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Summary. This paper investigates methods for damage identification in bridge structures by 

using Structural Health Monitoring (SHM) techniques. The study uses Frequency Domain 

Decomposition (FDD) to estimate modal parameters such as natural frequencies and mode 

shapes, which can indicate damage through changes in modal parameters. Additionally, the 

paper explores the application of deep learning, specifically Bidirectional Long Short-Term 

Memory (BiLSTM) networks, for damage localization and quantification. Synthetic 

acceleration data from a single-span beam model was generated and used to train these neural 

networks. The research demonstrates that both FDD and BiLSTM networks can effectively 

localize damage related to a reduction in stiffness. The BiLSTM also quantifies damage with 

high accuracy, highlighting the potential of deep learning in SHM. Future work will focus on 

refining the beam model, incorporating noise in the data, and optimizing neural network 

architectures for real-world applications. 
 

1 INTRODUCTION 

Bridges are central components of infrastructure systems. Due to their exposure, they are 

constantly subjected to external influences that affect their structural health. A usual problem 

of bridges, e.g. in Germany or the USA [1], is a high backlog in refurbishment due to a lack of 

continuous maintenance over the last few decades in combination with an extensive usage. 

Especially railway bridges are subjected to high dynamic loads caused by the crossing of trains, 

which can result in structural damage to the supporting structure. Early detection of damage 

can help to maintain and extend the lifetime of a bridge. As part of the Structural Health 

Monitoring (SHM), the determination of the dynamic characteristics is a key element to monitor 

the system behavior and to derive conclusions on the service life of the structure. The modal-

based damage analysis is based on the assumption that damage to the structure is accompanied 

by changes in stiffness or mass. Due to this physical correlation damage processes change the 

dynamic response of a structure. In the context of the Operational Modal Analysis (OMA), the 

structural response of the bridge is measured under operating conditions, i.e. closing of bridges 

for measurements are not necessary.  
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In this research the OMA technique Frequency Domain Decomposition (FDD) was used. 

This method enables the estimation of modal parameters of the structure based on time histories 

(velocities, accelerations). Damage accompanied by a reduction in stiffness can be detected as 

a result of a change in the modal parameters like natural frequencies and related mode shapes. 

Damage identification in SHM involves four steps: detection, localization, quantification, and 

remaining useful life prediction [2]. Previous own research was carried out to detect and 

localize damage on single-span concrete beams trough changes in modal parameters and to 

develop a measurement system. This measurement system has made it possible to detect and 

localize stiffness reductions as a consequence of bending cracks by using the FDD. [3] 

In this paper, an alternative method is researched to localize and even quantify damage based 

on the structural response by using deep learning algorithms like neural networks. A of proof 

of concept is presented using synthetic acceleration data of the previous experiments to be 

analyzed by deep learning algorithms.  

 

2 BACKGROUND   

2.1 Frequency Domain Decomposition  

The behavior of a multi-degree of freedom structure under external excitation can be 

described mathematically by a system of second-order differential equations as follows 

𝑀�̈� + 𝐾𝑥 =  𝐹(𝑡). (1) 

𝑀 and 𝐾are the mass and stiffness matrices respectively, 𝑥 is the displacement and �̈� the 

acceleration of the structure. 𝐹(𝑡) is external excitation which, in context of OMA, is unknown. 

The modal characteristics of the structure cannot be determined by solving the matrix 

eigenvalue problem because in case of real measurements, the mass- and stiffness matrixes are 

unknown. The Frequency Domain Decomposition enables the estimation of eigenvalues and 

mode shapes based on measured time histories of the structural dynamic response. This is based 

on the idea of representing the structural response of an overall system by the sum of the 

reactions of many single degree of freedom (SDOF) systems. Each SDOF system reflects a 

mode [4]. The distribution of the response spectrum or the structural response of the overall 

system to the individual degrees of freedom of the system is achieved by the singular value 

decomposition (SVD) of the Power Spectral Density (PSD) matrix. The transformation of the 

signals from the time domain to the frequency domain results in the dependence on the 

frequencies 𝜔𝑖 and so for each discrete frequency there is a corresponding PSD matrix. The 

singular value decomposition of the PSD matrix therefore provides the singular values as a 

function of the discrete frequencies. The PSD matrix of the structural response 𝐺𝑦𝑦(𝑗𝜔) can be 

expressed as [5] 

𝐺𝑦𝑦(𝑗𝜔) =  ∑
𝑑𝑘𝜙𝑘𝜙𝑘

𝑇

𝑗𝜔 − 𝜆𝑘
+
�̅�𝑘�̅�𝑘�̅�𝑘

𝑇

𝑗𝜔 − 𝜆̅𝑘𝑘∈𝑆𝑢𝑏(𝜔)

 , 
(2) 

where 𝑑𝑘  is a scalar constant, 𝜙𝑘  is the mode shape vector and 𝜆𝑘  is the pole consisting of 

resonance frequency and damping value. At a specific frequency 𝜔, only a limited number of 

modes will contribute significantly. Let 𝑆𝑢𝑏(𝜔) denote that set of modes. The singular value 
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decomposition is performed for each discrete frequency 𝜔𝑖 

�̂�𝑦𝑦(𝑗𝜔𝑖) =  𝑈𝑖𝑆𝑖𝑈𝑖
𝐻 . (3) 

According to [6], the diagonal matrix 𝑆𝑖 ∈ ℝ𝑛𝑥𝑛
 contains for the discrete frequency 𝜔𝑖 the 

scalar singular values 𝑠𝑖𝑗 in descending order. 

𝑆𝑖 = [
𝑠𝑖1

⋱
𝑠𝑖𝑚

] , 𝑠𝑖1 > 𝑠𝑖2 > . . . > 𝑠𝑖𝑚  , 𝑗 = 1, … ,𝑚. 

(4) 

As a result of the decomposition of the overall system into SDOF systems and the descending 

order of the singular values, the first singular value contains the information about the dominant 

mode at this frequency. The matrix 𝑈𝑖 ∈ ℂ𝑛𝑥𝑛 contains the associated singular vectors for the 

singular values. For the discrete frequency 𝜔𝑖 , this means that the matrix 𝑈𝑖  contains the 

eigenvectors 𝑢𝑖𝑗. 

𝑈𝑖 = [𝑢𝑖1, 𝑢𝑖2 , … ,  𝑢𝑖𝑚] ,                     𝑗 = 1, … ,𝑚. (5) 

The first singular vector 𝑢𝑖1 is an estimation of the mode shape [4] 

�̂� =  𝑢𝑖1 . (6) 

Based on the above formulations, it can be observed that any change in stiffness or mass will 

lead to changes in the dynamic response and then its natural frequencies and mode shapes. 

Therefore, damage accompanied by a reduction in stiffness can be detected as a result of a 

change in the modal parameters. Damage quantification by FDD is the subject of current 

research. Therefore, a Bidirectional Long Short-Term Memory Network was investigated as an 

alternative method of damage identification.  

2.2 Bidirectional Long Short-Term Memory Network  

Machine learning is an effective strategy to extract features from data because it enables a 

computing device to identify implicit relationships within data for the purpose of classification 

or prediction [7]. Deep learning is a subset of machine learning. Deep learning methods like 

neural networks are a common way to handle time series data. One class of neural networks are 

Recurrent Neural Networks (RNN).  

The recurrent connections allow the network’s hidden units to see its own previous output, 

so that the subsequent behavior can be shaped by previous responses. These recurrent 

connections are what give the network memory. [8] This class of neural networks is suitable 

for sequential data. RNNs are specifically designed to capture time-dependent characteristics, 

but they are considered to have shortcomings in handling long-term dependencies of time series. 

If the processing signal is very long, RNNs tend to may lose some important information from 

the beginning. Long Short-Term Memory networks (LSTM) [9] are one variant of RNNs with 

the capability to learn long-term dependencies in time series data. The gate units of LSTM 

networks regulate the state of the memory cell and enable the LSTM to deal with long sequence 

signals. A variant called Bidirectional LSTM (BiLSTM) is a more efficient extension of LSTM. 

BiLSTM contains two unidirectional LSTMs that process the input signal in opposite directions 

to capture information that may be overlooked by unidirectional LSTM networks [10]. The 

BiLSTM layer processes the input sequence simultaneously in the forward and reverse 
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directions. The literature [11] verified the advantages of the BiLSTM suggesting the use of the 

BiLSTM instead of the unidirectional LSTM in time series analysis. In this research, a 

bidirectional LSTM network was used, because it enables information from the past and the 

future to be recorded.  

 

3 NUMERICAL BEAM MODEL  

3.1 Beam model  

The single-span beam has the dimensions 6.5 m x 0.2 x 0.3 m (L x W x H) and was modeled 

as a simply supported Euler-Bernoulli beam in Matlab software. The beam length was mapped 

trough 104 elements with an element length of 6.25 cm in order to be able to map both the 

dynamic behavior of the beam and the sensor positions. At each element node, two degrees of 

freedom are considered. These are the displacement transverse to the longitudinal axis and the 

rotation of the node. The displacement in the longitudinal direction is not taken into account. 

This proof of concept neglects damping characteristics and reinforcement. Stiffness reduction 

was simulated as Young’s Modulus reduction on each element in turn. The damage has also 

been modeled on two and three neighboring elements. Eight damage degrees were modeled, 

ranging from 10 to 60 % reduction of Young’s Modulus. Figure 1 shows the damage scenario 

on two elements in the middle of the beam depending on all damage degrees.  

 

 
 

 Figure 1: Simulated damage degrees on two elements in the center of the beam 

3.2 Acceleration time-histories 

For extracting the acceleration �̈� numerically, a time integration is necessary. In this research 

the Newmark method [12] for second order differential equations was chosen. To ensure 

unconditional stability of the method, the integration parameters 𝛿  and 𝛼  were selected as 

follows 

𝛿 =   
1

2
 ,       𝛼 =   

1

4
 . 

(7) 
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The time step was set to 

Δ𝑡 =   
1

𝑓𝑠
 , 

(8) 

where 𝑓𝑠 is the sampling frequency.  

The single-span beam was excited by an impulse at beam length x = 0.2 m. The vertical 

acceleration of 25 element nodes was used as virtual accelerators. The distance between the 

used element nodes is 0.25 m each. The sampling frequency of the vertical accelerations is 

4000 Hz. In this proof of concept, the virtual sensors work in ideal conditions, which means 

there is no noise included in the obtained acceleration time series. The structural response was 

simulated for each damage scenario. Therefore, the variation of responses is only a result of the 

different damage scenarios.  

 

4 DAMAGE LOCALIZATION USING FREQUENCY DOMAIN DECOMPOSITION  

The Frequency Domain Decomposition was used to estimate the mode shapes based on the 

acceleration signals of the 25 virtual sensors. Figure 2 shows the mode shapes of the first three 

vertical bending modes depending on the various damage degrees for a simulated damage at 

elements 37 - 39 at approximately 2.4 m. The slight changes in the amplitudes of the mode 

shapes are an indicator for changes of the properties of the beam. 

 

 
 

 Figure 2: Mode shapes depending on various damage degrees 

Figure 3 shows the curvature of the first three vertical bending modes depending on the 

various damage degrees. The curvature of the mode shapes was determined by the second 

derivation of the estimated amplitudes of mode shapes by using the central difference 

approximation method [13] as follows 

𝐷4𝑓(𝑥0, ℎ) =   
𝑓(𝑥0 + ℎ) − 2𝑓(𝑥0) + 𝑓(𝑥0 − ℎ)

ℎ2
 , 

(9) 

where ℎ is the distance between the virtual sensors.  
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Figure 3: Mode shape curvature depending on various damage degrees 

The curvatures increase significantly in the area of the damaged elements, especially in the 

first and second mode. Thus, the FDD enables the localization of areas with reduced stiffness.  

5 DAMAGE IDENTIFICATION USING DEEP LEARNING ALGORITHMS  

The neural networks used in this work were implemented in Matlab. The network 

architecture (Figure 4) contains an input layer, a BiLSTM layer with 200 hidden units, a fully 

connected layer, a softmax layer and an output layer. The number of neurons of the output layer 

is the number of labels to predict. Details on BiLSTM will not be discussed further due to the 

scope of the report. Further information and a general introduction to bidirectional RNN and 

LSTM networks can be found in [9, 14, 15]. 

 

 

Figure 4: Network architecture 

For training, Adam optimizer with a learning rate of 0.002 was used and the loss was 

minimized by using the cross-entropy loss function [16] 
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loss =  −
1

𝑁
∑∑𝑤𝑖𝑡𝑛𝑖 ln 𝑦𝑛𝑖

𝐾

𝑖=𝑖

𝑁

𝑛=1

 , 
(10) 

where 𝑁 is the number of samples, 𝐾 is the number of classes, 𝑤𝑖 is the weight for class 𝑖, 𝑡𝑛𝑖 
is the indicator that sample n belongs to class 𝑖 (1 if true, 0 otherwise), and 𝑦𝑛𝑖 is the output 

(probability) for sample n for class 𝑖, which comes from the softmax function.  

Table 1 shows the used settings used for the training. Shuffling of data was not applied. 

Other parameters were left at their default settings.  

 

Table 1: Settings used to train  

Gradient Decay Factor 0.9 

Square Gradient Decay Factor  0.999 

Epsilon 1e-8 

L2Regularization 0.0001 

Gradient Threshold Method l2norm 

Gradient Threshold  1.0 

Mini Batch Size 128 

Validation Frequency 50 

 

The network architecture and hyperparameters are selected via an extensive trial-and-error 

approach. It is likely that a different network architecture and/or different parameters will 

deliver better results. The networks were trained using acceleration response histories directly 

without requiring an additional step to extract structural characteristics such as modal 

identification (end-to-end network). Depending on classification task (damage localization, 

damage quantification and damage localization and quantification simultaneously), different 

data bases were used. Table 2 contains the information about the data basis, respectively.  
 

Table 2: Overview of the generated data bases 

 Data basis A Data basis B Data basis C 

Used for Damage Quantification Localization both 

Number of Elements 104 100 100 

Element Length [cm] 6.25 6.50 6.50 

Number of Beam Areas 13 10 10 

Number of Virtual Sensors  25 9 9 

Sampling Frequency fs [Hz] 4000 1900 1900 

Simulated Damage Degrees 8 4 4 

Time Signal [s] 15 10 10 

Number of Data Sets 2473 1189 1189 

Number of Impulse Forces 2 2 3 

Total Number of Data Sets 4946 2378 3567 

Number of Labels 9 11 41 
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To reduce the number of labels for classification, 10 (data basis B and C) or 8 (data basis A) 

beam elements are grouped together to form a damage area. This led to a subdivision of the 

beam into 10 (data basis B and C) or 13 (data basis A) damage areas. For data basis B and C, 

the simulated damage degrees were modeled as 10, 25, 50 and 75 % reduction of Young’s 

Modulus. In addition to the damaged areas, there is also the undamaged state. By exciting the 

beam with an impulse, the data sets were created depending on the number of elements and 

simulated damage degrees. This was repeated for several impulse forces in order to create the 

entire data basis in each case. The data sets containing in data bases were normalized before 

training. The entire data bases were randomly divided into training, validation and test subset 

with a ratio of 80:10:10. 

First, separate neural networks for damage localization and damage quantification were 

trained. For the investigations of damage localization based on deep learning algorithms, data 

basis B was used. The 11 labels to be classified are the 10 damaged beam areas (beam area 01 

- 10) and the undamaged state. Figure 5 shows the training accuracy and loss for 1500 epochs. 

The testing accuracy with unseen data was 94.14 %. Overall results are graphically represented 

as a confusion matrix where the diagonal cells are the number of correctly detected labels 

(highlighted in green) and the off-diagonal cells contain the number of incorrect results 

(highlighted in yellow). The result of the testing is presented in Figure 5. Sometime, the 

damaged beam area 10 was swapped with the beam area 01 and sporadically the neighboring 

beam area was predicted. 

 

 

 

 

Figure 5: Training progress (left) and confusion matrix (right) for damage localization  

 

Then the damage quantification was investigated. For this case, data basis A was used. In 

this case, the labels contain the 8 different damage degrees (Figure 1) and the state of the 

undamaged beam. Compared to data evaluation with FDD, the length of the time signals here 

is 10 seconds. The first 5 seconds of the vibrations were not used for training. Figure 6 shows 

the training accuracy and loss for 20 epochs. The testing accuracy with unseen data was 

99.19 %. Confusion matrix (Figure 6, right) shows only 4 false damage degree predictions.  
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Figure 6: Training progress (left) and confusion matrix (right) for damage quantification  

 

At last, simultaneously prediction of damage localization and damage quantification was 

investigated. For the sake of simplicity, the data basis C with 4 damage degrees and 10 damaged 

beam areas was used. This means that the required computing power could be reduced to a 

reasonable level without reducing the informative value. A network of combined output labels 

was applied. The label contains both, the damage location and the damage degree. For example, 

label 0250 classifies a damage in beam area 02 with a damage degree of 50 %. In total, 41 labels 

are to predict. Figure 7 shows the training accuracy and loss for 1000 epochs. The testing 

accuracy was 63.69 %. The trained network often predicts the right damaged area, but not the 

right damage degree. This is shown by the yellow diagonals above and under the green one. In 

some cases, the network classified the right damage degree but the neighboring beam area. 

  

Figure 7: Training progress (left) and confusion matrix (right) for damage localization and quantification 

 

6 CONCLUSIONS 

In this paper, modelling of a single-span beam with matlab software and generation of 

acceleration time histories depending on various damage locations and damage degrees was 
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investigated. The damage localization by using modal curvature estimated by the Frequency 

Domain Decompisition was presented. Afterwards BiLSTM networks for damage localization 

and damage quantification were designed and implemented to directly take numerical 

acceleration data as input. The networks for damage localization and damage quantification 

provided highly accurate results (> 90 %) thanks to the capacity of capturing implicit 

dependencies from raw sensor data.  

The research has shown that the information about the location and damage degree is 

inherent in the structural response. This proof of concept also shows that deep learning 

algorithms are able to detect and correctly classify these damage characteristics. However, great 

attention must me paid to a sufficient data basis. These should contain a sufficient number of 

samples and a balanced labeling of the labels for a successful training of the network. 

7 OUTLOOK  

The synthetic data was generated using the described simplifications. In further research the 

beam model will be improved, for example adding the reinforcement and non-linearity of 

reinforced concrete. Damage will be modeled more realistically and multiple damage locations 

can be added. Adding noise to the time histories is another next step as well as investigation of 

noisy signals. In addition, further parameters such as batch size, batch normalization layer or a 

dropout layer are to be varied or added. According to neural networks further research will 

subject predicting damage location and damage degree simultaneously as separate labels by one 

network. The goal is to optimize neural network performance in such a manner that vibration 

data from real experiments can be used as testing set.  
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