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Abstract

This paper presents a new algorithm to simulate the seismic response of N-story building frames incorporating friction energy dissi-
pators; a device per floor is considered. The frames with the dissipators are described by 2D lumped masses models with two degrees of
freedom per floor, namely the horizontal displacements of the main structure and of the dissipators. The proposed algorithm consists of a
modification of the linear acceleration method; the main innovation consists of checking at each calculation instant the sliding or sticking
condition at each floor, hence, the number of ‘‘active’’ degrees of freedom changes continuously, ranging in between N (there is sticking
condition at every dissipator) and 2N (there is sliding condition at every dissipator). Some results given by this algorithm are compared to
experimental results from ad-hoc testing and to numerical results obtained with the ADINA software package. In both cases, agreement
is satisfactory while the proposed method is more computationally efficient.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Reducing the response of buildings to strong earth-
quakes is of great concern for structural engineers to pre-
vent big damage and structural collapse. The traditional
approach consists of designing ductile constructions and
dissipating the input energy through big strains in the main
structure; but this causes damage and/or might lead to
over-conservative and impractical designs. Conversely, in
the 1970s the use of energy dissipation devices not belong-
ing to the main gravity load-resisting system was suggested
[26,14]. These devices are specifically designed to absorb
the input energy and can be easily replaced after strong
excitations. As the structure remains basically elastic, resid-
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ual displacements are then released. Fig. 1 shows three
sketches of a moment resisting frame (belonging to a
multi-story building) with energy dissipators.

The systems depicted in Fig. 1 are intended to prevent
excessive sideway oscillations for horizontal support
motions (mostly earthquakes); every time inter-story drifts
are generated, energy is dissipated through big strains, dis-
tortions or displacements in the devices. Fig. 1(a) repre-
sents a solution where dissipators are placed in the
connections between the main structure and the bracing
system (it is sketched as chevron braces, but other systems –
e.g. detached concrete or masonry walls – can be equally
used). Fig. 1(b) displays dissipators connected to split
(sliding) diagonal braces while Fig. 1(c) shows devices
connected to four half-braces. Looking for vertical regular-
ity, at Fig. 1 all the floors have devices incorporated.

General non-linear (numerical) models are non-suitable
for describing the dynamic behavior of buildings
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Fig. 1. Building frames equipped with energy dissipators.
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Fig. 2. Dry friction hysteresis loop.
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incorporating energy dissipators because the main struc-
ture is supposed to remain elastic while the non-linearities
are left to dissipators and also because the coexistence of
elements with extremely different stiffness parameters (the
dissipators themselves can be significantly more flexible
than the main structure and the bracing system) could lead
to numerical instability and to a certain lack of accuracy.
As discussed next, the numerical simulation of friction dis-
sipators involve additional difficulties arising from the high
non-linearities of their structural behavior.

Among the existing energy dissipation devices, three
major types are currently used: metallic yield dampers, fric-
tion dampers and viscous or viscoelastic dampers [26]. This
paper focuses on the analysis of friction devices, because
these dissipators have several advantages:

• High energy dissipation capacity per cycle (at a given
amplitude) and virtually unlimited total dissipation
capacity (mainly limited by the wearing of the sliding
surfaces).

• Controllable friction force (through the transversal pres-
tressing force).

• Insensitivity to the number of loading cycles and no fati-
gue effects. As there are virtually no strains, the only rel-
evant time effect is the change of the friction coefficient
(e.g. due to corrosion and wearing of the sliding
surfaces).

Conversely, friction dissipators exhibit some potentially
relevant disadvantages:

• The energy dissipated per cycle is only proportional to
the maximum displacement (see Fig. 2) instead of the
square of this displacement, as in the case of viscous
damping. This fact can be relevant for sudden pulses
and for inputs stronger than those expected. Moreover,
resonance peaks cannot be properly cut [17].

• Due to the frequent and sudden changes in the sticking–
sliding conditions, high frequency response can be gen-
erated. This is relevant for human comfort and for
non-structural elements safety because important accel-
erations might appear.
• Durability is also a controversial issue, mostly due to the
high sensitivity of the coefficient of friction to the condi-
tions in the sliding surfaces.

On the other hand, the dynamic behavior of friction dis-
sipators is highly non-linear (every time the sense of sliding
reverts, the friction force changes suddenly from lN to
�lN, see Fig. 2) and the modeling of sliding is compli-
cated, hence, the numerical simulation is a challenging
issue. A number of ad-hoc models have been developed,
such as the one considered in the ADINA software
package [3]. Some other codes simulate friction through
equivalent bilinear hysteretic behavior (typical of yielding
devices); in fact, this approach was used previously by
one of the authors [12]. However, there are three major dif-
ferences: (1) yielding devices are usually quite flexible while
the initial stiffness of the sliding ones is virtually infinite, (2)
in friction dissipators plastic hardening is negligible and
(3) by assuming bilinear behavior, only ‘‘parallelogram-
shaped’’ hysteresis loops can be considered while the algo-
rithm proposed here can reproduce more complicated
(realistic) hysteresis loops with many stick–slide changes.
These aspects are more deeply studied at Refs. [8,9]. In that
paper, some comparisons between the results obtained with
bilinear [5] and friction models show that the responses are
quite similar but relevant differences in the amount of input
energy are still found. This certain lack of accurate and reli-
able numerical models causes some controversy about
some subjects such as overall seismic efficiency, reliability,
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introduction of high frequencies in the response [15] and
seismic behavior under near-fault pulses [24]. Moreover,
no specific design guidelines for friction dissipators have
been reported.

A variety of friction devices have been proposed for
structural energy dissipation [28,6,20,13,26,15,24]. These
devices differ in their mechanical complexity and in the
materials used in the sliding surfaces but if it is assumed
that the friction coefficient is non-velocity-dependent, that
the static and dynamic friction coefficients are equal and
that the pre-stressing force is constant, almost all of them
generate rectangular hysteresis loops (typical of Coulomb
friction) as the one depicted in Fig. 2.

The main purpose of this paper is to propose a new
algorithm to simulate the seismic behavior of building
frames equipped with friction energy dissipators, such as
the system described in Fig. 1. The stability, accuracy
and overall performance (e.g. CPU time and memory
requirement) of the proposed model are compared to those
of the ADINA commercial software package. The hystere-
sis loops of the dissipators are rectangular, as shown in
Fig. 2.

The proposed model is also useful to simulate the
dynamic behavior of buildings with friction isolators (base
isolation) or excited by other dynamic inputs.

This work belongs to a bigger research project whose
purpose is to assess the efficiency of friction dissipators
for seismic protection of buildings. This research involves
experiments and a parametric numerical analysis [9]. Some
of these numerical results are compared to those from the
proposed algorithm to yield additional information about
its accuracy and reliability.

The next section describes the general dry friction theory
as used in the algorithm presented in this paper.

2. Friction constitutive model

This section describes the static behavior of a single fric-
tion dissipator (see Fig. 1) [21]. Fig. 3 depicts the mechan-
ical model of the contact problem.
F
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N = kN uN
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Fig. 3. Interaction forces between the m
In Fig. 3, x and x 0 are, respectively, the horizontal dis-
placements of the main frame and of the dissipative device.
The coefficient k 0 represents the stiffness of the bracing sys-
tem supporting the dissipator.

At a single point belonging to the contact surface, the
limit condition for the unidirectional constitutive model –
based on the classical Coulomb’s Law – [25] is

f ðF ; uN Þ � gðF ; uN Þ ¼ jF j � hlNi ¼ jF j � hlKN uN i 6 0

ð1Þ

where f(F) and g(F) are the plastic yielding limit function
and the plastic potential, respectively. F is the friction force
between the dissipator and the structure, l is the dry static
friction coefficient (l = tan/fric where /fric is the rugosity
angle) and N is the prestressing force – acting normally
to the contact surface – given by N = KNuN, where KN

and uN are the penetration stiffness and displacement,
respectively.

If during the calculation process, this limit condition is
not fulfilled, it means that there is sliding ð _x 6¼ _x0Þ and the
relative displacement x � x 0 between the dissipator and
the structure is defined by the classical plasticity theory
through the normality rule,

Dðx� x0Þ ¼ Dk
ogðF ; uN Þ

oF
¼ Dk sgnðF Þ ¼ Dk

F
jF j ð2Þ

where D accounts for the increment between consecutive
calculation instants.

The increment of the consistency factor Dk is obtained
by imposing the plastic consistency condition:

Df ðF ; uN Þ ¼ 0 ¼ of
oF

DF þ of
ouN

DuN

¼ sgnðF Þk0Dx0 � l
uN

juN j

� �
k0DuN ð3Þ

By substituting the relative displacement x � x 0 into this
last equation, the plastic consistency factor (or Lagrange
multiplier) is obtained:
F = μ N = k’ x’

kN uN

uN

x’

x

ain frame and a friction dissipator.
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Fig. 4. Frictional device static model.
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0 ¼ sgnðF Þk0½Dx� Dk sgnðF Þ� � l
uN

juN j

� �
kNDuN ð4Þ

Dk ¼ sgnðF ÞDx�
l uN
juN j

D E
DN

k0

) Dðx� x0Þ ¼ Dk sgnðF Þ ¼ Dx�
l uN
juN j

D E
DN

k0
sgnðF Þ ð5Þ

Fig. 4 shows the trial-and-error constitutive behavior of the
friction dissipator.

According to Fig. 4 and to the previous result, the incre-
ment of the friction force is given by

DF ¼ DF TRIAL � DF d ¼ k0Dx� k0Dðx� x0Þ ¼ k0Dx0

¼ sgnð _x� _x0ÞlN þ sgnðF Þ uN

juN j

� �
lDN ð6Þ

These results yield the tangent stiffness matrix related to the
friction and contact degrees of freedom:

DN

DF

� �
¼

k0 0

sgnðF Þl uN
juN j

D E
kN 0

 !
DuN

Dx

� �
ð7Þ

If the prestressing force N is constant (DN = 0), the contact
degree of freedom uN is not required since DuN = 0. In such
a case only stiffness coefficients given by sgnðF Þl uN

juN j

D E
kN

have to be incorporated to the corresponding degrees of
freedom.

3. Equations of motion

In this section a multi-story building (with a symmetry
plan) incorporating friction dissipators on each floor (as
described in Fig. 1) is considered. The number of floors is
denoted by N. The excitation consists of a seismic motion;
the case of lateral loading can be similarly analyzed as
shown next.

As there is symmetry, the structure is modelled as a 2D
frame. The degrees of freedom are selected as the relative
horizontal displacements of floors (x1, . . . ,xi, . . . ,xN) and
dissipators ðx01; . . . ; x0i; . . . ; x0N Þ. If a dissipator is stuck (this
situation is termed as sticking condition) then _x0i ¼ _xi; other-
wise (when sliding occurs, situation is termed as sliding

condition) such velocities are different. Consequently, the
number of active degrees of freedom changes continuously,
ranging between N (all the dissipators are stuck) and 2N

(all the dissipators slide simultaneously).
The proposed model can be used to describe the

dynamic behavior of any 2D structure. As an illustrative
example to derive the equations of motion, the case of a
shear frame is considered next. As stated previously, the
maximum number of degrees of freedom is 2N. The 2N

equations are

m1ð€x1 þ €xgÞ þ c1 _x1 þ k1x1 � c2ð _x2 � _x1Þ � k2ðx2 � x1Þ
� c02ð _x02 � _x1Þ � k02ðx02 � x1Þ ¼ �F 1

m01ð€x01 þ €xgÞ þ c01 _x01 þ k01x01 ¼ F 1

m2ð€x2 þ €xgÞ þ c2ð _x2 � _x1Þ þ k2ðx2 � x1Þ � c3ð _x3 � _x2Þ
� k3ðx3 � x2Þ � c03ð _x03 � _x2Þ � k03ðx03 � x2Þ ¼ �F 2

m02ð€x02 þ €xgÞ þ c02ð _x02 � _x1Þ þ k02ðx02 � x1Þ ¼ F 2

� � �
mið€xi þ €xgÞ þ cið _xi � _xi�1Þ þ kiðxi � xi�1Þ � ciþ1ð _xiþ1 � _xiÞ
� kiþ1ðxiþ1 � xiÞ � c0iþ1ð _x0iþ1 � _xiÞ � k0iþ1ðx0iþ1 � xiÞ ¼ �F i

m0ið€x0i þ €xgÞ þ c0ið _x0i � _xi�1Þ þ k0iðx0i � xi�1Þ ¼ F i

� � �
mNð€xN þ €xgÞ þ cN ð _xN � _xN�1Þ þ kN ðxN � xN�1Þ ¼ �F N

m0Nð€x0N þ €xgÞ þ c0N ð _x0N � _xN�1Þ þ k0N ðx0N � xN�1Þ ¼ F N

where €xg is the ground acceleration; mi, ci and ki are,
respectively, the mass, viscous damping and stiffness coeffi-
cients of the ith floor and m0i, c0i and k0i are the correspond-
ing values for the bracing connecting the dissipator and the
main frame. Fi is the interaction (friction) force between the
dissipator and the structure satisfying Eq. (1).

The values of Fi are limited by the corresponding fric-
tion coefficients li and prestressing forces Ni:

jF ij 6 liN i ð8Þ

This condition can be easily modified to account for the
case when the maximum and minimum values of liNi are
different: (liNi)min 6 Fi 6 (liNi)max; this capacity is used
in the following to simulate experimental results.

The set of 2N equations of motion can be divided into
two subsets dealing, respectively, with the main structure
and the dissipators:
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These two sets of equations can be written in matrix
form as

Mss€xs þ Css _xs þ Csd _xd þ Kssxs þ Ksdxd ¼ �Mssr€xg � F ð9Þ
Mdd€xd þ ðCsdÞT _xs þ Cdd _xd

þ ðKsdÞTxs þ Kddxd ¼ �Mddr€xg þ F ð10Þ

Superindexes s and d account for structure and for dissipa-
tors, respectively: xs = (x1, . . . ,xi, . . . ,xN)T and xd ¼
ðx01; . . . ; x0i; . . . ; x0N Þ

T. The second (10) will be in turn split
into two subsets denoted with subindexes sl (sliding) and
st (sticking); the degrees of freedom involved in each of
them vary from instant to instant as the sliding conditions
in the dissipators change. If the input consists of driving
forces (acting on every floor), the right hand side members
of Eqs. 9 and 10 have to be replaced by P � F and F,
respectively, where vector P contains the excitation forces.
4. Numerical solution of the equations of motion

This section describes the numerical solution of Eqs. (9)
and (10). The main difficulties arise from the fact that both
equations are non-linear and are coupled through the inter-
action friction forces F and through the matrices Csd (and
(Csd)T) and Ksd (and (Ksd)T). Moreover (as stated in the
previous section), the sliding and sticking degrees of free-
dom change continuously.

The proposed procedure is a step-by-step algorithm con-
sisting basically on a modification of the linear acceleration
method [4,7]. At each instant k + 1 the response is com-
puted from the one at previous instant k by three nested
iteration loops involving the coupling quantities (i.e. _xd,
xd, _xs, xs and F) and the estimated accelerations at step
k + 1 (€xs�

kþ1 and €xd�
kþ1). The main innovation consists of

checking at each calculation instant the sliding or sticking
condition at each floor, hence, the number of ‘‘active’’
degrees of freedom changes continuously, ranging in
between N (there is sticking condition at every dissipator)
and 2N (there is sliding condition at every dissipator).

This iterative process initially assumes that the sliding
conditions in the dissipators at instant k are kept for
instant k + 1. A set of values of €xs�

kþ1 for (€xs
kþ1), sl€x

d�
kþ1 (for

sl€x
d
kþ1) and stF

�
kþ1 (for stFk+1) are assumed (usually

€xs�
kþ1 ¼ €xs

k, sl€x
d�
kþ1 ¼ sl€x

d
k and stF

�
kþ1 ¼ stFk). The remaining

accelerations st€x
d
kþ1 and forces slFk+1 are considered to be

equal to the corresponding values in €xs
kþ1 and to the corre-

sponding sgnð _xi � _x0iÞliN i, respectively. As stated in the
previous paragraph, the proposed algorithm consists of
three nested iteration loops; these iterations are performed
with respect to €xs

kþ1, stFk+1 and sl€x
d
kþ1, respectively.

The interpolation criterion considered in the linear
acceleration algorithm [4,7] yields

xs
kþ1 ¼ xs

k þ Dt _xs
k þ
ðDtÞ2

6
ð2€xs

k þ €xs�
kþ1Þ ð11Þ

_xs
kþ1 ¼ _xs

k þ
Dt
2
ð€xs

k þ €xs�
kþ1Þ ð12Þ
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Fig. 5. Flow-chart of the proposed algorithm.
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xd
kþ1 ¼ xd

k þ Dt _xd
k þ
ðDtÞ2

6
ð2€xd

k þ €xd�
kþ1Þ ð13Þ

_xd
kþ1 ¼ _xd

k þ
Dt
2
ð€xd

k þ €xd�
kþ1Þ ð14Þ

The numerical formulation of the slide–stick condition
in the ith dissipator (8) is described next [21,2]. As stated
previously, it is initially assumed that the condition for
the previous instant k holds. Hence, two possibilities must
be considered:

1. If there was sticking at the previous instant k, the com-
puted value jFijk+1 is compared with liNi; if jFijk+1 P
liNi there is sliding and therefore ðF iÞkþ1 ¼ sgn
ð _xi � _x0iÞkþ1liN i; conversely, if jFijk+1 < liNi there is
sticking and ð _xi � _x0iÞkþ1 ¼ 0.

2. If there was sliding at the previous instant k, the value of
the relative velocity ð _xi � _x0iÞkþ1 is computed; if
ð _xi � _x0iÞkð _xi � _x0iÞkþ1 > 0 this condition holds (no change
in the relative motion direction); on the other hand, if
ð _xi � _x0iÞkð _xi � _x0iÞkþ1 6 0 there is sticking and it is
assumed that ð _xi � _x0iÞkþ1 ¼ 0. In fact, the fulfillment of
the inequality ð _xi � _x0iÞkð _xi � _x0iÞkþ1 6 0 could mean that,
rather than sticking, the direction of the motion has
changed and sliding continues in the reverse direction;
however, this will be detected at the next instant k + 2.

Motion equations (9) and (10) (for instants k and k + 1),
interpolation relations (11)–(14) and the slide–stick condi-
tion (8) govern the motion of the building equipped with
the friction dissipators. The three nested iteration loops
proposed to solve this problem are described next.

• First iteration loop. This is the inner loop. Structure dis-
placements xs

kþ1 and velocities _xs
kþ1 are computed from

(11) and (12) assuming that €xs�
kþ1 ¼ €xs

kþ1 (initially €xs
kþ1

is taken equal to €xs
k). In the dissipators that do not slide,

displacements stx
d
kþ1 and velocities st _xd

kþ1 are equal to

stx
d
k þ ðstx

s
kþ1 � stx

s
k) and st _xs

kþ1, respectively. In the slid-
ing dissipators the displacements slx

d
kþ1 and velocities

sl _x
d
kþ1 are computed from (13) and (14), respectively,

by taking sl€x
d�
kþ1 ¼ sl€x

d
k . Now €xs

kþ1is computed from (9)
(for instant k + 1). If €xs

kþ1 6¼ €xs�
kþ1 (with a prescribed

tolerance ea) this procedure is repeated by taking
€xs�

kþ1 ¼ €xs
kþ1 without making any changes in the sliding

conditions (dissipators keep their sliding condition).
Once convergence is reached (i.e. k€xs

kþ1 � €xs�
kþ1k 6 ea),

iterations are stopped and Eq. (9) is fulfilled.
• Second iteration loop. This is the intermediate loop. In

the sliding dissipators friction forces slFk+1 are known
(i.e. ðF iÞkþ1 ¼ sgnð _xi � _x0iÞkþ1liN i). The friction forces

stFk+1 in the presumedly stuck dissipators are computed
from the corresponding equations in (10). The compo-
nents that are bigger than the corresponding sliding
threshold liNi are set equal to that value and all of them
are compared to the previously assumed values stF

�
kþ1. If

they are different (with a prescribed tolerance ef), the
new values of stF
�
kþ1 are set equal to the calculated forces

stFk+1. Then, a new set of values for the structural accel-
eration €xs

kþ1 is computed from (9) and it is replaced in
(11) and (12) to get updated values of xs

kþ1 and _xs
kþ1

(as the loops are nested, it is necessary to return to
the first loop). This procedure is repeated until

stFkþ1 ¼ stF
�
kþ1 (i.e. kstFkþ1�stF

�
kþ1k 6 ef ). Once this con-

vergence is reached, Eq. (9) and those in (10) corre-
sponding to the stuck dissipators are fulfilled.

• Third iteration loop. This is the outer loop. Once the con-
vergence in stFk+1 is achieved in the previous loop, then
the accelerations sl€x

d
kþ1 are computed from the corre-

sponding equations in (10). If sl€x
d
kþ1 6¼ sl€x

d�
kþ1 (with a pre-

scribed tolerance ea) the current values of sl€x
d�
kþ1 are set

equal to sl€x
d
kþ1. After this, new values of the displace-

ments slx
d
kþ1 and velocities sl _x

d
kþ1 are computed from

(11) and (12) and the accelerations €xs
kþ1 are calculated

from (9). These values are used as the new approxima-
tions of the acceleration vector €xs�

kþ1 (again, the calcula-
tion process goes back to the first loop). The procedure
stops when sl€x

d
kþ1 ¼ sl€x

d�
kþ1 (i.e.ksl€x

d
kþ1 � sl€x

d�
kþ1k 6 ea).

Once this convergence is reached, Eqs. (9) and (10) (both
for the sliding and the stuck components) are fulfilled.
Hence, the fulfillment at instant k + 1 of all the involved
conditions is guaranteed.

These three nested iteration loops involved in the calcu-
lation of the response at instant k + 1 from the one at
instant k are described by the flow-chart presented in Fig. 5.

In any non-linear algorithm stability cannot be theoret-
ically demonstrated; moreover, stability in the linearized
range does not guarantee stability of the whole non-linear
process. Hence, the time increment is basically selected by a
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trial and error procedure aiming to avoid numerical insta-
bilities and inaccuracies. Convergence tolerances ea and ef

are selected to obtain the desired degree of accuracy with
a reasonable number of iterations. In most of the cases:
Dt = TF/200, ea ¼ j€xgjmax=105 and ef = lN/105. TF is the
fundamental period of the bare frame. To select such short
time steps lessens the need of checking the sliding–sticking
conditions inside the time interval.

5. Examples

This section presents some results from the proposed
algorithm.
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Fig. 7. Time-history response of a single-stor
Figs. 6 and 7 show a pair of time history responses of a
single story frame (N = 1) equipped with a friction dissipa-
tor (see Fig. 1). Mass, damping and stiffness structural
parameters are m = 5740.39 kg, c = 13121.77 N s/m
(modal damping ratio f = 0.05) and k = 2999.471 kN/m,
respectively. The corresponding parameters of the bracing
system are m 0 = 19.614 kg, c 0 = 0 (f 0 = 0) and k 0 =
2597.01 kN/m. The sliding threshold is lN = 39.325 kN;
this value has been selected trying to optimize the reduction
of the response of the frame to a wide set of excitations [9].

Fig. 6 shows the free response starting from an initial
displacement x0 ¼ x00 ¼ 10 cm. Fig. 7 shows the forced
response for a harmonic driving force applied to the main
0.5 0.6 0.7 0.8 0.9 1.0

μ N/k'

−μN/k'

e t (s)

ry building for an initial displacement.

0.6 0.8 1.0 1.2

e t (s)

Dissipator, x'

μ N/k'

y building for a harmonic driving force.



S.T. De la Cruz et al. / Computers and Structures 85 (2007) 30–42 37
frame; the input amplitude is 127.491 kN while its fre-
quency is 15.9781 rad/s.

In Figs. 6 and 7 the thick and thin lines correspond to
the main frame and the dissipator displacements, respec-
tively. The upper and lower horizontal lines correspond
Fig. 8. Single-story
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Fig. 9. Comparison between numerical and experimental second floor disp
to the thresholds lN/k 0 and �lN/k 0, respectively. These
values limit the displacement x 0 of the dissipator [16] (since,
if jx 0j > lN/k 0, sliding begins); the oscillations observed in
Figs. 6 and 7 around the horizontal lines x = ±lN/k 0 are
due to the inertial forces generated by the mass m 0 of the
tested frame.
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lacements. (a) Second floor (main frame), (b) second floor (dissipator).
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bracing; obviously, the smaller the values of m 0, the lesser
the oscillation amplitudes of x 0 around these thresholds.

Plots in Fig. 6 seem to show a significant increase in the
damping capacity of the structure due to the contribution
of the dissipators; however this effect disappears once
sliding finishes (for t = 0.48 s, approximately). The large
displacement peak in the dissipator (x 0) at the beginning
of the time history has no particular structural significance
as is an inertial effect due to the mass of the dissipator (m 0).
Plots in Fig. 7 indicate that there is sliding and, hence, a
significant amount of input energy is dissipated.

6. Comparison with experimental results

As mentioned previously, this work belongs to a bigger
research project [9] that involves testing. This section pre-
sents some comparisons between such experimental results
and the simulated ones (with the proposed software code).

The experiments consisted of applying horizontal unidi-
rectional seismic inputs to two reduced-scale steel labora-
tory models of building structures (with one and two
floors, respectively) which incorporate friction dissipators.
A full description can be found in [9]; Fig. 8 shows pictures
of the tested single-story frame (left) and of the friction dis-
sipators (right).

Figs. 9 and 10 present some comparisons between
numerical and experimental results for the two-story
model. The driving input is the Northridge earthquake
(Santa Monica station, 90� component, January 17, 1994).

Fig. 9 displays the time history displacement responses
of the second floor main frame (top, a) and dissipator (bot-
tom, b). The thick line corresponds to numerical results
while the thin one corresponds to experimental ones.
Fig. 10 displays the second floor hysteresis loops. The top
plots (a) are experimental while the bottom ones (b) are
numerical.

Plots from Fig. 9 show a good agreement between
numerical and experimental results. Conversely, the upper
plots in Fig. 10 show that the actual behavior of the dissi-
pators does not correspond to a Coulomb model since the
hysteresis loops are neither rectangular (the top and bot-
tom branches are not horizontal) nor vertically centered
(the maximum and minimum values of the friction force
are not equal to ±lN, respectively). As the proposed algo-
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rithm considers only simple dry friction laws with constant
friction coefficients (velocity independent), the first of these
two circumstances cannot be accounted for in the simula-
tion. Despite these limitations, the agreement between
numerical and experimental results is satisfactory. Similar
conclusions can be derived form the other comparisons in
the other tests; it shows that the proposed algorithm is
accurate and reliable.
7. Comparison with results from other codes

There are currently a certain number of numerical sim-
ulations of structures equipped with friction dissipators
[23,20,13]. In order to carry out the numerical simulation,
some computer programs have been written specifically
with this purpose [10,13,29] while others use commercial
software packages such as DRAIN-2D [11,22,1,6],
DRAIN-TABS [23], SADSAP [12], SAP2000NL [19] or
ADINA [3].

Basically, the existing models fall into one of these two
categories:

• Models where the dynamic behavior of the friction dis-
sipators is described by the contact analysis theory. Usu-
ally the equations of motion are solved by Lagrange
multipliers or penalty methods (e.g. ADINA). This
approach can be accurate but it is costly in terms of
computational effort.

• Simpler models where elasto-plastic laws for the friction
dissipators are implemented in finite element models of
the whole structure (DRAIN-2D, DRAINTABS,
SADSAP, SAP2000NL). This approach might lack of
accuracy.

As discussed previously, the proposed algorithm tries to
overcome the limitations of both approaches, i.e. it is
intended to be accurate and reliable yet computationally
efficient. This last capacity can be particularly relevant
Fig. 11. Benchmark building with
for parametric assessments, as a large number of numerical
simulations are involved.

To confirm these asserts and to further demonstrate the
accuracy and reliability of the proposed algorithm, some
comparisons between their results and those arising from
commercial packages are presented in this section. Two
buildings with 3 and 10 stories, respectively, are subjected
to seismic inputs. Both cases are described next.

The first case is a three-story, four-bay steel frame. To
obtain reliable conclusions, the considered building is
based on a benchmark problem for any vibration control
system [27]. Steel braces are further incorporated at each
floor to support three friction dampers as shown in Fig. 11.

In the benchmark building the cross sections of the
braces are 118.71 cm2 (1000 · 1000 · 0.500 square hollow
tube). The braces are assumed to work both in tension
and compression (i.e. no buckling). By using standard 2D
lumped masses models (usual in earthquake engineering),
the mass, stiffness and damping matrices are

Mss¼ diagð4:78;4:78;5:18Þ�105 kg

Kss¼
436:575þ45:664 �237:344 41:445

�237:344 313:526þ45:664�128:931

41:445 �128:931 93:585

0
B@

1
CAMN=m

Css¼
509:253 �221:488 38:679

�221:488 394:428 �120:313

38:679 �120:313 197:705

0
B@

1
CAkNs=m
The viscous damping matrix Css has been obtained using
a Rayleigh model (C = aM + bK, accounting only for the
terms corresponding to the main frame) where a = 0.213
and b = 9.33 · 10�4. The resulting modal damping factors
are f1 = 0.02, f2 = 0.01451 and f3 = 0.02; and the three
natural periods of the bare frame are T1 = 1.01 s, T2 =
0.33 s and T3 = 0.17 s. The mass and stiffness matrices
for the bracing system are
a friction dissipator per floor.
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Mdd ¼ diagð350:11; 350:11; 350:11Þ kg

Kdd ¼ diagð448:12; 448:12; 448:12ÞMN=m

Viscous damping in the bracing (frame supporting the
dissipators) is neglected: Cdd = 0. Comparison among the
masses of the main structure (Mss) and of the bracing sys-
tem (Mdd) shows that this last is not completely negligible.
The sliding thresholds are l1N1 = 834.095 kN, l2N2 =
740.831 kN and l3N3 = 437.510 kN; these values have
been selected trying to reduce the interstory drift for a wide
set of inputs [9].

Fig. 12 shows a comparison between the time histories
of the third floor relative displacement calculated using
ADINA and the proposed algorithm. The seismic input
is the Northridge earthquake, Sylmar County Hospital reg-
ister (17 January, 1994, 90�). The maximum acceleration is
0.604 g. Only the first 10 s of the record are considered for
the analysis.
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Fig. 13. Comparison between the third floor displacements of the bare fra
The plots from Fig. 12 show a good agreement between
both numerical models. The energy dissipated by friction is
1350 kJ, the energy dissipated by viscous damping is 219 kJ
and the input energy is 1640 kJ; they are slightly unbal-
anced because the kinetic and strain energies are not zero
at the end of the displayed time interval. Similar values
are obtained from ADINA.

Fig. 13 compares the third floor displacement time histo-
ries with and without dissipators (liNi = 0).

Plots in Fig. 13 highlight the reduction in the structural
response due to the dissipative effect of the friction devices.

A comparison between the performances of the pro-
posed algorithm and of ADINA has been carried out. In
virtually all of the considered cases significant differences
have been found showing that the proposed code is faster
and requires less memory allocation. A description of an
illustrative example is described next. The structure consid-
ered for the simulation is the benchmark building of
5.0 6.0 7.0 8.0 9.0 10.0

e (s)

Proposed Algorithm
ADINA

ith ADINA and with the proposed algorithm. Benchmark building.

0.0 12.0 14.0 16.0 18.0 20.0

e (s)

Frame with
dissipators

Bare frame

me and of the frame protected with dissipators. Benchmark building.
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Fig. 10. The building is subjected to a seismic input of 15 s
of duration. The main features of the computer machine
used in this test are: Pentium II processor at 233 MHz
and 96 MB RAM. In order to get comparable results no
additional software has been running at the same time.
For both programs, the lengths of the discretization peri-
ods have been chosen as long as possible to obtain enough
stability and accuracy. For ADINA the CPU time was
15 min and 500 MB HD memory was required, while for
the proposed algorithm the CPU time was 3 min 20 s and
no significant memory allocation was necessary. For fur-
ther details, the system monitors for both programs are dis-
played in Fig. 14. It is remarkable that a general purpose
3D non-linear FE commercial package should take more
resources to initialize internal variables and to perform cal-
culations using 3D computational algorithms than a code
which has been specifically designed to solve a particular
2D problem.
Fig. 14. Comparison between the system monitors for the proposed

Fig. 15. Comparison between the upper floor displacements calculated by L
The other analyzed structure consists of a 10-story
building equipped with friction dissipators in each floor
(see Fig. 1(a)). The values of matrices Mss, and Kss can
be found in the reference by Levy et al. [18]. Matrix Css

was calculated considering all the modal damping ratios
fi = 0.02. Matrices Mdd and Cdd were considered null;
Kdd was determined using the coefficients given in [18].
The values of the sliding thresholds, liNi, are also given
in [18]. The seismic input is El Centro earthquake, N–S
component, PGA = 0.40 g.

Fig. 15 shows a comparison between the top floor
response obtained using the proposed algorithm (black)
and the one displayed in [18] (grey). The driving force is
also shown.

The difference between both plots in Fig. 15 might be
due to the different numerical models employed, since in
[18] an elastic-perfectly plastic law is used while the
proposed model relies on a formulation more suitable for
algorithm (left) and for ADINA (right). Benchmark building.

evy et al. and computed with the proposed algorithm. 10-story building.
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friction simulation. It is remarkable that the main diver-
gencies start when big displacements (generating non-linear
behavior) arise for the first time.

8. Conclusions and future research

This paper presents a numerical model of the dynamic
behavior of 2D N-story frames modelled as N-DOF sys-
tems that incorporate friction energy dissipators. This
model can be also used for buildings with friction isolators.
The non-linear equations of motion are solved numerically
by a step-by-step algorithm developed by the authors,
which is based on the linear acceleration method. The main
innovation consists of checking at each calculation instant
the sliding or sticking condition at each floor; hence, the
number of ‘‘active’’ degrees of freedom changes continu-
ously, ranging in between N (there is sticking condition
at every dissipator) and 2N (there is sliding condition at
every dissipator). This procedure provides results that are
close to those obtained with the ADINA package (yet
being more computationally efficient) and to experimental
results.

A parametric study about structures that incorporate
this type of passive damper is currently being carried out.
This research incorporates experimental testing to further
validate the proposed algorithm. Initial studies tend to
show that dissipators significantly reduce the response of
the structure.
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