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Abstract. In recent years, mathematical models have become an indispensable tool in the
planning, evaluation, and implementation of public health interventions. Models must often
provide detailed information for many levels of population stratification. Such detail comes at
a price: in addition to the computational costs, the number of considered input parameters can
be large, making effective study design difficult. To address these difficulties, we propose a
novel technique to reduce the dimension of the model input space to simplify model-informed
intervention planning. The method works by first applying a dimension reduction technique
on the model output space. We then develop a method which allows us to map each reduced
output to a corresponding vector in the input space, thereby reducing its dimension. We apply
the method to the HIV Optimization and Prevention Economics (HOPE) model, to validate the
approach and establish proof of concept.

1 INTRODUCTION

In recent years, mathematical models have become an indispensable tool in the planning,
evaluation, and implementation of public health interventions. Models often need to provide
detailed information for many distinct levels of population stratification. Such detail comes at
a price: in addition to computational costs, the number of considered input parameters can be
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large. This leads to difficulty at all stages of the modeling workflow. For example, effective
study designs can be difficult to develop and computationally demanding, and optimization
algorithms are slow to converge and may exhibit (perhaps infinitely) many local solutions. Post-
processing of model results can also be challenging, as the large number of varied parameters
can make drawing concrete, actionable conclusions from simulation results difficult.

Recent years have seen significant progress in reduced-order modeling (ROM) techniques
to reduce the dimension of mathematical models. Particularly, popular techniques include ap-
proaches based on the Proper Orthogonal Decomposition (POD)1;2, surrogate modeling3, and
Dynamic Mode Decomposition (DMD) and related methods based on Koopman theory4;5.

Such methods have been applied in public health for short-term forecasting and diagnostic
applications6. However, intervention planning generally requires multiple model evaluations
for different input configurations. Hence, ROM techniques that are useful for forecasting pur-
poses, may not be applicable. Instead, intervention planning involves observing how model
outputs change in response to variation in model inputs. Thus, using ROMs for intervention
planning requires an approach that can incorporate parameter-dependence. While ROM tech-
niques have been developed for parameterized problems, many of these applications are focused
on cases in which the primary difficulty arises from the high dimension of the output space1;2;5;7.

However, in intervention planning, most of the difficulty arises from the dimension of the
input space, a problem which has received less attention. A recent work8 explored the issue of
extracting surrogate models from problems with high-dimensional input spaces, using a combi-
nation of dimension reduction techniques and Bayesian distribution fitting. Other notable works
in this area focused on constructing surrogate models9, and input-output ROM schemes for ex-
perimental data10. Active subspace (AS) and related methods have also been used to reduce
input dimensionality for scalar-valued problems11, and have been applied to problems in public
health12. However, AS methods are applicable to scalar-valued functions, and applications to
vector-valued problems typically require the use of a scalar-valued surrogate; for example, using
the basic reproduction number as a surrogate for a model of infectious disease transmission12.

We propose herein a novel method for input parameter-space reduction. The method works
by applying dimension-reduction techniques over an aggregation of model outputs, generated
over a range of input parameters. Through surrogate modeling over the reduced-order space,
we construct a mapping which maps each reduced-order output to a vector of input parameters
in a reduced-order input space. The reduced-order inputs can then be used directly to identify
intervention plans based on program targets and constraints.

The paper is outlined as follows. In Section 2, we briefly introduce our model problem. In
Section 3, we explain the proposed method for input/output model order reduction. In Section 4,
we demonstrate the potential utility of the method by applying it on a large-scale model of HIV
transmission, the HIV Optimization and Prevention Economics (HOPE) model. We conclude
by summarizing our findings and discussing directions for future work.
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2 BASIC MODEL AND PRELIMINARIES

Let us consider a nonlinear continuous-time dynamical system consisting of n unknowns
and depending on an m-dimensional vector θ̂ = [θ̂1, . . . , θ̂m] ∈ Rm of parameters, assumed
constant in time. Denote as Γ = Γ1 × Γ2 × ...× Γm the set of all possible values of θ̂. Each Γi

is assumed to be closed and bounded herein, though this assumption is not strictly necessary.
We may then write:

dx

dt
= F (t,x, θ̂) for t0 < t ≤ tend,

x = x0 at t = t0,
(1)

with F a nonlinear function depending on θ̂, as well the solution state x and time t. We assume
that the system (1) is sufficiently regular such that the solution x is time-continuous for all
θ̂ ∈ Γ and that the solution is continuous in θ̂ at all t for all θ̂ ∈ Γ.

Let us assume that θ̂i, i = 1, . . . ,m are independently distributed random variables taking
values in Γi and ρ̂i(θ̂i) : Γi → [0, ∞) be the corresponding probability density functions. Then
the joint PDF ρ̂ : Γ → [0,∞) of θ̂ is given by:

ρ̂(θ̂) :=
m∏
i=1

ρ̂i(θ̂i). (2)

For reasons that will be clear later, we want to consider all of the input parameters as defined
over a uniform interval. Let φ : Γ → [0, 1]m be a bijective map. Hence each θ̂ ∈ Γ can be
associated with a unique θ ∈ [0, 1]m such that:

θ̂ = φ−1(θ). (3)

Combining (2) and (3), the joint PDF ρ of θ is given by:

ρ(θ) =
(
ρ̂ ◦φ−1

)
(θ) =

m∏
i=1

(
ρ̂i ◦ φ−1

i

)
(θi). (4)

Let {θj}kj=1 be k samples of θ. Define the vector-valued function y(θ) : [0, 1]m → Rd to
account for outcomes of interest of (1), whose i-th entry is given by:

yi(θ) = Ji
(
x ◦φ−1

)
(θ), (5)

with Ji a bounded and continuous functional, possibly nonlinear. For example, the Ji may
represent the annual disease incidence or disease-related mortality among an intervention pop-
ulation in a given time period. Note that y(θ) does not depend on time t directly. One may
introduce time-dependent quantities through the definition of Ji, for example two distinct Ji
may describe the same output considered over different time periods.
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3 INPUT-OUTPUT MODEL ORDER REDUCTION

3.1 Reduction of the output space

Given k samples of θ, we solve (1) for each θ̂
j
= φ−1(θj). Denote yj = y(θj). Let Y be

the d× k snapshot matrix:

Y =
[
y1 | y2 | ... |yk

]
. (6)

We can then employ some dimension-reduction technique to extract a lower-dimensional rep-
resentation of Y . Let Ψ : Rd → Rp, with p ≤ d be a mapping defining the chosen dimension-
reduction algorithm. The reduced representation of Y is then given by Y :

Y = Ψ(Y ) =
[
Ψ(y1) | Ψ(y2) | ... | Ψ(yk)

]
(7)

Different algorithms can be used to define Ψ, including standard Principal Component Analysis
(PCA) and variants such as kernel PCA13, among others. The algorithm discussed in the present
work is not restricted to any particular technique. For simplicity, we will assume a standard
PCA, which we define using the Singular Value Decomposition (SVD). In this case, we assume
(6) to have rows with zero mean and normalized variance.

Taking the SVD of Y = USV T , we consider only the first p singular values/vectors. Denot-
ing the i-th column of U as Ui, the first p left singular vectors U1:p are the principal components
of Y , and define a set of orthonormal axes in the reduced space whose directions capture the
majority of the variance observed in Y . We can project Y onto the reduced space as:

Y = UT
1:pY. (8)

Y is a p× k matrix whose j-th column expresses the j-th column of Y in the coordinate system
defined by U1:p. Let us then denote by ỹ : [0, 1]m → Rp the mapping that associates to θ an
output vector in the reduced space of dimension p, and such that ỹ(θj) = Y j = UT

1:py
j for

j = 1, . . . , k. We can then introduce a surrogate model Φ̃ : [0, 1]m → Rp of y over the reduced
output space as follows. We consider the following modal expansion of ỹ:

Φ̃(θ) =
s∑

i=1

⟨ỹ(θ)|Li(θ)⟩ρ Li (θ) , (9)

where ⟨ · | · ⟩ρ denotes the ρ-inner product over [0, 1]m and {Li}si=1 are a set of ρ-orthogonal
polynomials. This is the so-called generalized Polynomial Chaos Expansion (gPCE)14 trun-
cated over a finite number of terms. Since in the present work, we assume that θi are uniformly-
distributed random variables, the Li are Legendre polynomials14. In practice, the computation
of gPCE coefficients is done using the Sparse Grids Matlab Kit15;16, which requires only the
reduced output data Y obtained by the PCA as described above, using a sparse-grid collocation
strategy to select the θj . We refer the reader to15 for more details. Note that defining Φ̃(θ) in
this way allows for the fast calculation of its partial derivatives in θi via recurrence formulas17.
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3.2 Reduction of the input space

Observe that Φ̃(θ) defines a map from the m-dimensional full input space to the p-dimensional
reduced output space. We now seek to obtain a corresponding p-dimensional input space Γ̃. Let
ej, j = 1, 2, ..., p denote the p-dimensional standard basis vectors; in the coordinate system
defined by U1:p, ej corresponds to the direction spanned by Uj .

We aim to reduce the dimension of the input space by finding directions in τ j ∈ Rm such
that a perturbation of θ along τ j results in a perturbation of y(θ) along Uj . Assuming such a
τ j exists, fixing θ0 in the interior of [0, 1]m:

y(θ0 + δτ j) = y(θ0) + εUj, (10)

for ε > 0, δ > 0. Observe that:

UT
1:py(θ

0 + δτ j) = UT
1:py(θ

0) + εUT
1:pUj → ỹ(θ0 + δτ j)− ỹ(θ0) ≈ εej. (11)

Replacing ỹ with its gPCE (9) and exploiting its differentiability, the limit:

lim
δ→0

Φ̃(θ0 + δτ j)− Φ̃(θ0)

δ
= ∇Φ̃

(
θ0
)
τ j (12)

exists, which, together with (11), suggests:

∇Φ̃
(
θ0
)
τ j ≈ ej. (13)

Recall that:

∇Φ̃(θ0) =


∂Φ̃1/∂θ1 ∂Φ̃1/∂θ2 .. ∂Φ̃1/∂θm
∂Φ̃2/∂θ1 ∂Φ̃2/∂θ2 .. ∂Φ̃2/∂θm

...
... . . . ...

∂Φ̃p/∂θ1 ∂Φ̃p/∂θ2 .. ∂Φ̃p/∂θm

 , (14)

with the dependence of each Φ̃i on θ0 understood. From the above, we observe that ∇Φ̃(θ0) is
a p×m matrix, and p ̸= m in general. Therefore, ∇Φ̃(θ0)−1 will not typically exist, and, since
in most cases we expect m > p, the system (13) will have infinitely many solutions in general.

As an alternative, let UΦSΦV
T
Φ denote the SVD factorization of ∇Φ̃(θ0) such that

∇Φ̃(θ0) = UΦSΦV
T
Φ and define:

∇Φ̃(θ0)† = VΦ

(
(SΦ, 1:p×1:p)

−1

0

)
UT
Φ . (15)

The expression (15) is the Moore-Penrose pseudoinverse of ∇Φ̃(θ)18.
Definition: Reduced-order input space. We define the p-dimensional reduced-order input
space Γ̃p as:

Γ̃p = span{τ j}pj=1, where: τ j = ∇Φ̃(θ0)†ej. (16)
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3.2.1 Moore-Penrose pseudoinverse and the need for a transformed parameter space

Let Zj = {z ∈ Rm | ∇Φ̃(θ0)z = ej}. An important consequence of defining the reduced-
input space as (16) is that18:

∥τ j∥2 ≤ ∥z∥2 ∀z ∈ Zj. (17)

Although the system (13) has infinitely many solutions (the set Zj) in general, τ j gives the
minimum-norm solution. This ensures the reduced-order input directions τ j are well-defined.

The use of the Moore-Penrose pseudoinverse is the motivation for considering the trans-
formed parameter vector θ = φ(θ̂), rather than θ̂ directly. Recall that the θ̂i refer to physical
parameters, defined over intervals Γi, which have different numeric ranges in general. Thus, the
notion of a ‘minimum-norm’ solution in Γ may not be physically meaningful. By considering
the transformed parameter vector θ, we ensure that each θi is defined over a uniform interval,
and consequently, that the uniqueness-condition (17) makes sense.

4 NUMERICAL STUDY OF HIV-PREVENTION INTERVENTIONS

To demonstrate our introduced methodology, we consider a series of HIV prevention inter-
ventions intended to prevent HIV acquisition and transmission consisting of expanding HIV
testing, increasing the uptake and adherence of pre-exposure prophylaxis (PrEP) among per-
sons without HIV, and increasing the uptake and adherence of antiretroviral therapy (ART)
among persons with HIV (PWH). Since the burden of both HIV, as well associated social and
structural inequities, vary by population, prevention efforts may also need to vary by popula-
tion. We consider several distinct high priority transmission groups: men who have sex with
men (MSM), heterosexual females (HETF), heterosexual males (HETM), and persons who in-
ject drugs (PWID). We use HOPE, a compartmental model of HIV transmission in the United
States, to illustrate the methods’ ability to reduce the dimension of the input parameter space.
Furthermore, we show the reduced input space can be used to rapidly develop and assess differ-
ent intervention strategies.

4.1 HOPE Model

HOPE is a dynamic compartmental model that simulates the sexually active U.S. popula-
tion. HOPE model includes 273 compartments corresponding to movement from the popula-
tion without HIV to persons with HIV, across various disease progression states and stages of
HIV care. Each model compartment is stratified by age, sex, race/ethnicity, risk level, trans-
mission group and circumcision status. For inputs for which data were limited or uncertain, we
obtained input distributions (assumed uniform) through a calibration process by varying those
values within expected bounds. These inputs were calibrated so that key model outputs matched
the most recent data available at the time of the analysis. Further details can be found in the
technical report of the latest publication19.

6
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4.2 Reduced-order inputs/outputs and interpretation

We consider as model inputs θ, consisting of m = 10 intervention strategies corresponding
to increased levels of HIV-related prevention and care services reaching different transmission
groups. Our model outputs y consist of d = 6 HIV-related outcomes. Together, θ and y are
defined as:

θ =



PrEP (MSM)
PrEP (HETF)
PrEP (HETM)
PrEP (PWID)
ART (MSM)
ART (HET)

ART (PWID)
Testing (MSM)
Testing (HET)

Testing (PWID)


, y =


New infections (MSM)
New infections (HETF)
New infections (HETM)
New infections (PWID)
New infections (total)

Total HIV-related spending (billions of 2022 USD)

 . (18)

The intervention strategies are defined as increases compared to a baseline delivery level by
transmission group, beginning in the model in year 2023 and simulated through year-end 2030.
The outputs refer to the cumulative totals of each outcome quantity over 2023-30. At baseline
intervention levels, over the period 2023-30, our key outputs of interest are simulated as:

yBaseline =


200267 New infections (MSM)
28590 New infections (HETF)
15689 New infections (HETM)
16167 New infections (PWID)
261000 New infections (total)
367 Total HIV-related spending (billions of 2022 USD)

 . (19)

Using the Sparse Grids Matlab Kit15;16, we generate a total of 221 points θj , corresponding to
different levels of the ten interventions (18). We collect each corresponding yj into the 6×221
matrix Y , see (6). From the SVD of Y , we found that considering only the first p = 4 singular
vectors/values retained over 95% of the variance in Y . We then construct the map Φ̃ from the
intervention space to the reduced, 4-dimensional output space, following (9).

The principal component loadings for each of the 4 reduced-order output directions U1:4 are
plotted in Fig. 1. These are the entries of each vector Ui, weighted by the corresponding singular
value Si,i; each entry indicates how much information of each physical variable is contained in
the principal component. The first principal component is strongly associated with incidence in
all groups except PWID. The second component is most associated with incidence among the
HETM and PWID groups. The third principal component only reflects variations in spending,
while the fourth component is predominantly associated with incidence among PWID.

We then reduce the dimension of the input space from 10 to 4, following (16) (note that

θ0 =
1

2
1⃗ for convenience). The entries of each reduced-order input direction τ j are plotted in

Fig. 2. The first reduced-order input direction τ 1 is dominated by PrEP and ART for MSM.
The second and fourth reduced-order input directions τ 2,4 are primarily driven by ART among

7
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HETM and PWID (τ 2) and HETF and PWID (τ 4), respectively. Finally, the third reduced-order
input direction τ 3 corresponds primarily to PrEP use among heterosexuals.

To confirm that the reduced-order input directions calculated by (16) are correct, we compute
yτ j

= y
(
(x ◦ φ−1)

(
θ0 + τ j

))
for each τ j . If the calculated τ j are correct, we expect that

(denoting yθ0 = y
(
(x ◦ φ−1)

(
θ0
))

):

UT
1:4

(
yτ j

− yθ0

)
≈ ej. (20)

Since we used a truncated SVD and a PCE, we do not expect the relation (20) to hold exactly,
but approximately. In fact, we find:

UT
1:4

(
yτ1

− yθ0

)
=


1.0073
0.0048
0.008
0.0024

 , UT
1:4

(
yτ2

− yθ0

)
=


0.0031
1.0146
0.0022
0.0004

 ,

UT
1:4

(
yτ3

− yθ0

)
=


0.0007
0.0011
1.0088
0.0002

 , UT
1:4

(
yτ4

− yθ0

)
=


−0.0001
0.0176
0.0035
1.0076

 .

(21)

4.3 Direct use in intervention planning

We now apply the method to a hypothetical problem of prioritizing intervention strategies.
We wish to find combinations of intervention strategies that meet the following hypothetical
output targets (targets on HIV-related outcomes, units as in (18)):

yTarget1 =


150000
24000
14000
12000
200000
425

 ,yTarget2 =


150000
24000
14000
12000
200000
380

 ,yTarget3 =


130000
22000
12000
11000
175000
475

 ,yTarget4 =


130000
22000
12000
11000
175000
425

 . (22)

We can identify distinct intervention combinations that achieve these targets through with ∇Φ̃(θ0)†.
Note yTargetj can be expressed approximately as a linear combination of the Ui. From (16):

yTargetj ≈
4∑

i=1

aiUi → UT
1:4yTargetj ≈

4∑
i=1

aiei → ∇Φ̃(θ0)†UT
1:4yTargetj ≈

4∑
i=1

aiτ i. (23)

Evaluating:

yEval j = y
((

x ◦ φ−1
) (

θ0 +∇Φ̃(θ0)†UT
1:4yTarget j

))
= y

((
x ◦ φ−1

) (
θ0 +Σ4

i=1aiτ i

))
(24)

8
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Figure 1: The four identified reduced-order outputs for the HIV prevention test case.

for each yTarget j (22) gives:

yEval 1 =


147039
24733
13447
12037
197257
425

 ,yEval 2 =


145933
25105
13312
11918
196629
386

 ,yEval 3 =


133822
22062
11801
10659
178343
472

 ,yEval 4 =


128827
21780
11682
10454
172742
425

 . (25)

All intervention strategy combinations come close to achieving the targets (22), and are plotted
in Fig. 3. Note that yTarget 1,Target 2 have the same HIV outcome targets, but different HIV-related
spending targets. For yTarget 1, PrEP is significantly increased from baseline levels. However,
to reach the same incidence targets with a lower spending target yTarget 2, de-emphasizes PrEP
and allocates more resources toward ART. Similarly, yTarget 3,Target 4 have identical HIV outcome
targets and different spending targets. In yTarget 3, PrEP is heavily emphasized; yTarget 4 allocates
comparatively fewer resources towards PrEP, and more towards ART. Nevertheless, PrEP re-
mains an important component of yTarget 4. We note that these results are qualitatively similar
to those found in other allocation analyses20;21. We emphasize that these are hypothetical inter-
vention targets used for illustrative purposes to demonstrate the introduced methodology, and
should not be interpreted as specific program or policy recommendations.

This example demonstrates the potential utility of input/output reduced-order modeling for
prioritizing intervention strategies. Different intervention combinations were identified with
minimal computational cost, and did not require any sort of iterative and/or optimization pro-
cedure. Despite the low-dimension of the reduced input space, the intervention combinations
identified by the input-output reduced-order model are able to account for important considera-
tions, including identifying significantly different intervention strategies in response to changes
in target spending levels.

9



A. Viguerie, C. Piazzola, M.H. Islam, and E. Uzun Jacobson

Figure 2: Reduced-order inputs corresponding to each reduced-order output.

Figure 3: Distinct interventions identified through input-output ROM procedure.

5 CONCLUSIONS

We have introduced a novel method for reducing the dimension of the input space for mod-
els with high input dimensionality. The technique works through sampling the model over a
set of sparse-grid points, aggregating the model outputs of interest for each sampled point, and
performing a dimension reduction on the aggregated outputs. We then build a surrogate model
over the reduced output space, which maps the input parameters to the reduced outputs. Sub-
sequently, we reduce the dimension of the input space via the construction of a mapping which
associates each axis in the reduced output space with a corresponding vector in the input space.
We used a national-level model of HIV transmission to demonstrate the utility of the proposed
method, and found that the approach could be applied directly to construct intervention com-
bination strategies based on hypothetical output targets, including targets related to both HIV
outcomes and HIV-related spending. Furthermore, despite its reduced dimension, sophisticated
dynamics, including significant changes to intervention combination strategies in response to
changes in target spending levels, were captured by the reduced-order input-output space.

10
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The present work is intended as a proof-of-concept, and much future work remains to de-
velop the introduced methodology. For simplicity, we used a standard PCA to reduce the order
of the output space. However, other dimension-reduction techniques exist, and may be more
appropriate in certain situations. In principle, the proposed method should work with any such
technique, however, further investigation is needed. To emphasize the intuition behind the ap-
proach, the method was not introduced in a mathematically rigorous manner; a more rigorous
treatment, establishing existence conditions and other important properties, is necessary. Fur-
thermore, while we emphasized public health applications herein, due to the ubiquity of models
with high-dimensional input spaces in the field, the introduced technique is general in nature,
and can be applied to any parameterized model satisfying very basic continuity conditions. Us-
ing the proposed method in other application areas is also an important next step.
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Control and Prevention. C. Piazzola gratefully acknowledges the support of the Alexander von
Humboldt Foundation.
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