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ABSTRACT: We have developed a new method for the construction of Streamline Upwind Petrov Galerkin (SUPG)
stabilization techniques for the resolution of convection-diffusion equations based on the use of separated representations
inside the Proper Generalized Decompositions (PGD) framework. The use of SUPG schemes produces a consistent
stabilization adding a parameter to all the terms of the equation (not only the convective one). SUPG obtains an exact
solution for problems in 1D, nevertheless, a generalization does not exist for elements of high order or for any system of
convection-diffusion equations. We introduce in this paper a method that achieves stabilization in the context of Proper
Generalzied Decomposition (PGD). This class of approximations use a representation of the solution by means of the sum
of a finite number of terms of separable functions. Thus it is possible to use the technique of separation of variables in
the context of problems of convection-diffusion that will lead to a sequence of problems in 1D where the parameter of
stabilization is well known.
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1 INTRODUCTION

The main aim of this paper is present one application of
a new numerical strategy able to circumvent some of the
numerical difficulties due to multidimensional character
of some convection-diffusion equations.

It is well-known that the behavior of standard Finite El-
ement in the resolution of convection-diffusion(-reaction)
is not good. The use of numerical stabilization terms in
the differential equation has been developed y discussed
since some years ago. The use of Streamline Upwind
Petrov Galerkin (SUPG) stabilization technique offers ex-
act solution in 1D problems, but don’t work well in the
application of this stabilization technique in problems on
multidimensional spaces.

The use of the Proper Generalized Decompositions strate-
gies and its character of one-dimensional products ap-
proximation provides us the possibility of develop this
technique applying SUPG stabilization in the resolution
of the convection-diffusion problems defined in multidi-
mensional spaces.

The outline of the paper is as follows. In the next sec-
tion we describe the framework of the class of convection-
diffusion(-reaction) problems we deal with. The PGD
method used to apply the stabilization technique is de-
scribed in the section 3. In section 4 we describe some
examples in order to show the behavior of the technique

*Corresponding author: gonzal @unizar.es

in the simulation of this class of problems.

2 PROBLEM SETTING

Only for simplicity we consider the steady-state
convection-diffusion problem. The equation that govern
this problem is given by

a-Vu—V-wVu)=s in Q CR", (D

with n = 2, 3 and with boundary conditions

u=up on I'p 2
n~VVu:1/8—u:t on I'y, 3)
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where u is the scalar quantty to be transported and also
the unknown field of the problem, a is the convection ve-
locity, v > 0 the diffusivity, assumed constant and s(x) a
volumetric source term.

The function up denotes the prescribed value of w on the
Dirichlet boundary, given by I' p, the function u y denotes
the value of the normal diffusive flux on the Neumann
boundary I' v .

The weak form of the problem given by the previous equa-
tions is Find u(x) € S = {u € H'(Q)|u=up on T'p}
such thatVw € V = {w € H}(Q)lw =0 on I'p}

/Qw(a - Vu)dQ + /Q Vw - (vVu)dQ =
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that expressed in a compact form, we obtain,
a(w,u) + c(a;w,u) = (w, ) + (w, t)ry ®)

2.1 CONSISTENT, SUPG, STABILIZATION

The general form of the consistent stabilization tech-
niques is [1]

a(w,u) + c(a; w,u) + Z/ﬂ P(w)TR(u)dQY =

stabilization term

= (w,s) + (w,t)ry (6)

where P(w) is an operator applied to the test function
and taking by P(w) = a - Vw in the SUPG stabiliza-
tion technique, which, in fact, corresponds to the per-
turbation of the test function. The stabilization parame-
ter 7 = 2-(coth Pe — ) is called intrinsic time and
this expression provides us the exact nodal values for 1D
convection-diffusion equation, where Pe is the Pclet num-
ber defined as Pe = ah/2v. h represents the mesh size
parameter and a the modulus of the convective velocity.
Finally, R(u) is the residual of the differential equation.
In this paper we introduce a stabilization technique based
upon the use of the so-called Proper Generalized Decom-
positions (PGD) introduced in [2] and [3].

3 THE METHOD

In this section we explain briefly the method based on the
method of separation of variables, originally developed in
[2].

For simplicity, we start by considering the Poisson prob-
lem defined in a space of dimension N with homogeneous
boundary conditions,

—Au = f(x1,29,...,25)in Q= (=L, L)Y, (7

The problem solution can be written in the form

N
T(xy, 22, .. oan) = > a; [[ Frjlee),  ®
k=1

j=1

where F},; is the jth basis function, with unit norm, and
only depends on the kth coordinate. Note that the solution
of numerous problems can be accurately approximated us-
ing a finite number () of approximation functions.

The numerical scheme proposed consist of an iteration
procedure that solves at each iteration n the following
three steps.

Step 1 A projection step of the solution in a discrete basis,

where the coefficients o;; are computed.

Step 2 Checking convergence step.

Step 3 Enrichment of the approximation basis step. From

the coefficients «; just computed the approximation
basis can be enriched by adding the new function

N
[Ti—1 Frnt1) ()
For details of this scheme see [2].

3.1 APPLICATION TO THE CONVECTION-
DIFFUSION EQUATION

In the enrichment stage we look for an improved repre-
sentation of the essential field in the form

uM(z,y) = aiFy(z) - Gi(y) + R(z) - S(y) =
i=1
=u'(z,y) + R(z) - S(y) O
The test function will then be given by
w*(z,y) = R*(x) - S(y) + R(z) - S™(y). ~ (10)
Applying these definitions to the weak form (6), we obtain

a(R*S + RS*,RS) + c¢(a; R*S + RS*,RS) =
= —a(R*S + RS*,u!) — ¢(a; R*S + RS*,u'l) +
+I(R*S + RS™) —

- Z/ aV(R*S + RS)rL(uf) — sl (1)
e /e

After applying such an approximation, the weak form of
the problem given by (3.1) is solved by some kind of it-
erative procedure, such as Newton-Raphson, alternating
directions fixed-point algorithm, etc.

4 NUMERICAL EXAMPLE

The problem statement is depicted in Figure 1, where
the unit square is taken as the computational domain,
Q = [0,1] x [0,1]. This 2D test case has been widely
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Figure 1: Convection of discontinuous inlet data skew to
the mesh: problem statement.



used to illustrate the effectiveness of stabilized finite ele-
ment methods in the modelling of convection-dominated
flows. A mesh of 10 by 10 equal-size bilinear elements is
considered in the standard finite element approach, only
a 10 elements along each direction is used in the PGD
framework.

The flow is unidirectional and constant, ||a|| = 1, but the
convective velocity is skew to the mesh with an angle of
30. The diffusivity coefficient is taken to be 5 - 10~6, cor-
responding to a Pclet number of 10%. The inlet boundary
data are discontinuous and two types of boundary are con-
sidered at the outlet:

e Downwind homogeneous natural boundary condi-
tions. The results for this case are displayed in Figure
2. Given the elevated value of the Pclet number, the
solution is practically one of pure convection.

Figure 2: Results for the Neumann Boundary Conditions:
MEF-SUPG(up) PGD-SUPG(down,).

In the Figure 3 we can see a cross along x = 0.5 of
both approach.

e Downwind homogeneous essential boundary condi-
tions. Here we impose u = 0 on the outlet portion of
the boundary. The results are depicted in the Figure
4.

In the Figure 5 we can see a cross along = 0.5 of
both approach.

/| ==

Figure 3: Cross along = = 0.5 for the Neumann boundary
conditions problem.

5 CONCLUSIONS

We have presented a technique of separated representa-
tions (also coined recently Proper Generalized Decompo-
sitions) for the stabilization of convection-diffusion equa-
tions solved by finite elements. The key characteristic of
this technique is the representation of the essential field
in terms of a finite sum of separable functions, leading to
a set of one-dimensional SUPG problems, therefore with
exact stabilization known.

The separated representations also allow for an important
saving in terms of degrees of freedom, which is partic-
ularly important for problems defined in spaces of high
number of dimensions. It has been show how this approx-
imation leads to more stable results than the traditional
SUPG technique.
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Figure 4: Results for the Dirichlet Boundary Conditions:
MEF-SUPG(up) PGD-SUPG(down,).
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Figure 5: Cross along = = 0.5 for the Dirichlet boundary
conditions problem.





