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Abstract—Finite strain consolidation and filling of soft sediments at high water level is a challenging
roblem because of its highly non-linear physical and mathematical aspects. Several numerical schemes
designed for this problem are presented as well as simple numerical improvements for a better handling
of the extremely high variations of the material properties with depth. The numerical algorithms developed
.- are robust and verify convergence of the iterative schemes instead of the more classical approaches based
2" on choosing time increments ‘sufficiently’ small and assuming convergence at every step.
17 A set of computer programs has been developed to predict magnitude and rate of large-strain self-weight
- one-dimensional and pseudo bi-dimensional (.. one-dimensional deformation, bi-dimensional flux)
% consolidation during and after deposition, that is, coupling filling and consolidation phenomena. The
- actual life of the deposit can be numerically simulated combining filling periods and quiescent periods
- where surcharges (or capping) can exist. Consequently, they are a basic technique for the design of disposal

. ponds.

INTRODUCTION

a red mud, oil sand sludge, dredged materials,
e primary issues center around predicting the

 ultimate storage capacity and useful life—and
ne-rate improvement of material properties for
ation purposes. Intrinsic to both issues is the

t of computer programs has been developed
redict magnitude and rate of large-strain self-

is, coupling filling and consolidation phenom-
‘The actual life of the deposit can be numerically

osit (solid contents ranging from-less than 10%
0 30%), the ensuing vertical settlements are
lly extremely large and beyond the range that can
hz}ndled by classical small-strain consolidation
caries; accordingly non-linear finite deformation
Odels must be developed. Since the physical and
a—‘tlf‘.en_latical aspects of this problem are highly
shon linear, the numerical algorithms developed
enfy convergence of the iterative schemes instead
; "thf-_ more classical approaches based on choosing

“Increments ‘sufficiently’ small and assuming

“Igence at every step. This procedure precludes
s ocrcal aberrations that appear with other
“btoaches and increases accuracy in the first half

of the consolidation process. It should be noted that
due to the alternation between periods of filling and
quiescent consolidation good accuracy at the first or
middle stages of consolidation is needed, because the
results obtained after a cycle are the initial conditions
for the following one. This is not the case of classical
consolidation analyses concerned mostly with the
final stages of consolidation.

The next section contains a brief background
of finite-strain theory and a discussion of the
material relationships employed. This is followed
by a statement of the numerical problem together
with the pertinent algorithms studied and developed.
Next a couple of one-dimensional examples and
the bi-dimensional extension of the problem are
presented.

THEORETICAL CONSIDERATIONS

The theory presented here is patterned after
the early work by Gibson et al [1], and several
modifications that are described in [2-7] among
others. Two standard formulations for the consoli-
dation equation are employed in finite-strain theory,
depending upon whether the void ratio, e, see for
instance [1, 2, 4, 5, 8], or the excess pore-water press-
ure, u, see [3, 9], is selected as the dependent variable.
The approach adopted here uses excess over hydro-
static pore-water pressure, 4, as the dependent vari-
able. The one-dimensional consolidation equation
obtained is [3]:
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in which the material coordinate z is given by

“ da’
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where a is the initial vertical (Lagrangian) coordinate,
e, is the initial void ratio, k is the coefficient of
permeability, y, is the unit weight of water, 7 is time,
and ¢’ and o, are the effective stress and buoyant
stress; respectively. The material coordinate, z, can
be interpreted as the height of solid particles between
the planes determined by a =0 and a, which is
constant with time.

The buoyant stress is defined as the total stress
minus the hydrostatic pressure, that is

oy(z, )=y, — an)(zmp(t) =2) + Gour> 3

where ¥, is the unit weight of the solids, g, is the
surcharge or capping load, and z,,, is the material
coordinate corresponding to the top layer of the
deposit. Since the surcharge, ¢, is usually assumed
to be deposited instantaneously, the buoyant stress
depends only on time through z,,. That is, the
variations of the buoyant stress are directly depen-
dent on the increase of the total height of solid
particles, i.e. any additional deposition of solid par-
ticles, namely the filling rate. Thus it is precisely the
term dg,/01, in eqn (1), which differentiates periods
of filling and quiescent consolidation.

The resolution of eqn (1) requires the speci-
fication of boundary and initial conditions. Three
different boundary conditions have been con-

sidered: drained, undrained or prescribed piezometric .

head at any boundary. The initial condition is
the distribution of excess pore-water pressure with
depth.

Appropriate relationships between void ratio and
effective stress and between the coefficient of per-
meability and the void ratio must be implemented.
The computer programs developed include several

specific types of equations proposed for these two-

relationships, see [6, 10). Available test data on fine
grained materials at low solid contents suggest highly
non-linear e—¢’ and k—e behaviors which are usually
written as power laws.

One important drawback of the usual compress-
ibility relations is that zero effective stress implies
infinite void ratio. To avoid this problem without
changing the compressibility relationship and the fact
that at the drained surface the buoyant stress and the
excess pore-water pressure are zero, the effective
stress is defined as:

’

g =

gy—u+0g, “4)
where g is obtained by introduging in the compress-
ibility relation the initial void ratio, e,. The validity
of this assumption is discussed in [11] for steady-
state seepage-induced consolidation; moreover, a
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sensititivity analysis conducted with the developey
programs concluded that the influence of ¢; j
settlement is negligible and stays under 5%-for- s
material property distributions, as advanced in (1)
Physically, this should be expected since the initig]
void ratio which arbitrarily represents the [im
between sedimentation and consolidation is usually.
very large[10] and this implies a small ¢g. Other
definitions, such as,

o' =0y if o,—u<oyg

g'=0,—u fo,—u>ay )
induce unrealistic situations in the upper part of the’
deposit; namely, constant distributions of void ratio
and permeability, thus no consolidation.

It should be noted that sand mixing is easily.
introduced by assuming that the clay phase governs
both the mechanical and flux behavior of the mixture,
That is, in the material relationships a clay void ratio
(volume of voids divided by volume of clay) is used
instead of the classical void ratio (volume of voids:
divided by volume of solids).

Finally, it should be noted that the coefficients
k/(1 +e) and de/dc’ in eqn (1) depend ultimately on
the excess pore-water pressure, . Both permeabilily
and compressibility have such large variations during
the consolidation process, that these coefficients
cannot be considered constants, or even ‘almost,
constants. Consequently, the parabolic eqn (1) is
clearly highly non-linear.

NUMERICAL SCHEMES

A fully implict finite difference method was chosen
for the solution of eqn (1) because of its stability:
However, most of the conclusions observed are inde.j
pendent of the particular method employed and ca
be generalized to other techniques such as the finif¢
element method.

The dimensionless form of eqn (1) is given by

5% -l ]

where the same symbols are used for dimensionlés’
variables in order to simplify the expressions. Tl}:e“
coefficients p and ¢ in eqn (6) can be interpreted &
the dimensionless compressibility and permeabilityi
therefore, they are functions of u.

After discretization, the resulting system of equ’

tions is non-linear and given by
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where w*! and u* are the unknown nodal vecto®
of excess pore-water pressure at time (%' &
1", respectively, A is the tridiagonal matri
coefficients are function of p and g (this funct®

A(un+ l)un+l =u"+ f’

X whOSe:
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Fig. 1. Domain discretization (one node added per time-step).

pends on the discretization scheme implemented),
s the nodal vector of increments in the buoyant
.ss for filling periods (f =0 in the quiescent con-
“slidation periods).
First, the domain discretization is discussed
because: of the difficulties encountered during the
ng: periods particularly in the upper areas of the
osit. Then, several approaches for solving eqn (7)
‘presented. Due to the highly non-linear behavior
he problem, finding the solution of eqn (7) is not

éasy task.

Domain discretization

Finite differences are employed; consequently, a
discretization in both independent variables, time ()
and space (z), is required. During filling periods
new . material is deposited and, since Lagrangian
coordinates are used (the spatial mesh follows the
pparticles), new nodes are introduced in the spatial
diseretization.

Figure 1 shows a classical [3] domain discretization
where-one node is added per time-step during filling
periods. This is a usual and simple technique where
the filling rate is the spatial increment divided by the
time-step (recall that z is the height of solid particles).
However, the strong dependency between both incre-
ments is sometimes a serious drawback.

® Real new nodes
o Ficticious nodes

Fig. 2, Multiple node technique per ‘deposited’ layer.

Self-weight consolidation problews present ex-
tremely high variations of permeability and com-
pressibility with depth in the upper area of the
deposit. This requires a very fine spatial mesh able to
capture the changes in material properties; recall that
linear interpolation (two nodes per layer) is employed
in every ‘deposited’ layer. The ensuing time-steps are
usually very small and the computer cost clearly
uneconomical.

If several nodes are introduced per ‘deposited’
layer (time-step), as shown in Fig. 2, the high vari-
ations of compressibility and permeability are better
captured and both discretizations (z and z) are inde-
pendent of each other. To illustrate it, Fig. 3 shows
the void ratio distributions after the first time-step
of an initial filling period over an undrained bed.
As expected, the five nodes per time increment com-
pares much better than the one node technique with
an ‘exact’ (extremely fine mesh) solution.

The area under the void ratio distribution is
directly related to the depth of the deposit. The
over-estimation of ¢ with the one node per time-step
discretization induces an under-estimation of settle-
ments, while the multiple node technique-developed
compensates the areas and consequently predicts
settlements much more accurately. This is an
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Fig. 3. Comparison between one node and multiple node
techniques.



important feature that will be clearly observed in the
presented examples.

Linearization of the problem

In order to solve the non-linear set-of algebraic
eqns (7), the classical approaches[3] linearize the
problem replacing in the matrix A the solution of the
last time increment, i.e. they assume A(u"+") = A(w").
Physically, this means that the material properties lag
one time increment behind the solution; recall that
A is-a function of the-dimensionless-compressibility
and permeability. This interpretation advances the
problems to be found, since high variations of
material properties occur in the first stages of con-
solidation. Equation (7) is then reduced to a linear
system of algebraic equations

AW =w + f ®)

which is easily solved at each time increment.

.The main advantage of this technique is that its
implementation is extremely simple, but it does,
however, present serious drawbacks. The basic hy-
potheses are that the time increment is sufficiently
small-and that small increments of time induce negli-
gible modifications in A. Therefore, only under these
circumstances can both matrices A(u"*!) and A(u")
be assumed “approximately equal. Obviously, this
method may need uneconomical time-steps. More-
over, it should be emphasized that with the lineariz-
ation, convergence of the solution is not imposed.
Thus, this method requires experienced operators
who know from the final results (settlements vs time,
void ratio or pore-water variations with depth, etc.)
when the time increment is small enough and conver-
gence was attained. In conclusion, the linearization
of the problem is, in spite of its computational
simplicity, a dangerous technique for solving egn (7).

Iterative technigues

In order to solve the non-linear set of equations,
standard non-linear numerical techniques should be
implemented. There are a large number of methods
for the resolution of eqn (7) which are based on the
general scheme defined by

Wit} =gt — [Clupt )]

x[A@ et — g+ 0L (9)

where the subscript k& denotes the iteration counter
and C is an arbitrarily chosen matrix. Convergence
of the scheme is assumed when the difference between
two successive approximations of u"*! and the resi-
dual vector, [A(u} * Dul * ! — (u} + )], are smaller than
a predetermined tolerance.

In fact, the choice of C classifies the numerical
technique employed and induces the arder.of conver-
gence of the method. Therefore, the choice of C is
important and must be done carefully depending on

the computational cost (storage and CPU time),
Most of the usual techniques take C as the Jacobiay
matrix, J, or an approximation to it. The Jacobig,
matrix for this problem may be written as

“n+l

J=A+ (10)

6u"“

The first method implemented consists in the
following approximation of the Jacobian matriy,
C=A. This method of order one is in fact.the
well-known ‘fixed-point iterative method’, whicy
may be written as

A it =u" 41 an

and was chosen because its implementation in g
linearized computer code is extremely simple. The
computer cost per time-step increases because eqn
(11) must be constructed and solved, at every instant,
1"*! for each iteration, (k + 1), up to convergence,
However, the overall computer cost decreases com-
paratively with the linearized technique because the
time-step may be larger.

In some problems, mostly during filling periods
and because of the highly non-linear behavior, con-
vergence is too slow or never obtained. This result
may seem negative but it actually gives valuable
information: the time-step is too large for the pré-
scribed tolerance. Obviously, the same time-step ina
linearized code would give incorrect results.

In order to solve this problem several improve-
ments where tried: Aitken acceleration, time-stgp
splitting, etc. None of them was satisfactory enough,
the mdin reason being that any acceleration technique
for convergence was not sufficient because of the
extreme non-linear behavior of the problem.

Consequently, a full Newton—Raphson method
is used to avoid the previously cited difficulties for
some of the studied problems. This is a second ordgr
method where the iteration matrix, C, is taken equdl
to the Jacobian matrix, J. As shown in eqn (10), ﬂ‘f
derivatives of the coefficients of A with respect to “7:
must be computed to evaluate J. The dependen®
of these coefficients in u is as follows:

A=A(p,9) 2
p=p(a’) 29
g=4q(e k) (12
k=k(e) (12
e=e(s) (12
o' =a"(u). ash

A modification of the computer code is requlmd
a modular and structured organization must b



4 on the above presented equations. That is,
equation in (12) represents a necessary 'module
here the -desired functions and tl.xeir derivatives are
mputed~ At the end, t!xe coeﬁim?nts of A and t:he
cobian matrix are obtained. In this magner, H:lOdJﬁ-
cations of the computer cgde are relatively simple.
"Eo} instance, if t_he numerical scheme f:hanggs, qnly
the module aSSOCIa'ted to egn §12§) and 1t§ derlYatlves
is changed; while, if the constitutive rela.tlonslnups'are
ﬁddiﬁed, eqns (12d) and (12e) and their derivatives
ipust be updated witbout perturbation of the gem?ral
Jayout of the code. Knowledge of the analytical
},xpressions of eqn (12) an‘d their denvat1ve§ renders
full Newton-Raphson optimal compared with other
high order convergence schemes that do not evaluate
T explicitly, such as the quasi-Newton methods. .

" This second order scheme reaches convergence in
4 few iterations and for very small tolerances, on the

Grder of 107%. Obviously, the computer cost per
iteration is larger because of the evaluation of the
derivatives. In the linear or first order schemes,
the construction of A takes approximately 70% of
the CPU time while its resolution only uses the 30%
left, here, two matrices are computed in every iter-
“ition, thus the cost per iteration almost doubles.
However, in general it is less expensive than other
fechniques because of the important reduction in the
Aumber of iterations needed for convergence (three or
four iterations during the first stage of consolidation
for tolerances of 10~%). It should be noted that, as
expected, the solutions obtained after convergence
with any method are identical. This proves the
'f\nsistency of the techniques employed and the
uniqueness of the solution.

Finally, a simple but illustrative example of
the extreme non-linear behavior of eqn (7) and the
importance of adequate initial approximation is
‘shown. Similarly as before, the first time increment of
an. initial filling analysis over an undrained bed is
studied. The top surface is drained and consequently
if- one node is added per time-step, there is only one
unknown: the excess pore-water pressure, u, at the
bottom. The system of non-linear egns (7) is now
Teduced to one equation and the residue can be
plotted vs u, see Fig. 4. As shown in the figure, only
one solution exists for the physical range of u.
However, it can also be observed that considerable
difficulties in the resolution of this problem are
Induced by a second solution exterior to the domain
;i“? the shape of the curve. The developed technique
Which uses as an initial approximation the solution in
the previous step, does the first iteration with the
order one scheme and then uses the second order
Method, converges in a few steps (less than five for
tolerances under 10~%) for all the studied cases.
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ONE-DIMENSIONAL EXAMPLES

To show the applicability of the developed com-
Puter codes and the advantages of the non-linear

Non physic& { solution

Solution

/

Residue
Y

¢] O
Excess pore — water pressure

Fig. 4. Residue vs excess pore-water pressure for a one
degree of freedom filling analysis.

numerical schemes, two illustrative examples are
presented. B

The first example is the classical [12] self-weight
consolidation of a soil column, starting from uni-
form conditions (i.e. constant void ratio with depth).
This condition is never actually encountered, but
it represents laboratory tank tests where filling
is ‘instantaneous’ compared with pore pressure
dissipation.

The constitutive relations are

e =4.674(c") "2

’ (e)5.57l

k=3358x107"—r, 1
3.358 x 10 Tre (13)

where ¢’ is in tonnes per square meter (10* kPa) and
k in meters per day. The operating parameters in
eqn (13) are those of one test case considered in [12].
The spatial mesh is composed of 101 nodes and
consolidation is simulated over a year.

Figure 5 shows a.comparison. between .con-
solidation height~time curves. Three analyses are
presented: linear model with 20 time-steps (discon-
tinuous line); iterative model with 20 time-steps
(continuous line); and iterative model with 1000

———- Linearization method
~, —— Iterative method
~ —— Exact. solution at initial
instants

. ! [N i I L1
001 02 03 04 05 06 0r 08 09 IO
“Tifme (years) -

Fig. 5. Height of the deposit vs time. Quiescent consoli-
dation.
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— Iterative technique

Lagrangian coordinate Z

)
0 5 10 iS5 20 25

Void ratic e,

Fig. 6. Comparison between linear and non-linear void ratio
distributions after 3 months of quiescent consolidation.

time-steps (continuous line). The linear model clearly
underestimates settlement and has an unrealistic
change in curvature, while the non-linear model
gives similar results to those of a 1000 time-steps
analysis. The straight line which represents the
theoretical exact initial behavior (constant consoli-
dation rate, see [8]) is in good agreement with both
non-linear solutions in spite of the large time incre-
ments taken here (20 time-steps per year implies an
increment almost 350 times larger than the one used
in [8)).

A comparison between the void ratio distribution
obtained with both techniques after 3 months is
illustrated in Fig. 6. The linear solution over-
estimates the void ratio in the upper area where the
initial conditions still persist. One iteration, with
the implemented time-step, is not enough to model
the important changes in the void ratio.

It should be noted that, as expected, both method-
ologies converge to the final conditions which can be
evaluated analytically. However, the next example
shows that due to the alternation between periods of
filling and quiescent consolidation, good accuracy at
the first or middle stages of consolidation is needed,
because the results obtained after a cycle are the
initial conditions for the following one.

By proper manipulation, virtually any sequence of
filling and quiescent settling, with or without sur-
charge, may be simulated. To illustrate the versatility
of the computer programs, and their applicability to
the prediction of the containment requirements and
useful life, a problem composed of four filling and
quiescent consolidation phases is shown. The filling
periods span over half a year, while the quiescent
consolidation takes a year. Three different filling rates
have been used: 100 x 10%kg/year (initial filling),
300 x 10°kg/year (second and third cycles) and
200 x 10®kg/year (last cycle); (see Fig. 7).

Figure 7 presents the height variations with time
for different numerical schemes. It compares the
linear and non-linear schemes with a time-step of 10

days. It is clearly observed that the linear approacy
overestimates the needed depth of the deposit, while
the non-linear scheme with five nodes per time-step
converges clearly to the dash-dotted line computed
with a non-linear scheme and time-step of 1 day,

It is obvious that the computer cost per time-step
is larger in the non-linear codes. It would therefore
seem adequate to compare linear and non-linear
results using different time-steps so that both pro.
cedures require similar amount of computer time,
However, predicting the proper time-step reduction
at every instant for the linear analysis is not an easy
problem and may be as costly as solving the non-
linear problem itself, This is shown by the fact that
the number of iterations varies with time, for a given
time increment, in a non-linear simulation.

PSEUDO BI-DIMENSIONAL EXTENSION

One-dimensional large-strain consolidation is an
acceptable model for the overall behavior of a usual
waste slurry containment. However, when consoli-
dation is accelerated by vertical drains, or when
consolidation occurs in narrow trenches, bi-dimen-
sional effects clearly influence the final solution:
Similarly to classical small-strain consolidation, an
extension of eqn (7) to bi-dimensional flux and:
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The extremely high variations of the void ratio

1 goeffi

and ;:;osit must be accurately captured; the pro-
the 4 multiple node per time-step technique is much
.- os:e efficient for filling analysis than the classical one

=4 techmique.
“‘?g; Since the physical and mathematical aspects

f the problem are highly non-linear, non-linear
9‘;th0d5 rather than the classical linearization
ﬁ:;hod should be employed; the latter does not

ssure conv ) é ¢
1eps in general, overestimates the void ratio
[

d, 1

thus :iderestimating settlement and strength (this
is important for reclamatior} purposes).
@ A second order non-lmealt method (Newton'—
Raphson) is necessary to ascertain convergence, this
‘prbvides a robust and efficient algorithm; however, a
good initial approximation of the solution and a first
iteration with the ‘fixed-point iterative method’ are
also recommended.

'(5) The bi-dimensional extension amplifies the
non-linear aspects, however the ‘split-step method’
allows a ready generalization of the one-dimensional
techniques, and successful results are also obtained
with the developed non-linear algorithm.
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