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Summary. The consideration of different physical phenomena is often required for a realistic
simulative representation of complex systems. An example of such a complex system, which is
examined in this paper, is a helicopter in flight. A strong interaction between the structure and
the ambient air occurs. For modeling of the mechanical part of the coupled system, the Finite
Element method is frequently used, leading to very high-dimensional systems of differential
equations. In order to still enable efficient and effective simulations, Model Order Reduction
(MOR) is used. By coupling the different domains, though, the individual subsystems often
have numerous inputs and outputs which poses a special challenge for many MOR methods.
In this paper we present a novel hybrid method that combines modal truncation and moment
matching with Krylov subspaces. Significant improvements were revealed for this hybrid method
compared to state-of-the-art methods. The hybrid method uses harmonic force amplitudes as
inputs for the reduction. Large speed-ups were obtained whereby the reduced models are well
suited for the use in transient co-simulation.

1 INTRODUCTION

Helicopters are lightweight structures that are exposed to strong and often periodic forces
during operation. This makes helicopters prone to vibrations. For the simulative prediction
and investigation of these vibrations, different physical domains have to be considered. These
domains are the mechanical structure on the one hand and the ambient air on the other.

Coupled systems of this type can be investigated with co-simulations. In co-simulations,
the different domains are solved separately and data are exchanged between them to take into
account the interactions. For complex systems, the employed Finite Element (FE) models are
very high-dimensional and numerically expensive to solve. Model Order Reduction (MOR)
provides a remedy with the purpose to approximate the full order system with one of much
lower dimension while keeping the most relevant characteristics. In previous publications in
the field of helicopter dynamics, mainly modal truncation was used to reduce the structural
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models as in [1, 2]. For mechanical systems, however, other methods have gained importance
in recent years, as e.g., moment matching with Krylov subspaces, see e.g., [3, 4, 5]. Moment
matching has already been successfully applied to FE models of helicopters in [6, 7, 8]. For use
in co-simulation, though, there arises a particular challenge: The number of inputs and outputs
resulting from the coupling of different domains over large areas is very high.

This paper examines how the MOR method based on moment matching can be adapted
for use in co-simulations. We show a hybrid method that combines modal truncation and
moment matching and furthermore uses harmonic input forces for moment matching. It is
compared with the state-of-the-art modal truncation method and standard moment matching
without adaptations. This hybrid method as well as its application to the model of an industrial
helicopter are the novelties of this contribution.

The paper is structured as follows. In Section 2, the general framework for the coupled multi-
domain simulation of helicopters is described and some challenges are outlined. In Section 3
the most relevant theoretical background on projection based MOR is given. Section 4 deals
with the application of MOR to multi-domain simulations. In Section 5, some results for the
industrial FE model of the helicopter are presented and compared. Section 6 concludes this
article.

2 SIMULATION FRAMEWORK

Co-simulation is a wide-spread method for the simulation of heterogeneous models. The en-
tire system is divided into different subsystems, e.g., into its physical domains. Each subsystem
can be modeled using the most appropriate tool and co-simulation coordinates the interac-
tions between these subsystems. This approach is particularly beneficial when dealing with
complex systems that are composed of various subsystems, each requiring specialized model-
ing techniques. However, the challenges associated with integration, synchronization, and data
exchange between subsystems need to be carefully addressed to fully leverage the benefits of
co-simulation.

An example of a complex system where co-simulation can be beneficial is a helicopter in
flight. Strong interactions exist between the structure of the helicopter and the surrounding air.
In the following, we refer to the Finite Element model of the fuselage of the helicopter with
the structural model and to the surrounding air with the fluid model. We restrict ourselves
to steady flight conditions, e.g., hovering or a steady forward flight. The first important step
in such simulations is an initial trim to find an equilibrium solution of a steady flight state.
This trim defines control variables such as blade pitch angles for the transient simulation. In
principle, it is also possible to include the trim in the transient simulation workflow and by this
allow for unsteady flight conditions, but this is not in the scope of this paper.

With the trim solution, we can start the transient simulation process sketched in Figure 1.
The left box represents the fluid system ΣF and the right box depicts the structural system
ΣS. Between those systems, data have to be exchanged and in the course of this coordinate
transformations and mappings have to be performed. The simulation of the fluid system provides
the pressures p that act on the cells of the Computational Fluid Dynamics (CFD) grid. These
pressures are used to compute the forces that act on the FE model of the fuselage. Typically, the
spatial discretization used for the fluid system is much finer than the one used for the structural
system. Especially at locations with high geometric gradients, where complex aerodynamic
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Figure 1: Workflow of the coupled simulation

phenomena are expected, a fine discretization is necessary [1]. The loads have to be transferred
from the finer fluid grid to the structural FE model while ensuring conservativity, i.e., the integral
loads over the surface must match for both discretizations. For this purpose, the normal force
that acts at the center of each CFD surface cell is computed by multiplication of its area and
the pressure that was obtained from the CFD simulation step. The structural model is then
transformed by translation, rotation, and scaling so that both models overlap. Now, for every
cell center, the closest structural node is determined and the force is applied to it. The small
deviation between cell centers and FE nodes is considered by applying moments computed with
the force and the distance as lever. This leads to the load vector f̂ ∈ R6nFEnodes , which contains
the forces and moments that act on the surface nodes. In contrast to concentrated forces often
used in FE analyses, this load vector is usually fully populated in the setting of co-simulations,
because the exchange surface is large and covers many of the nFEnodes

FE nodes.
The load vector is then applied to the structural system and the time step is solved by numer-

ical integration. This leads to an updated displacement q̂ ∈ R6nFEnodes . With this displacement,
the position of grid nodes in the CFD grid z ∈ R3nCFDnodes is updated by the use of radial basis
functions, see [1]. With the updated grid, the next time step is computed.

For the practical application of this tool chain, different software is used. The trim simulation
is performed with the comprehensive rotorcraft solver CAMRAD II [9, 10]. The FE model is
build in MSC Nastran and imported to Matlab with the MOR toolbox MatMorembs [11]. The
reduced structural system and the fluid system are coupled with the coupling manager HeliCats
which is developed at the Institute of Aerodynamics and Gas Dynamics of the University of
Stuttgart. The fluid simulation is conducted with the CFD code FLOWer [12].

Figure 2 shows the industrial FE model that is used for the structural simulation. Some
things are noticeable and should not go unmentioned at this point:

• The main rotor and the fenestron are not contained in the finite element model and just
represented by surrogate masses

• Side doors and side windows are replaced by surrogate masses

• The resolution of the tailboom is much finer than the resolution of the cabin
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Figure 2: Industrial FE model of the helicopter fuselage

These three observations have an influence on the forces acting on the nodes of the FE model.
As some parts are not fully resolved, the force of the surrounding CFD cells is summed up and
acts on few substitute nodes that are the closest nodes to many CFD cells. For these reasons
we end up with large forces at the hub nodes of the main rotor and of the fenestron, as well
as with large forces onto the surrogate nodes in the center of doors and windows as well as at
the frame of both. The simplifications in the model are covered by the coupling process, but
pose a limitation in the accuracy of the simulation. Nevertheless, the FE model is still very
high dimensional exceeding hundreds of thousands degrees of freedom leading to high numerical
costs for the transient simulation. This motivates the use of MOR, which aims to represent the
full-order system by a low-rank approximation while preserving its key properties.

3 PROJECTION BASED MODEL ORDER REDUCTION

Mechanical systems are often spatially discretized and then described with the linear Finite
Element Method (FEM), see [13]. This results in the high-dimensional system of linear second-
order differential equations

Mq̈(t) +Dq̇(t) +Kq(t) = f(t). (1)

Here, M ,D,K ∈ RN×N are the mass, damping, and stiffness matrix, respectively. The state
vector q(t) ∈ RN describes the nodal displacements. The notation q̇(t) := dq(t)/dt and q̈(t) :=
d2q(t)/dt2 is used for the time derivatives in this paper. The right-hand term f(t) contains all
external forces that act on the system. By factorizing the force vector into its spatial distribution
and a time dependent input signal with the product f(t) = Bu(t) and by extracting system
outputs with y(t) = Cq(t), Equation (1) can be interpreted as a linear second order input-output
system

Mq̈ +Dq̇ +Kq = Bu,

y = Cq.
(2)
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The matrices B ∈ RN×b and C ∈ Rc×N are the input and output matrix of the system and the
vectors u ∈ Rb and y ∈ Rc are the inputs and outputs. The time dependency is omitted for
better readability.

Linear time-invariant systems of this type can effectively be reduced with projection based
MOR, see [14, 15, 16]. Its idea is to approximate the state vector within a subspace V = span{V }
with

q ≈ V q̃, dim(q) = N ≫ dim(q̃) = n, V ∈ RN×n. (3)

Plugging the approximation from Equation (3) in Equation (2) and left-multiplying by V ⊤ leads
to the reduced model

M̃ ¨̃q + D̃ ˙̃q + K̃q̃ = B̃u,

ỹ = C̃q̃.
(4)

The tilde indicates quantities of the reduced model and its quite small system matrices result
from

M̃ = V ⊤MV , D̃ = V ⊤DV , K̃ = V ⊤KV , B̃ = V ⊤B, C̃ = CV . (5)

The matrix V is called projection matrix and is a core element of projection based MOR. There
are different methods to construct it.

A commonly used method that is also very popular in aerodynamics is modal truncation. In
modal truncation, the first n eigenmodes ϕi, with i = 1, . . . , n, of the system are calculated and
used as columns for the projection matrix

V =
[
ϕ1 . . . ϕn

]
. (6)

However, it is often unclear whether the first modes are the ones that contribute most to the
deformation behavior for the load case at hand. Furthermore, local forces can only be described
well with many modes.

A method that takes a different approach is moment matching with Krylov subspaces. It aims
at approximating the transfer function H(s) = C(s2M + sD +K)−1B of the system, where s
is the Laplace variable. Therefore, the transfer function is written as a power series

H(s) =
∞∑
j

(s− sk)
1

j!

∂jH(s)

∂sj
∣∣
s=sk

, j = 0, 1, . . . , Jk − 1, (7)

around expansion points sk, also called shifts, as explained in [16, 17]. The first Jk moments are
then matched at different shifts sk. This is implicitly done by the use of Krylov subspaces, as
extensively described in [18, 19]. A numerically stable algorithm that produces such subspaces
is the second order Arnoldi algorithm. It uses a modified Gram-Schmidt orthogonalization to
ensure stability and is presented in [19, 20].

Moment matching was effectively applied to many mechanical systems as in [21, 22] for first-
order moments or in [4, 23] for higher-order moments. However, in all these contributions, the
number of inputs and outputs is limited to very few. The classical moment matching approach is
very inefficient if forces act on many nodes. This is because in its basic form, moment matching
produces reduced models with an order that is a multiple of the number of inputs and the
number of shifts. For undamped systems with D = 0, b real vectors are added to the projection
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matrix for each shift in the frequency domain. For damped systems, the Krylov vectors v are
complex and two vectors Re(v) and Im(v) are added for every input at each shift, as explained
e.g., in [6]. Although after calculating a new Krylov vector, a Gram-Schmidt orthogonalization
is performed and vectors that are almost linearly dependent on the existing basis are truncated,
the size of the reduced model grows very fast for many inputs. This property makes moment
matching unsuitable for co-simulations, at least if no further adaptions are made.

4 MODEL ORDER REDUCTION IN CO-SIMULATION

High numbers of inputs and outputs are characteristic for co-simulations with exchange of
data between different domains. For methods such as modal truncation, which do not depend
on the inputs and outputs of the system, this does not pose a challenge and the procedure can
be the same as for systems with few inputs and outputs. For methods that depend on the
number of inputs, however, adjustments must be made in order to apply them effectively in
co-simulation.

In general, the number of inputs have to be somehow reduced. This can be done with
tangential interpolation [24, 25] by either using just some of the original inputs or by constructing
a new set of inputs of lower dimension e.g., with SVDMOR, see [26] for its general idea and
[27] for its application to mechanical systems. Usually, if nothing about the forces acting during
the simulation is known previously, all possible inputs are considered independent of each other.
This results in a large sparse Boolean matrix B. Every column represents one input direction
which is one coordinate direction of one surface FE node. If moments and forces act on all nodes
of our system, which could well be the case for coupled multi-domain systems, B = I ∈ RN×N .
The assumption of entirely independent inputs allows completely arbitrary input forces and does
not incorporate the distribution of surface loads. In reality, however, it is very unlikely that if
one node experiences a very high aerodynamic load, no load will be applied to the neighboring
node. If we assume that the forces that act on the mechanical subsystem are known in advance,
their distribution can be taken into account. This assumption can be legitimate if, for example,
the forces can be calculated in a preliminary calculation with a rigid mechanical system. We
then obtain a snapshot matrix

B =
[
b(t0) b(t1) . . . b(tend)

]
(8)

from the simulation with the rigid body from starting time t0 to final time tend and discrete time
steps in between. This matrix is potentially also large, depending on the simulation time and
the step size, but we can decompose this matrix with Singular Value Decomposition (SVD) to
get an optimal low-rank approximation, see [28]. If the inputs are periodic, another possibility
is to compute the harmonic components of the snapshot matrix with a discrete Fourier trans-
formation. In that way, one obtains the amplitudes of the input force at different frequencies.
These vectors of amplitudes can be used as input directions for shifts in moment matching at
these frequencies.

With these ideas, there are ways to cope with the large number of inputs in co-simulation.
Yet, we also have to ensure that the reduced system approximates the displacement of all surface
nodes well, i.e., we also have to deal with many outputs. In contrast to the inputs, we do not know
the outputs previously. While moment matching mainly captures the behavior of different load
paths, modal truncation retains the global properties of the system. It therefore seems natural
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to combine both approaches. Moment matching to approximate the inputs of the system and
modal truncation to ensure approximately correct displacements of all surface nodes. The idea
of combining different reduction methods to get appropriate reduced order models for a specific
use case is not new but known from component mode synthesis, see [29, 30].

The combination of two projection-based MOR methods to one hybrid method is straight-
forward. Two reduced subspace from modal truncation and moment matching, spanned by the
bases Vmod ∈ RN×nmod and Vmm ∈ RN×nmm can be unified by concatenating them to

V hyb =
[
Vmod Vmm

]
∈ RN×nmodnmm . (9)

To ensure full rank of the projection matrix, V hyb is decomposed with a singular value decom-
position

V hyb = UΣR (10)

and only those left singular vectors corresponding to singular values larger than a given threshold
are kept to span the reduced subspace

V = span{Vhyb} with Vhyb =
[
u1 u2 . . . unhyb

]
and nhyb ≤ nmodnmm. (11)

The vectors ui are the first nhyb columns of U .

5 RESULTS

We now apply the proposed method of MOR for co-simulation to the FE model of the heli-
copter fuselage. For perceptible vibrations of the fuselage, frequencies below 40Hz are especially
relevant. Thus, we will concentrate on this frequency range in the following. The first 30 elastic
eigenfrequencies of the model are in this range. The largest forces are expected to be at the
blade passage frequency (bpf) and for that reason a good correspondence of the reduced order
model and the full order model at this specific frequency is particularly important.

For the evaluation of the reduced order models we consider the relative error

ϵ =
||H(s)− H̃(s)||F

||H(s)||F
(12)

in the Frobenius norm of the transfer function. The transfer function is computed for the
harmonic input force vectors and some characteristic output points which are translations and
rotations at the main rotor hub, the fenestron hub, the pilot seat, the copilot seat, and one point
each on the right and left side of the cabin frame. The error in the Frobenius norm also yields
bounds for the error in time domain, see [31, 32].

In Figure 3, the relative Frobenius norm errors for three reduced system are compared.
All have a comparable reduced order of 40 and 37, respectively. The bpf is marked with the
dashed line. The model resulting from modal truncation with the first 40 eigenmodes yields a
model where the error is constantly below 18%. Compared to the model created with moment
matching, where the error is huge around the bpf, this is good, but an error of 18% is still not
satisfying.

For the moment matching model, six available discrete frequencies from the Fourier transfor-
mation were used with the corresponding shape of the input force. The harmonic input forces
at these frequencies result from a co-simulation run with rigid fuselage to obtain the snapshots

7



Lennart Frie, Oskar Wengrzyn, Manuel Keßler, Ewald Krämer, Peter Eberhard
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Figure 3: Frobenius norm error for the reduced
order models with modal truncation (mt), moment
matching (mm) and the proposed hybrid method
(hyb) with the first 36 eigenmodes and 4th order
moment matching at bpf
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Figure 4: Frobenius norm error for the hybrid
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the computed discrete Fourier frequencies fk =
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Figure 5: Frobenius norm error for larger reduced models with modal truncation and the hybrid approach
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f̂(t). These snapshots are projected onto the constraint system to obtain snapshots f(t). With a
Fourier transformation, the amplitudes F (s) are obtained. These periodic input forces are used
for the reduction with shifts at fk = 0, 1/5 bpf, 2/5 bpf, . . . ,bpf with k = 1, ..., 6. All moments
were matched until the sixth order for the respective input force at each of these frequencies to
obtain a model with comparable number of degrees of freedom.

If we enrich a modal basis, here the first 36 eigenmodes, with four Krylov modes the red
dashed error is obtained. At first glance, it does not reveal a proper advantage compared to
modal truncation. However, Figure 4 shows that there is a big difference if we investigate the
different input directions separately. The Frobenius norm is shown for every column of the
transfer matrix separately. This means, that the error of the transfer function for each input
direction bk to all outputs is displayed over the frequency range. For the input b6, which is the
harmonic input at bpf, we see that the error gets very low around this frequency. If the model
is excited with the predicted shape of the force at the bpf, the error is very small. Since we
expect that this force acts on the model in the coupled simulation, it is much better suited for
use in this. Just for other input forces, the error is still big and, therefore, the Frobenius norm
over all inputs shown in Figure 3 stays almost unchanged.

If we match every input direction at the respective frequencies of fk = 0, 1/5 bpf, . . . ,bpf,
we can improve the Frobenius norm over all inputs. This is demonstrated in Figure 5, where
the modal basis with 40 modes is enriched with 37 modes obtained from moment matching
at frequencies of fk = 0, 1/5 bpf, 2/5 bpf, . . . ,bpf. Here the error is quite low over the whole
frequency range. This is not achievable with modal truncation. Although the first 80 eigenmodes
are used to span the reduced subspace, the approximation error is not improved significantly
compared to modal truncation with 40 modes. This observation shows that we do not obtain
satisfying approximation quality with modal truncation unless we keep almost all modes in the
reduced basis which, however, is against the purpose of reduction. Standard moment matching is
also not appropriate for the model with very many inputs. The combination of modal truncation
with Krylov modes created with harmonic force inputs at different input frequencies, provides
a good solution.

The reduction of the FE model enables transient simulations which are not possible with the
full-order model in a reasonable time. To get an impression of the computational time savings
we compare the elapsed time for the computation of the transfer functions. The full model
evaluation took 112min while the reduced ones all compute in under 1s. These are speed-up
factors in the range of 6500 and larger. Similar speed-ups can be expected in time domain.

6 CONCLUSION

In this paper, it was shown how projection-based MOR can be applied to multi-domain co-
simulations. This was done with the example of an industrial FE model of a helicopter fuselage.
A hybrid method that combines modal truncation and moment matching with Krylov subspaces
was presented and compared to both standard methods. Significant improvements were revealed
for this hybrid method which uses harmonic force amplitudes as inputs for the reduction. Large
speed-ups were obtained whereby the reduced models are well suited for the use in transient
co-simulation.
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Einführung (in German). Heidelberg: Springer, 2024. doi:10.1007/978-3-662-67493-2.

[16] Fehr, J.: Automated and Error-Controlled Model Reduction in Elastic Multibody Sys-
tems. Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik
der Universität Stuttgart, Vol. 21. Aachen: Shaker Verlag, 2011.
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