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ABSTRACT  

Geotechnical characterization of site materials is of paramount importance in the construction and mining industry. The 

analysis of large volumes of geotechnical information from multiple sources leads to data-driven decisions that help to 

minimize uncertainty. For this purpose, a unified digital information platform becomes handy to have a global perspective 

and improve the analysis of available ground information data.  

 

Access to historic ground investigation data from previous projects during the project planning stage might increase 

efficiency. However, accessing and processing legacy data from companies’ databases is time and resources consuming. 

In the recent years, software tools that are capable of extracting data in a digital format from images have become popular, 

but still require human-supervised interpretation.  

 

A novel tool combining Optical Character Recognition (OCR), digital data extraction technologies and AI-based data 

interpretation system is presented herein. The state-of-the-art OCR technology is capable of accurately recognizing and 

extracting text from various document types, such as scanned documents, images, and PDFs. It utilizes advanced machine 

learning algorithms to process text, even in challenging conditions, ensuring data is extracted accurately and reliably. 

Then, a data interpretation system has been trained to identify the type of site characterization data and its structure while 

retrieving all the content in a digital format. All components work seamlessly together to provide a comprehensive 

solution for automating the interpretation and extraction of site characterization data, streamlining data management and 

analysis processes.  

 

The capability of gathering data from multiple sources in a unique ground information system provides valuable 

information for planning and design stages while decreasing costs, time and uncertainties. In addition, all these data are 

then available within DAARWIN platform to feed the ground model workflow. 
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1. Introduction 

The geomechanical characterization of site materials 

plays a crucial role in the fields of construction and 

environmental engineering, with a direct impact on 

project planning, execution, and sustainability. 

Traditional methods of geotechnical data acquisition and 

analysis rely on the assimilation of data from diverse 

sources, often presenting challenges in data interpretation 

and integration. In recent years, the integration of digital 

technologies has reshaped the process of geotechnical 

data acquisition, analysis, and interpretation, offering a 

global perspective and facilitating data analysis. 

 

Considering data from multiple sources, and even 

from different instants in time, contributes to a better site 

characterization, and the assimilation of entire 

geotechnical reports presents an opportunity for 

comprehensive analysis and data-driven decision-

making. However, the analysis of large volumes of 

geotechnical information, including entire reports, has 

historically been a time-consuming and resource-

intensive endeavour. 

 

The integration of legacy data from previous field 

works has proven to be instrumental in reducing costs, 

minimizing environmental impact, and increasing the 

sustainability of construction activities. However, the 

incorporation of entire geotechnical reports into 

contemporary databases has posed significant time and 

resource-related challenges. With the objective of 

satisfying the need for automated data processing 

solutions capable of processing entire reports to solve 

these challenges, this study introduces a novel tool that 

combines Optical Character Recognition (OCR), 

advanced data extraction technologies, and a state-of-the-

art AI-based data interpretation system to process a wide 

range of ground information such as: borehole logs, in-

situ tests results and even entire geotechnical reports. The 

developed tool integrates cutting-edge OCR technology, 

which has demonstrated remarkable proficiency in 

accurately recognizing and extracting text from a 

spectrum of document types, including scanned 

documents, images, and PDFs. Leveraging advanced 

machine learning algorithms (Sarker 2021), the OCR 

technology ensures precise and reliable data extraction, 

even in challenging conditions such as low-resolution 

images, noisy backgrounds, distorted fonts, or 

handwritten texts. Complementing the OCR technology, 



 

the AI-based data interpretation system has been 

meticulously trained 

 
Figure 1. The overall framework of the digitalization process.  

 

to discern the nuances of site characterization data 

and retrieve structured information from entire reports in 

digital formats.  

The seamless integration of these components offers 

a comprehensive solution for automating the 

interpretation and extraction of site characterization data, 

including entire geotechnical reports, thus streamlining 

data management and analysis processes. The capability 

of processing entire geotechnical reports within a unified 

ground information system presents a transformative 

shift in geotechnical data management, offering valuable 

insights for project planning and design, and contributing 

to cost reduction, time efficiency, and the mitigation of 

uncertainties in geotechnical projects. 

In this article, we present a pioneering approach to 

automated geotechnical data extraction and 

interpretation, underscoring the potential for 

transformative advancements in geotechnical 

engineering and environmental sustainability through the 

digitization of ground information. 

 

2. Digitalization algorithm 

In this section, a comprehensive AI-based digitization 

pipeline to turn analog documents into digital formats, 

illustrated in The overall framework of the digitalization 

process.Figure 1, is described. This pipeline 

encompasses several key stages, each leveraging cutting-

edge deep learning methodologies to achieve precise and 

efficient document processing. 

2.1. Image classification 

In the initial phase of the digitization process, we 

employ deep learning methodologies for image 

classification, a pivotal step in discerning and 

categorizing various components within documents. 

Leveraging state-of-the-art convolutional neural 

networks (CNNs) (He et al. 2015; Simonyan 2014) 

alongside other advanced architectures (Reis et al. 2023), 

our system undergoes rigorous training to achieve precise 

recognition and classification of distinct document 

sections. Our neural network is trained on an extensive 

dataset comprising over 20,000 images for each class, 

covering a diverse range of materials such as borehole 

logs, test reports, and other relevant documents. 

Employing diverse evaluation metrics including 

accuracy, precision, and recall, we meticulously assessed 

the model's performance. Through extensive exposure to 

varied datasets, our deep learning models develop a 

nuanced understanding of visual features that distinguish 

different types of information. This comprehensive 

classification framework not only establishes a 

foundation for subsequent processing steps but also 

enables accurate identification and segregation of 

document elements for further analysis. 

2.2. Object detection 

Following the initial classification phase, the 

digitization process progresses with deep-learning 

techniques for object detection. This stage involves 

identifying various elements within the documents, such 

as tables, text blocks, plots, and other relevant entities. 

We apply transfer learning by leveraging pretrained 

models like region-based convolutional neural networks 

(R-CNNs) (Girshick 2014) and You Only Look Once 

(YOLO) (Reis 2023). These models are adapted using our 

proprietary dataset, which comprises over 70,000 images. 

This transfer learning process allows us to tailor the 

models to our specific task, thereby improving their 

accuracy and performance in detecting diverse document 

elements. The system accurately pinpoints and localizes 

specific entities, with the output being the bounding boxes 

of the detected objects. Through ongoing refinement and 

optimization, the object detection module ensures 

comprehensive coverage and precise detection of various 

document elements, ultimately enhancing the overall 

efficiency and reliability of the digitization process. 

2.3. Image segmentation 

Segmentation is a crucial stage in the digitization 

pipeline, where sophisticated algorithms such as semantic 

segmentation and instance segmentation are utilized to 

accurately delineate and extract specific regions of 

interest from the identified document components. 

Employing the same training process and dataset as the 

object detection section, the system divides the document 

into cohesive segments corresponding to tables, text 

passages, and other relevant entities, utilizing cutting-



 

edge techniques such as DeepLab (Liang-Chieh, 2018). 

Through examination of visual cues and contextual 

information, these segmentation algorithms enable 

precise isolation of target regions, ensuring that only 

pertinent information is extracted for further processing. 

By seamlessly integrating segmentation into the 

digitization workflow, the system achieves a high level of 

accuracy and fidelity in capturing the desired content. 

2.4. Optical character recognition 

Following the segmentation phase, the digitization 

process integrates Optical Character Recognition (OCR), 

a cornerstone in document digitization. OCR technology 

enables the conversion of handwritten, typed, scanned 

text, or text within images into machine-readable text, 

applicable to various file formats. Leveraging advanced 

OCR algorithms and deep learning models, as 

documented by Ray (2007) and Du et al. (2020), the 

system adeptly transforms scanned or photographed 

documents into machine-readable text. This relies on 

neural network architectures like recurrent neural 

networks (RNNs) and transformers. In our work, we 

trained our OCR model with more than 50,000 text 

images. The significance of this transformation extends 

beyond conversion; it ensures the preservation of the 

original document's integrity and fidelity while 

facilitating downstream natural language processing 

tasks. Consequently, OCR bridges the gap between 

physical and digital realms. 

2.5. Natural language processing 

After the Optical Character Recognition (OCR) stage, 

the digitization process proceeds to the Mapper stage, 

where the output from OCR is processed further. In the 

Mapper stage, we leverage Natural Language Processing 

(NLP) techniques for text understanding and 

classification. Using deep learning architectures such as 

transformer-based models like BERT (Devlin et al. 2018) 

and GPT (OpenAI 2024), the system comprehensively 

analyzes and interprets the digitized borehole logs and 

other textual data. Through advanced semantic parsing, 

entity recognition, and classification methodologies, the 

NLP module extracts valuable insights, discerns patterns, 

and categorizes information embedded within the 

digitized text. This enables actionable intelligence, 

facilitates informed decisions, and derives meaningful 

insights from digitized documents. Our NLP model has 

been trained on more than 5000 classified texts, covering 

diverse domains and topics, ensuring robustness and 

versatility in text classification tasks. This extensive 

training corpus enhances the model's ability to generalize 

across different datasets and effectively classify text 

documents, regardless of their specific domain or subject 

matter. 

3. Data mapping 

The variety of possible layout formats for presenting 

the geotechnical and geological information in a report is 

enormous. To address this challenge, an unsupervised 

data mapping approach is required, wherein the software 

dynamically adapts to recognize structures and patterns, 

extracting the right information from the right place. The 

implementation outlined below employs a decision tree 

methodology. It takes machine-readable digital text 

extracted from the report (Section 2) as input and 

generates a digital representation of the enclosed 

elements in the report as illustrated in Figure 2. This 

methodology relies on a predefined structure to direct the 

processing and analysis of data. It allows the software to 

adapt and identify patterns for data extraction, leveraging 

the hierarchical organization of the acquired data. 

The data mapping module comprises specialized 

pipelines, each designed to perform distinct operations 

tailored to the specifications of the guiding structure. The 

output generated by these pipelines is stored in a 

structured JSON file, facilitating efficient organization 

and retrieval of the extracted data. 

3.1. Tailored pipelines 

Upon classification of pages by the automatic 

identification algorithm, the data mapping algorithm, 

henceforth referred as the ‘mapper’, directs the data to 

specific sub-processes accordingly. As such, two primary 

pipelines have been developed: a) borehole data, b) 

laboratory and in situ test data. 

 

 
Figure 2. Automatic detection of each column type in a 

borehole log. 

 

 Borehole interpretation 

The borehole interpretation pipeline receives data 

extracted by the OCR algorithm. Given that geotechnical 

reports commonly feature multiple boreholes or Ground 

Information Points (GIPs), the initial step involves 

grouping all detected information pertaining to each 

borehole or GIP. To accomplish that, the information 

from each borehole is cross-checked such as the borehole 

name, but also other properties such its location, drilling 

date, total depth, etc. (Figure 3). Once the grouped 

information referring to a single borehole is gathered, the 

multiple pages of the same borehole are merged to obtain 

a continuous object. Before extracting the borehole data 

per se, the different groups of information present in the 

borehole log are identified. Thus, the mapper extracts the 

following data: depths and description of the identified 



 

layers, samples and types of samples retrieved and 

whether laboratory tests have been performed on these 

samples or whether Standard Penetration Tests (SPT) 

have been recorded. These data can be presented in 

multiple formats, and this is the main strength of the 

mapper, to recognize the type of the data present in the 

borehole log and classify it before its extraction. The 

most complex interpretation for the mapper is the layer 

geometry and description pairing, since sometimes there 

is no record of the layers’ depth boundaries in the 

borehole log (4a). Thus, the mapper can 

 

 
Figure 3. Four examples of borehole log header information 

that mapper needs to be able to detect and extract the borehole 

name from them.  

transform the lines between layers description to depth 

values. Furthermore, given the stacking of descriptions, 

especially in thin layers, the lines division between layers 

can be uneven. However, the mapper is adept at 

determining the actual depth to which the bottom of each 

layer corresponds in the log (4b). To match the layer 

description to a material type and show it within 

DAARWIN platform, the NLP algorithm described 

previously is used to extract from each description the 

matching material type.  

Regarding the possible SPTs, sample records, and 

laboratory tests in the borehole log, their depth is 

calculated if no reference is found in the log. Depending 

on the structure of the SPT data, the mapper algorithm 

can detect what standard is used for the SPT test 

procedure. Also, the mapper detects automatically if the 

measurements are in the IS or imperial metric system and 

transform accordingly to the metric system used to be 

visualized within DAARWIN platform. 

 
Figure 4. a) Layer description boundaries without depth data. 

b) Layer description boundaries with uneven bottom lines. Red 

dots mark the verge of the uneven lines where the mapper 

detects the real layer bottom.  

 

 Laboratory and in situ test interpretation 

Typically, factual reports contain pages dedicated to 

laboratory and in situ tests, which often feature plots, 

images, and tables in various formats. Occasionally, they 

also present the primary outcomes of these tests. In this 

context, the mapper initially categorizes each page 

labeled as tests by utilizing an image classification 

algorithm. Nowadays, most test reports are already in 

digital format. However, older reports are likely to 

consist of scanned pages, rendering the information on 

these pages as images. An algorithm discerns the page's 

nature, directing digital pages to a digital data extraction 

pipeline and image pages to an OCR algorithm for text 

retrieval. In both scenarios, the images and figures from 

each page are extracted and subsequently linked to the 

corresponding Geotechnical Information Point (GIP) in 

DAARWIN. 

 

After classifying each page and detecting the type of 

tests, the pages are processed by a dedicated driver. In 

general terms, these drivers look for key words in the 



 

tables depending on the test type and language. For the 

table detection within the page, the drivers automatically 

expand the search area until the desired data is obtained. 

All data retrieved by each driver is then stored in a 

purpose-built data structure and transmitted back to the 

mapper. Upon receiving data from various pipelines and 

drivers, the mapper organizes it into a comprehensive 

data structure, which is stored for future review by the 

end user. 

4. Accuracy and Processing performance 

Addressing the reliability of results obtained through 

AI techniques is a significant concern. To tackle this 

challenge, an automatic test pipeline has been developed 

to verify the accuracy of processed data. This pipeline 

also ensures compatibility between new implementations 

and previous datasets. While AI algorithms inherently 

provide accuracy scores, it is worth to mention that the 

mapper currently lacks this capability.  
To assess the accuracy of the mapper's output, a pool 

containing various borehole log formats has been 

established as templates. The accuracy is evaluated by 

comparing the mapper's output to the templates of each 

borehole log, key by key within the JSON data structure. 

This meticulous comparison ensures a comprehensive 

examination of the mapper performance across different 

log formats.  
Subsequently, we calculate accuracy (A) using the 

following equation: 

Α =  
Κ𝑡−∑ 𝜅𝑖

Κ𝑡
 (1) 

Where t is the total number of keys in the JSON data 

structure and i is the count of key values which differ 

from the reference template. 
 

The processing performance stands out as another crucial 

aspect of such implementations. While manually 

inputting a new borehole log into the system might take 

minutes, the pipeline described in this paper can process 

each log page in under thirty seconds. Consequently, the 

system can handle a one hundred pages geotechnical 

report in less than an hour. 

5. Conclusions 

The integration of digital technologies has 

significantly reshaped the process of geotechnical data 

acquisition, analysis and interpretation facilitating data 

analysis. The algorithmic pipeline presented in this 

manuscript introduces a novel solution that combines 

optical character recognition, advanced data extraction 

technologies, and a state-of-the-art AI-based data 

interpretation system to process entire geotechnical 

reports. This transformative shift in geotechnical data 

management offers valuable insights for project planning 

and design, contributing to cost and material reduction 

and time efficiency. The comprehensive AI-based 

digitization pipeline described above demonstrates a 

pioneering approach to automate geotechnical data 

extraction and interpretation, underscoring the potential 

of incorporating legacy data into current digital 

workflows. 

 

This AI-based software digitization pipeline includes 

image classification, object detection, image 

segmentation, OCR, natural language processing, and 

data mapping. These stages and algorithms have been 

rigorously developed and trained to achieve precise and 

efficient document processing, with the system 

demonstrating the ability to process a geotechnical report 

of a hundred pages in less than an hour, significantly 

improving the overall efficiency and reliability of the 

digitization process. 

 

Acknowledgements 

The authors are grateful for the financial support 

provided by the Torres Quevedo grant from the Agencia 

Estatal de Investigación (AEI) under Grant Agreement 

No. PTQ2022-012630 and the European Innovation 

Council (EIC) through the Project GEORGIA - 

190151860. 

References 

Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, 

H. 2018. Encoder-decoder with atrous separable convolution 

for semantic image segmentation. 801-818. 

https://doi.org/10.1007/978-3-030-01234-2_49 

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. 2018. 

Bert: Pre-training of deep bidirectional transformers for 

language understanding. 

https://doi.org/10.48550/arXiv.1810.04805 

Du, Y., Li, C., Guo, R., Yin, X., Liu, W., Zhou, J., et al & 

Wang, H. 2020. Pp-ocr: A practical ultra lightweight ocr 

system. https://doi.org/10.48550/arXiv.2009.09941 

Girshick, R., Donahue, J., Darrell, T., & Malik, J. 2014. 

Rich feature hierarchies for accurate object detection and 

semantic segmentation. 580-587. 10.1109/CVPR.2014.81 

He, K., Zhang, X., Ren, S., & Sun, J. 2015. Deep residual 

learning for image recognition.  770-

778.10.1109/CVPR.2016.90 

OpenAI. (2024). ChatGPT (3.5) https://chat.openai.com 

Reis, D., Kupec, J., Hong, J., & Daoudi, A. 2023. Real-

Time Flying Object Detection with YOLOv8. 

https://doi.org/10.48550/arXiv.2305.09972 

Sarker, I.H. 2021.  Machine Learning: Algorithms, Real-

World Applications and Research Directions. SN COMPUT. 

SCI. 2, 160 https://doi.org/10.1007/s42979-021-00592-x. 

Simonyan, K., & Zisserman, A. 2015. Very deep 

convolutional networks for large-scale image recognition. 1-14. 

https://doi.org/10.48550/arXiv.1409.1556 

Smith, R. An overview of the Tesseract OCR engine. 2007. 

vol. 2, 629-633. 10.1109/ICDAR.2007.4376991 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.2009.09941
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2016.90
https://chat.openai.com/
https://doi.org/10.48550/arXiv.2305.09972
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/ICDAR.2007.4376991

	ABSTRACT
	1. Introduction
	2. Digitalization algorithm
	2.1. Image classification
	2.2. Object detection
	2.3. Image segmentation
	2.4. Optical character recognition
	2.5. Natural language processing

	3. Data mapping
	3.1. Tailored pipelines
	3.1.1. Borehole interpretation
	3.1.2. Laboratory and in situ test interpretation


	4. Accuracy and Processing performance
	5. Conclusions
	Acknowledgements
	References

