coefficient of Brownian motion. Moreover,
the shear modulus of the resultant polymer gel should be dependent on the swelling ratio due to
the nonaffine movement of polymer chains. Therefore, to verify the analogy of the equations for
the shear modulus of the nonaffine polymer chains’ network model and the collective diffusion
coefficient of the solvent molecules, in this study, the swelling and deswelling process of the
polymer gel is investigated by the numerical simulations.

1 INTRODUCTION

Polymer gels contain a large number of the solvent molecules and can absorb additional sol-
vent or lose solvent from the as-prepared state[1]. These processes are of course accompanied
by volume changes in the polymer gel, i.e., swelling and deswelling. When a hydrogel is placed
in an aqueous environment, such as in the living body, either swelling or contraction generally
occurs to some extent, and there is a concomitant change in volume. Therefore, it is practically
important to know to what extent swelling can occur and how the physical properties change
with changes in volume change.

To account for the physical properties change due to swelling, in our former study[2], we
investigated the development of the microstructure of polymer chains’ network of the polymer
gel based on a nonaffine polymer chains’ network model[3], which was originally developed
for the orientation hardening of amorphous polymers and may account for the change in the
entanglement situation for the physical linkages due to deformation. It was found that the free
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swelling may lead to a larger change of the entangling structure of polymer chains compared
with the simple tensional deformation. Moreover, the various combination of the effect of free
swelling and simple tensional deformation on the nonaffine movement of polymer chains may
lead to such interesting mechanical response of the polymer gel as yield.

In this study, the nonaffine polymer chains’ network model is employed to investigate the
transient entangling structure’s change together with the transient distribution of swelling ratio
and that of stress of the polymer gel during swelling and deswelling process. With regard to
the transient phenomenon of diffusion of the solvent molecules during swelling and deswelling
process, in this study, Fick’s laws of diffusion[4] is employed to investigate the transient distri-
bution of the concentration of the solvent. Furthermore, the effect of the interaction between the
polymer chains and the solvent molecules on the diffusion coefficent of the solvent molecules
is discussed.

2 CONDITIONS OF EQUILIBRIUM

The basic idea of the derivation of the conditions of equilibrium for the dry polymer chains’
network and the aqueous solution is from the work done by Hong et al.[5]. It is convenient to
consider that, in the reference state, a block of dry network of polymer chains is a unit cube,
and contains no solvent and subject to no applied forces. In the current state, the network is
submerged in a solvent-containing environment, and the six faces of the block are subject to
applied forces. When the network, the solvent, and the applied forces equilibrate, the network
absorbs C number of the solvent molecules, and deforms homogeneously into the shape of a
parallelepiped. When the deformation gradient of the network is expressed by F, the ratio of
volume of the swollen polymer gel to that of the dry network is determined as J = detF. As an
idealization, it is assumed that the volume of the polymer gel is a function of the concentration
of the solvent:

J = 1 + vC. (1)

That is, all molecules in a polymer gel are incompressible, and the volume of the polymer gel is
the sum of the volume of the dry network and the volume of the pure solvent molecules, where
v is the volume per solvent molecule. Eq. (1) determines the concentration of the solvent C,
once the deformation gradient F is known.

The Helmholtz free energy of the polymer gel in the current state, W , can be assumed to
be separable into contributions from stretching the polymer chains’ network and mixing the
network and the solvent[6]:

W = Wstretch(F) +Wmix(J). (2)

The free energy due to the stretching of the network, Wstretch(F), depends on the density of
crosslinks of the network, whereas the free energy due to the mixing of the network and the sol-
vent, Wmix(J), is independent of the density of crosslinks. For the convenience of formulation,
it is preferred to introduce another free energy function Ŵ by using a Legendre transformation:
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Ŵ = W − µC, (3)

where µ is the chemical potential of the solvent molecules. Eq. (1), Eq. (2) and Eq. (3) form
the bases for the model of the ideal polymer gels. In equilibrium, the change of the Helmholtz
free energy of the composite vanishes and one can obtain that

ski =
∂Ŵ (F, µ)

∂Fik

, C = −∂Ŵ (F, µ)

∂µ
, (4)

where ski is the nominal stress. Empolying Eq. (4), the swelling-deformation responses of the
polymer gel under different mechanical and chemical constraints can be investigated directly.

3 FREE ENERGY FUNCTIONS

In the original Flory-Rehner model[6], specific functions are adopted for Wstretch(F) and
Wmix(J). In this study, we employ the best known formulation[7] as:

W (F) =
1

2
NkBT (FikFik − 3− 2logJ)− kBT

v

[
vClog

(
1 +

1

vC

)
+

χ

1 + vC

]
, (5)

where N is the number of polymer chains per unit volume, i.e. the density of crosslinks of poly-
mer chains, kB is Boltzmann constant, T is the absolute temperature and χ is a dimensionless
measure of the enthalpy of mixing. A combination of Eq. (1), Eq. (3) and Eq. (5) gives the
desired free energy function:

Ŵ (F, µ) =
1

2
NkBT (FikFik − 3− 2logJ)

− kBT

v

[
(J − 1)log

(
J

J − 1

)
+

χ

J

]
− µ

v
(J − 1). (6)

Usually, the affine movement of polymer chains is assumed and the value of N is fixed,
and the affine model of the polymer gel is constructed. However, the observations on the dou-
ble network polymer gel (DN gel) after the tensile test demonstrate that irreversible structural
change takes place inside the DN gel, although their appearance is almost unchanged[8]. When
the DN gel is in tensile, the 1st polymer chains’ network is quite brittle and breaks into small
pieces at small extensions. Subsequently, the 1st polymer chains’ network fragments into small
clusters and the clusters play a role of crosslinkers of the 2nd polymer chains’ network. This
irreversible structural change during the tension of the DN gel can be considered as one kind of
the nonaffine movement of polymer chains, i.e. the density of crosslinks of polymer chains N
vary from its initial value at the free swelling state, N0, to its current value which is depend on
the deformation gradient of the network F. In this study, the nonaffine model of the polymer
gel is constructed and the value of N is proposed to vary inverse proportionally with the first
invariant of right Cauchy-Green deformation tensor, I1:
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N

N0

=
1

f
+

(
1− 1

f

)
· 3

I1
, I1 = FikFik, (7)

where f is a scaling factor and can be specified based on the value of the density of chemical
crosslinks and that of the physical crosslinks of polymer chains’ network at the free swelling
state.

4 STRESS-STRETCH RELATIONS

Inserting Eq. (6) into Eq. (4), we obtain that
ski

kBT/v
= Nv(Fik −Hik) +

1

2
v(I1 − 3− 2logJ)

∂N

∂Fik

+

[
J log

(
1− 1

J

)
+ 1 +

χ

J
− µ

kBT
J

]
Hik. (8)

Recall an algebraic identity, ∂J/∂Fik = JHik, where Hik is the transpose of the inverse of
the deformation gradient F. For simplicity, we describe the deformation of the polymer gel in
the coordinates of principal stretches. Let λ1, λ2, λ3 be the principal stretches of the polymer
gel, so that F = diag(λ1, λ2, λ3), J = λ1λ2λ3 and I1 = λ2

1 + λ2
2 + λ2

3.
Submerged in the solvent-containing environment but subject to no applied forces, the poly-

mer gel attains a state of equilibrium, the free swelling state, characterized by an isotropic
swelling ratio, λ1 = λ2 = λ3 = λ0. Based on Eq. (8), the relation between the principal stretch
λ0 and the chemical potential of the solvent molecules µ can be simplified as:

N0v

(
1

λ0

− 1

λ3
0

)
+ log

(
1− 1

λ3
0

)
+

1

λ3
0

+
χ

λ6
0

=
µ

kBT
. (9)

5 DIFFUSION EQUATION

The diffusion of the solvent molecules during swelling and deswelling process of the poly-
mer gel is assumed to obey Fick’s laws[4]. Therefore, the concentration of the solvent C can
be defined as a function that depends on location x and time t and the diffusion equation can be
expressed as

∂C

∂t
= D

∂2C

∂x2
. (10)

where D is the diffusion coefficent of the solvent molecules.

6 COMPUTATIONAL MODEL

In this study, we have normalized the chemical potential of the solvent molecules µ by kBT ,
and normalized the stress s by kBT/v as shown in Eq.(8). The Flory-Rehner free energy func-
tion introduces two dimensionless material parameters: Nv and χ. In the numerical results
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below, we take the values N0v = 10−3 and χ = 0.1. On the other hand, the parameter intro-
duced in the nonaffine model of the polymer gel is specified as f = 15, which is same as the
value presumed by our former study[9].

Computational simulations employ the three-dimensional finite element method for large
deformation problems with the above-mentioned free energy functions. Fig.1 shows the com-
putational model of a specimen of the polymer gel. The dimensions of the specimen in x, y and
z direction is w0 = 1cm, t0 = 1cm and l0 = 10cm respectively. The specimen is divided with
8-node linear brick, hybrid with constant pressure element(C3D8H). The symmetric boundary
condition is applied to the planes: x = 0, y = 0 and z = 0.

During the swelling and deswelling process of the specimen of the polymer gel, the local con-
centration of the solvent develops with time and as a result, the shape of the specimen changes
with time. However, the conditions of equlibrium given in Section 2 is for the equilibrium state
of the polymer gel and the solvent after the swelling and deswelling process. To investigate the
deformation of the specimen of the polymer gel during the swelling and deswelling process, in
this study, diffusion analysis is at first performed based on Eq.(10) to give the distribution of the
concentration of the solvent at any swelling and deswelling stage. And then, such derived distri-
bution of the concentration of the solvent is imported as the initial condition for the mechanical
analysis and the deformation behavior of the specimen is investigated based on Eq.(9).

7 RESULTS

Fig.2 shows the distribution of the concentration of the solvent at different swelling and
deswelling stages. The value of 100% means that the number of the solvent molecules that
diffuse into the local position has reached its maximum value and the value of 0% means that
no solvent has diffused in the local position. At the time t = 2s, the high concentration region
of the solvent appears at the left end of the specimen of the polymer gel and the gradient of the
concentration of the solvent is quite high which promotes the diffusion of the solvent molecules
to the right end of the specimen. At the time t = 1000s, the concentration of the solvent is
almost 100% throught the whole specimen, i.e., a state at the end of the swelling and deswelling
process.

Fig.3 shows the distribution of swelling ratio of the specimen of the polymer gel at different
swelling and deswelling stages. By the way, the pink lines shows the original shape of the
specimen before the swelling and deswelling process. At the time t = 2s, the high concentration
of the solvent leads to a large swelling ratio of the specimen and a sharp variation of the outer
shape of the left end of the specimen appears. At the time t = 1000s, the whole specimen
swells and the sharp variation the outer shape of the left end of the specimen has been reduced.

Fig.4 shows the distribution of maximum principal stress in the specimen of the polymer gel
at different swelling and deswelling stages. Even though the specimen is subject to no applied
force, high stress region onsets at the left end of the specimen. Moreover, different to the dis-
tribution of the concentration of the solvent and that of swelling ratio shown above, maximum
principal stress distributes much more locally. On the other hand, the value of principal stress
at the time of t = 1000s decrease to 1/20 ∼ 1/100 of the value of principal stress at the time
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of t = 2s. This result suggests that the effect of localized stress on the diffusion of the solvent
molecules is negligible at the later swelling and deswelling stages.

8 CONCLUSIONS

In this study, the diffusion analysis together with the mechanical analysis is performed to
investigate the deformation behavior of the specimen of the polymer gel during swelling and
deswelling process. The results show that a sharp variation of the outer shape and highly lo-
calized stress distribution appear at the early stages of the swelling and deswelling process.
Therefore, it is necessary to define the collective diffusion coefficient of the solvent molecules,
D, with the consideration of the localized stress distribution.

REFERENCES

[1] Sakai, T. Physics of polymer gels. Wiley, (2019).

[2] Riku, I. and Mimura, K. Study on the change of entangling structure of molecular chains
during the tensional and swelling process of elastomeric gel. Proceedings of the 10th In-
ternational Conference on Computational Methods (2019) 391–396.

[3] Riku, I. and Mimura, K. Computational characterization on mechanical behavior of poly-
mer electrolyte membrane based on nonaffine molecular chain network model. The Inter-
national Journal of Mechanical Sciences (2010) 52: 287–294.

[4] Fick, A. On liquid diffusion. The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science (1855) 10: 30–39.

[5] Hong, W., Zhao, X. H., Zhou, J. X. and Suo, Z. G. A theory of coupled diffusion and large
deformation in polymeric gels. Journal of the Mechanics and Physics of Solids (2008) 56:
1779–1793.

[6] Flory, P. J. and Rehner, J. Statistical mechanics of cross-linked polymer networks II.
Swelling. Journal of Applied Physics (1943) 11: 521–526.

[7] Hong, W., Liu, Z. S. and Suo, Z. G. Inhomogeneous swelling of a gel in equilibrium with
a solvent and mechanical load. The International Journal of Solids and Structures (2009)
46: 3282-3289.

[8] Gong, J.P. Why are double network hydrogels so tough? Soft Matter (2010) 6: 2583–2590.

[9] Riku, I. and Mimura, K. Study on mechanical model of double network hydrogel with
extremely high strength. Kobunshi Ronbunshu (2015) 72: 765–772. (in Japanese)

6



Isamu Riku and Koji Mimura

x

y

o

y

zo

Figure 1: Computational model
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Figure 2: Distribution of the concentration of the solvent
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Figure 3: Distribution of swelling ratio
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Figure 4: Distribution of maximum principal stress
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