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ABSTRACT: We have developed a new method for the construction of Streamline Upwind Petrov Galerkin (SUPG)

stabilization techniques for the resolution of convection-diffusion equations based on the use of separated representations

inside the Proper Generalized Decompositions (PGD) framework. The use of SUPG schemes produces a consistent

stabilization adding a parameter to all the terms of the equation (not only the convective one). SUPG obtains an exact

solution for problems in 1D, nevertheless, a generalization does not exist for elements of high order or for any system of

convection-diffusion equations. We introduce in this paper a method that achieves stabilization in the context of Proper

Generalzied Decomposition (PGD). This class of approximations use a representation of the solution by means of the sum

of a finite number of terms of separable functions. Thus it is possible to use the technique of separation of variables in

the context of problems of convection-diffusion that will lead to a sequence of problems in 1D where the parameter of

stabilization is well known.
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1 INTRODUCTION
The main aim of this paper is present one application of

a new numerical strategy able to circumvent some of the

numerical difficulties due to multidimensional character

of some convection-diffusion equations.

It is well-known that the behavior of standard Finite El-

ement in the resolution of convection-diffusion(-reaction)

is not good. The use of numerical stabilization terms in

the differential equation has been developed y discussed

since some years ago. The use of Streamline Upwind

Petrov Galerkin (SUPG) stabilization technique offers ex-

act solution in 1D problems, but don’t work well in the

application of this stabilization technique in problems on

multidimensional spaces.

The use of the Proper Generalized Decompositions strate-

gies and its character of one-dimensional products ap-

proximation provides us the possibility of develop this

technique applying SUPG stabilization in the resolution

of the convection-diffusion problems defined in multidi-

mensional spaces.

The outline of the paper is as follows. In the next sec-

tion we describe the framework of the class of convection-

diffusion(-reaction) problems we deal with. The PGD

method used to apply the stabilization technique is de-

scribed in the section 3. In section 4 we describe some

examples in order to show the behavior of the technique
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in the simulation of this class of problems.

2 PROBLEM SETTING
Only for simplicity we consider the steady-state

convection-diffusion problem. The equation that govern

this problem is given by

a · ∇u −∇ · (ν∇u) = s in Ω ⊂ Rn, (1)

with n = 2, 3 and with boundary conditions

u = uD on ΓD (2)

n · ν∇u = ν
∂u

∂n
= t on ΓN , (3)

where u is the scalar quantty to be transported and also

the unknown field of the problem, a is the convection ve-

locity, ν > 0 the diffusivity, assumed constant and s(x) a

volumetric source term.

The function uD denotes the prescribed value of u on the

Dirichlet boundary, given by ΓD, the function uN denotes

the value of the normal diffusive flux on the Neumann

boundary ΓN .

The weak form of the problem given by the previous equa-

tions is Find u(x) ∈ S = {u ∈ H1(Ω)|u = uD on ΓD}
such that ∀w ∈ V = {w ∈ H1(Ω)|w = 0 on ΓD}∫

Ω

w(a · ∇u)dΩ +
∫

Ω

∇w · (ν∇u)dΩ =
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=
∫

Ω

wsdΩ +
∫

ΓN

wtdΓ (4)

that expressed in a compact form, we obtain,

a(w, u) + c(a;w, u) = (w, s) + (w, t)ΓN
(5)

2.1 CONSISTENT, SUPG, STABILIZATION

The general form of the consistent stabilization tech-

niques is [1]

a(w, u) + c(a;w, u) +
∑

e

∫
Ωe

P(w)τR(u)dΩ

︸ ︷︷ ︸
stabilization term

=

= (w, s) + (w, t)ΓN
(6)

where P(w) is an operator applied to the test function

and taking by P(w) = a · ∇w in the SUPG stabiliza-

tion technique, which, in fact, corresponds to the per-

turbation of the test function. The stabilization parame-

ter τ = h
2a (coth Pe − 1

Pe ) is called intrinsic time and

this expression provides us the exact nodal values for 1D

convection-diffusion equation, where Pe is the Pclet num-

ber defined as Pe = ah/2ν. h represents the mesh size

parameter and a the modulus of the convective velocity.

Finally, R(u) is the residual of the differential equation.

In this paper we introduce a stabilization technique based

upon the use of the so-called Proper Generalized Decom-

positions (PGD) introduced in [2] and [3].

3 THE METHOD
In this section we explain briefly the method based on the

method of separation of variables, originally developed in

[2].

For simplicity, we start by considering the Poisson prob-

lem defined in a space of dimension N with homogeneous

boundary conditions,

−Δu = f(x1, x2, . . . , xN ) in Ω = (−L,L)N , (7)

The problem solution can be written in the form

T (x1, x2, . . . , xN ) =
Q∑

j=1

αj

N∏
k=1

Fkj(xk), (8)

where Fkj is the jth basis function, with unit norm, and

only depends on the kth coordinate. Note that the solution

of numerous problems can be accurately approximated us-

ing a finite number Q of approximation functions.

The numerical scheme proposed consist of an iteration

procedure that solves at each iteration n the following

three steps.

Step 1 A projection step of the solution in a discrete basis,

where the coefficients αj are computed.

Step 2 Checking convergence step.

Step 3 Enrichment of the approximation basis step. From

the coefficients αj just computed the approximation

basis can be enriched by adding the new function∏N
k=1 Fk(n+1)(xk).

For details of this scheme see [2].

3.1 APPLICATION TO THE CONVECTION-
DIFFUSION EQUATION

In the enrichment stage we look for an improved repre-

sentation of the essential field in the form

uh(x, y) =
n∑

i=1

αiFi(x) · Gi(y) + R(x) · S(y) =

= uH(x, y) + R(x) · S(y) (9)

The test function will then be given by

w∗(x, y) = R∗(x) · S(y) + R(x) · S∗(y). (10)

Applying these definitions to the weak form (6), we obtain

a(R∗S + RS∗, RS) + c(a; R∗S + RS∗, RS) =
= −a(R∗S + RS∗, uH) − c(a;R∗S + RS∗, uH) +

+l(R∗S + RS∗) −
−

∑
e

∫
Ωe

a∇(R∗S + RS∗)τ [L(uH) − s]dΩ (11)

After applying such an approximation, the weak form of

the problem given by (3.1) is solved by some kind of it-

erative procedure, such as Newton-Raphson, alternating

directions fixed-point algorithm, etc.

4 NUMERICAL EXAMPLE
The problem statement is depicted in Figure 1, where

the unit square is taken as the computational domain,

Ω = [0, 1] × [0, 1]. This 2D test case has been widely

Figure 1: Convection of discontinuous inlet data skew to
the mesh: problem statement.
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