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ABSTRACT
Building a ground model through manual processes can be time consuming, as large amounts of data need to
be classified to define the extent and spatial distribution of the different soil materials. This paper delves into
the application of machine learning (ML) methodologies, in conjunction with in-situ geotechnical testing data, to
develop the ground model for a downstream dam founded on both weak and liquefiable soils. The dam covers
a linear extent of approximately 800 m and was extensively characterized by means of in-situ tests, including
206 cone penetration tests (CPTu), 37 boreholes and 35 test pits. The performance of two unsupervised ML
clustering algorithms are compared: Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and
an extended version with a hierarchical component (HDBSCAN). The clustering uses CPTu data, which consists
of the normalized cone tip resistance (Qtn) and the normalized sleeve friction (Fr) varying with elevation. Nearby
borehole logs are used to evaluate the results of both clustering methods for a single single CPTu sounding using
different clustering parameters. Then, a global clustering including several CPTu soundings is done and results
are compared with the ground model that was manually made using Leapfrog software. Both methods show very
good performance, with HDBSCAN being better and more robust.
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1 Introduction

Building a ground model is an essential step for
geotechnical engineering applications, such as slope
stability analysis, liquefaction assessment, or founda-
tion design. However, manual processes for defining
soil layers and their properties can be time consum-
ing, subjective, and dependent on the expertise of the
person creating the model. This is particularly chal-
lenging for tailings dams due to the large amount of
CPTu data typically available, combined with the het-
erogeneous composition of the materials resulting from
its complex deposition. Due to these difficulties, many
practitioners often simplify the sub-layering and define
properties based on frequency analyses done on large
and non-homogeneous layers, which can result in un-
realistic or non-conservative estimates of properties.

Many authors have recently proposed methodolo-
gies to automate geotechnical stratigraphic profiling
from CPTu data, aiming to enhance both the effi-
ciency and accuracy of constructing ground models.
To illustrate: Collico et al (2023) introduced a semiau-
tomated tool based on probability; while Brinkgrieve
et al (2022) investigated the use of machine learning

(ML) algorithms for clustering.
This paper delves into the application of ML

methodologies in conjunction with in-situ geotechni-
cal testing data to develop the ground model for a
downstream dam founded on both weak and liquefi-
able soils. It examines the grouping capabilities of two
clustering algorithms: Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) and an ex-
tended version with a hierarchical component (HDB-
SCAN). First, the clustering is done individually for
each CPTu sounding using the normalized cone tip re-
sistance (Qtn) and the normalized sleeve friction (Fr)
varying with elevation; then, nearby borehole logs are
used to assess how well both methods work with differ-
ent clustering parameters. Finally, a global clustering
grouping multiple CPTu soundings is conducted and
compared with a manually constructed ground model.

2 Case study

2.1 Dam description

The case study is a 26 m-high downstream-raised
dam. It was built in the 1980s as a water retention
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Figure 1. Dam considered for this case study. a) shows the plan view of the site with CPTu locations and b) shows a
typical cross-section at the center of the valley. The dam is divided into three general parts: the crest, berm, and toe.

structure over an 800 m-long shallow valley that had
been previously covered with 6-8 m of hydraulically
deposited tailings. Below this unit, there is a very soft
clay layer with organic content and two natural allu-
vial layers: an upper unit that is mostly clayey and
soft, and a lower unit that is harder and has some
gravel mixed within the fine soil matrix. Figure 1a
shows a plan view of the site, while Figure 1b shows a
typical cross-section at the center of the valley. Note
that the dam is divided into three general parts: the
crest, berm, and toe.

The site has been extensively studied with in-situ
tests, including borehole logs (BH), test pits (TP),
cone penetration tests with pore pressure measure-
ments (CPTu), ball penetrometer tests (BPT), seismic
dilatometer tests (SDMT) and multi-channel analy-
sis of surface waves (MASW) tests. In Figure 1a, all
CPTu sounding locations are illustrated, which are the
main inputs of this study.

2.2 Ground model

The in-situ testing data was used to manually de-
fine a geotechnical stratigraphic profiling and produce
a 3D ground model using Leapfrog software; full de-
tails are presented in Rola et al. (2024). The layers
were defined using CPTu data and nearby BH logs;
Figure 2 shows an example of a CPT-BH pair located
at the center of the dam’s crest. A description of the
main geotechnical units are summarized as follows:

• Embankment Fill: a compacted clayey material
that forms the main embankment. It has a qt
around 5 MPa, fs between 150 and 350 kPa, Bq

near 0 and Ic larger than 2.7.

• Tailings: located below the embankment and ex-
tends laterally across the dam area. It has qt
ranging between 5 MPa and 10 MPa, fs between
0 and 300 kPa and uniform Bq near 0. It is sub-
divided into coarse (Ic < 2.6) and fine (Ic > 2.6)
subunits, as the coarser portion shows a drop in
the sleeve friction measurements (e.g., RL100-
101m in the sounding shown in Figure 2).

• Organics: a natural soft clayey layer located be-
low the Tailings; the borehole log depicts the
presence of roots and organic content. In CPTu
logs, it shows very low qt and fs values, along
with a noticeable spike in Bq.

• Upper Alluvium: a natural clay layer below the
Organics layer. It has a low strength matrix
depicted by low qt and fs values along with
some spikes in Bq; however, there are sections
of higher strength, probably due to the presence
of gravels.

• Lower Alluvium: a gravelly clay layer below the
upper alluvium. Identified by a sudden increase
in tip resistance and negative/null Bq values.
CPT refusal occurs in this layer.



Figure 2. Example of layer identification using CPTu and BH logs located at the dam crest. The interpretations for this
sounding (first three columns) were manually done by considering the CPTu data, CPTu correlations, and the BH log.

3 Clustering methods

3.1 DBSCAN

DBSCAN is a machine learning clustering algo-
rithm that defines clusters of data based on the den-
sity, or closeness, of the data (Ester et al., 1996; Schu-
bert et al., 2017). This allows the algorithm to focus
on dense regions in the dataspace, while data outside
of these dense regions are treated as outliers or noise.
Two user-defined parameters are required for the al-
gorithm: epsilon (eps) and minPts. For a given dat-
apoint, eps defines the radius that is used to search
for its neighboring datapoints. The number of points
within this radius is then compared to minPts, which
determines if a new cluster is created. Using these two
parameters, the method proceeds through a dataset
and labels points as either core, border, or outlier
points. A core point exists if it has at least minPts
number of points within the eps distance surround-
ing the sample. Border points are neighbors of core
points that are within eps distance of the sample but
have fewer points than minPts. Points that either
have fewer neighboring points than minPts or are not
within eps of the sample are labeled outliers. An ex-
ample of these points is shown in Figure 3a, where a
core, border, and outlier point are each illustrated us-
ing a sample dataset with eps = 0.4 and minPts =
5. Points are then connected if they are in the same
neighborhood as one another or if they are mutually
connected through another point, which forms clusters
as shown in Figure 3a. Note that this sample dataset

was created using four random clusters of data, but
only three clusters are provided by DBSCAN.

In general, DBSCAN is well suited for data with
non-uniform trends and noise, as it can create non-
spherical clusters that do not include noise or outliers
(see Figure 3a). Additionally, a priori information is
not required to use DBSCAN, although data analysis
may aid in choosing appropriate values for eps and
minPts. Although DBSCAN has many advantages, it
is important to note that its results are sensitive to
the choice of eps and minPts. In general, small values
of eps result in many clusters and outliers, while large
values of eps may lead to a single cluster with most
of the data included. However, this is also influenced
by minPts, as particularly noisy data may be difficult
to capture with a poorly chosen minPts. Therefore,
when using DBSCAN for highly variable data such as
the dataset shown in this study, it is necessary to clus-
ter using a suite of eps and minPts values to find the
best clustering results.

3.2 HDBSCAN

HDBSCAN is an extension of the original DB-
SCAN method that converts DBSCAN into a hier-
archical clustering algorithm (Campello et al., 2013;
2015). Due to its clustering method, DBSCAN strug-
gles to capture clusters of different densities. For ex-
ample, choosing a large eps may result in small clusters
being merged to form one larger cluster. HDBSCAN
circumvents this by clustering over all possible values
of eps and selecting the most persistent clusters from



all possible clusters. Similar to DBSCAN, HDBSCAN
begins by finding core points, or points that contain a
minimum number of neighboring points within a core
distance. This core distance changes for each core
point, such that points in areas of low density will
have larger core distances compared to points in areas
of high density. These core distances are then used
to compute a “mutual reachability distance” (MRD),
which is the maximum of three distances: the core
distance of point A, the core distance of point B, and
the distance between points A and B. The purpose of
this calculation is to bias the clusters towards regions
of higher density, causing datapoints in less dense re-
gions to be considered as outliers.

After finding the MRD between all points, a mutual
reachability graph is created. In this graph, every dat-
apoint is a vertex connected to one another by edges
whose weights are equal to the points’ MRDs. HDB-
SCAN then builds a minimum spanning tree (MST)
(i.e., a graph where all vertices are connected with
minimum possible edge weight), and a single cluster is
created and labeled for the MST. The edge with the
highest weight is then removed from the MST, and
cluster labels are assigned to the remaining connected
components that contain an end point from the re-
moved edge. If any remaining group has fewer points
than a user-defined minimum cluster size, those points
are labeled as outliers and the algorithm continues
splitting the remaining components. This process is
repeated until there are no more connected compo-
nents.

An advantage of HDBSCAN is that the only re-
quired parameter is the minimum cluster size (mcs).
This controls the number of points required for a clus-
ter to form. In general, this is more intuitive than the
eps and minPts required by DBSCAN, as it is directly
related to the minimum size a cluster can be. Thus,
while HDBSCAN may be more computationally com-
plex than DBSCAN, it is easier to use, and its insen-
sitivity to the chosen mcs value means few iterations
are required to achieve good results. An example of
HDBSCAN clustering is shown in Figure 3c. Note
that the sample dataset contains four clusters, which
HDBSCAN identifies, compared to the three clusters
provided by DBSCAN (Figure 3b).

4 Individual CPTu clustering

The CPTu data for this case study includes 206
soundings collected over 800 meters. As such, manu-
ally interpreting these soundings and cross-referencing
them to their nearest boreholes is time consuming.

Figure 3. A sample dataset containing four unique clus-
ters with additional noise. In (a), a core point, border
point, and outlier are shown for the DBSCAN parameters
eps = 0.04 and minPts = 5. The resulting DBSCAN clus-
ters are shown in (b), while HDBSCAN is used with mcs =
5 to form the clusters shown in (c). Note that HDBSCAN
finds the true number of clusters in the sample dataset
compared to DBSCAN at the cost of more noise.



A possible solution is to use DBSCAN and HDB-
SCAN to cluster the CPTu data and form layers auto-
matically. However, it is first necessary to determine
how well these clustering algorithms perform when ap-
plied to this dataset, as many locations in this case
study have high spatial variability (i.e., thin soil lay-
ers interspersed between larger layers).

To begin the analysis, several CPTu soundings are
selected to represent various locations across the site.
Specifically, a CPTu sounding is selected at the crest of
the dam (CPT-Crest), along the berm (CPT-Berm),
and at the toe (CPT-Toe). Three variables are used
to perform 3D clustering: elevation, the logarithm of
the normalized cone resistance (log(Qtn)) and the log-
arithm of the normalized friction ratio (log(Fr)). The
latter two values, log(Qtn) and log(Fr), are selected in
accordance with the updated CPT-based SBTn chart
proposed by Robertson (2009). Elevation was chosen
as the third variable so the clustering would consider
layer deposition. To prepare the dataset for cluster-
ing, each of these variables are normalized to a range of
(0,1) to prevent biased clusters. Finally, the DBSCAN
and HDBSCAN implementations from the Scikit-learn
open-source library (Pedregosa et al., 2011) are used
for clustering.

Because DBSCAN is particularly sensitive to the
choice of eps and minPts, a suite of values are tested
on one CPTu sounding (CPT-Toe) to determine the
best pairing of eps and minPts that could be used as
starting values for the remainder of the dataset. The
clustering results for several eps and minPts pairings
are shown as Figure 4b-g with the “true”, or man-
ual, interpretation shown as Figure 4a. Note that
the colors in Figure 4b-g do not represent any specific
soil type but are instead used to distinguish clustered
data, while outliers are plotted in white. Although
many combinations were tested, only combinations of
eps = (0.04, 0.06, 0.08) and minPts = (5, 10) are
shown. When reviewing the clusters, it seems that us-
ing a small value of eps = 0.04 results in many small
clusters (Figure 4b) or, when combined with a larger
minPts, many outliers (Figure 4c). As eps increases,
more layers are clustered together, with many small
layers merging into larger ones (Figure 4d-e). Finally,
when choosing a rather large eps, the results are less
sensitive to minPts, as Figure 4f-g show that eps =
0.08 and minPts = 5 or 10 both yield decent results
compared to the “true” interpretation. After review-
ing the clustered layers for a variety of eps and minPts
values, it was determined that eps = 0.08 and minPts
= 10 are the best values to use for individual CPTu
clustering.

Figure 4. A sample CPTu dataset (CPT-Toe) is clustered
using DBSCAN. The ”true” interpretation of the CPTu is
shown in (a), while pairings of eps = 0.04, 0.06, and 0.08
and minPts = 5 and 10 are used with DBSCAN to obtain
the results shown in (b-g). The parameters Qtn and Fr are
plotted in (b-g) to help identify cluster trends.

Although HDBSCAN is not particularly sensitive
to the choice of mcs, the process of testing multiple pa-
rameter values is repeated for demonstration. Values
of mcs = (5, 10, 15, 20, 25, 30) are all used to perform
clustering, and the results are shown as Figure 5. In
Figure 5b, a recommended starting value of mcs = 5
results in many thin layers/clusters as expected. This
is likely due to the large amount of data collected for
each CPTu sounding; thus, the best clustering results
occur when using a slightly larger mcs = 10-15 (Fig-
ure 5b-c). Beyond this value, the results are largely
the same, although very large values of mcs result in
more outliers. It should be noted that only three it-
erations are required to find the best mcs value here
(mcs = 5, 10, and 15), and therefore it is less difficult
for the user to tune HDBSCAN’s parameter compared
to the DBSCAN parameters.

Figure 5. A sample CPTu dataset (CPT-Toe) is clus-
tered using HDBSCAN. The ”true” interpretation of the
CPTu is shown in (a), while different values of mcs = 5,
10, 15, 20, 25, and 30 are used with HDBSCAN to obtain
the results shown in (b-g). The parameters Qtn and Fr are
plotted in (b-g) to help identify cluster trends.



Following the selection of eps and minPts for DB-
SCAN and mcs for HDBSCAN, clustering is per-
formed on each CPTu sounding. Figure 6 shows a
comparison with nearby BH logs for CPTu soundings
located at the crest (CPT-Crest), berm (CPT-Berm)
and toe of the dam (CPT-Toe). The first column in
each row shows the nearest BH data to the CPTu,
while the manual interpretation of the CPTu is shown
in the second column. The third column shows the
DBSCAN clustering results when using eps = 0.08 and
minPts = 10. The final column shows the HDBSCAN
clustering results when using mcs = 10. Note that the
soil layers are colored similarly in each borehole and
CPTu interpretation. For the borehole and manual in-
terpretations, these colors represent distinct soil types
as shown in Figure 1. For the DBSCAN and HDB-
SCAN results, these colors do not necessarily repre-
sent the same soil types, as the clustering algorithms
do not consider soil type/SBTn classification during
clustering. Instead, similar colors are used to demon-
strate the similarity between the layers resulting from
clustering and the layers determined by manual inter-
pretation. Additionally, outliers are plotted in white.

Across the CPTu soundings used here, the results
show that both clustering methods provide good re-
sults. DBSCAN is sometimes able to capture thinner
layers (such as the uppermost soil layer in the bottom
row), but at the cost of increased outliers. HDBSCAN
results in fewer outliers but tends to miss the thinner
layers. Therefore, while both methods show promise as
alternatives to traditional CPTu interpretation, HDB-
SCAN has the advantage of being more intuitive in its
choice of parameter.

5 Grouped CPTu clustering

Although both clustering methods show promise
in providing individual CPTu interpretations, this
method still requires some level of interpolation to cre-
ate a 2D or 3D ground model. Thus, this section il-
lustrates the application of DBSCAN and HDBSCAN
algorithms to cluster grouped data to directly create
a 2D ground model. Both algorithms are applied to
24 CPTu soundings located along the dam’s crest with
the aim of evaluating how the methods perform when
using a larger and spatially-dependent data set. The
results are then compared with the ground model that
was manually defined in Rola et al. (2024).

An analogous approach as per the individual CPTu
sounding clustering is followed. The same three vari-
ables are used: elevation, log(Qtn) and log(Fr); they
are normalized between 0 and 1, and then grouped

Figure 6. DBSCAN and HDBSCAN are used to clus-
ter three CPTu soundings: CPT-Crest (top), CPT-Berm
(middle), and CPT-Toe (bottom). The nearest borehole to
each CPTu is shown in the first column and the manual in-
terpretation of each CPTu is shown in the second column.
The DBSCAN results using eps = 0.08 and minPts = 10
are shown in the third column. The HDBSCAN results
using mcs = 10 are shown in the fourth column. These re-
sults show that DBSCAN is able to cluster thinner layers
compared to HDBSCAN, but at the cost of more noise.



Figure 7. Grouped clustering for CPTu soundings located along the dam’s crest. Comparison of the resulting longitudinal
cross-section between: a) the manually-defined ground model (i.e., ”true interpretation”), b) DBSCAN clustering with eps
= 0.02 and minPts = 10 and c) HDBSCAN clustering with mcs = 20. The parameters Qtn and Fr are plotted for each
CPTu sounding to help identify cluster trends.

for all the CPTu soundings located along the crest.
The best clustering parameters are found by repeating
the clustering process until a good balance of clustered
versus outlier points is reached, along with reasonable
outputs on the soil profiles compared to the ”true”
interpretations. For the DBSCAN case, the best out-
comes are obtained using eps = 0.02 and minPts =
10, giving 74% clustered points, 26% outliers and 10
clusters. For the HDBSCAN, the best outcome is ob-
tained with mcs = 20, giving 83% clustered points,
17% outliers and 5 clusters.

Figure 7 shows a comparison of the manually-
defined ground model (top) to the grouped clustering
using DBSCAN (middle) and HDBSCAN (bottom).
Overall, it is observed that both methods are very
good at grouping the main geotechnical units at the

dam’s crest. For the case of DBSCAN, it is clear that
it has some difficulties recognizing the Organics layer
and further puts the coarse Tailings and the Lower Al-
luvium units within the same group (e.g., soundings
from the center to the right area). Additionally, more
iterations are required to find an appropriate value for
eps compared to the individual clustering analysis. On
the other hand, HDBSCAN has an excellent clustering
capability, being able to detect the thin Organic layer
and a clear separation between the Upper and Lower
Alluvium units. Furthermore, the optimal clustering
is achieved using mcs = 20, which is easily found by
scaling the mcs used during individual clustering to
this larger dataset.



6 Conclusions

Building a ground model is a crucial step for per-
forming geotechnical engineering analyses. However,
creating a ground model is typically time-consuming
and difficult, as it requires an experienced engineer
to review large amounts of in-situ data. Additionally,
these interpretations are highly subjective, leading to
uncertainty in the final ground model. Thus, alter-
native methods, such as machine learning clustering
algorithms, are becoming increasingly popular due to
their efficiency in providing ground models.

This paper illustrated the ground model develop-
ment of a real dam by clustering CPTu data using
unsupervised machine learning methodologies. The
grouping capabilities of two algorithms were assessed:
Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) and an extended version with a hi-
erarchical component (HDBSCAN).

First, the clustering was done for individual CPTu
soundings located at the dam’s crest, berm and toe.
A sensitivity analysis was performed on the clustering
parameters to find the best values that reflected the
”true” interpretations; these correspond to a manual
layer definition using CPTu data and nearby borehole
logs, as presented in Rola et al. (2024). For DBSCAN,
it was found that the outcomes are highly sensitive
to the user-defined parameters: small values of eps
combined with low values of minPts yield too many
clusters, and when using larger values of minPts, can
result in too many outliers. After many iterations, the
optimal combination was found to be eps = 0.08 and
minPts = 10. For the case of HDBSCAN, results were
much less sensitive to the mcs values, and few itera-
tions were required to find optimal values in the range
of 10 to 20. When using these clustering parameters,
both DBSCAN and HDBSCAN performed well and
were able to provide quick interpretations, although
HDBSCAN is more user-friendly due to its intuitive
parameter mcs.

Subsequently, an analogous approach was followed
using grouped CPTu data from soundings located
along the crest, and the results were compared with the
manually-defined ground model. Overall, both meth-
ods showed very good grouping capabilities. How-
ever, DBSCAN had difficulties recognizing the Organ-
ics layer and put coarse Tailings and the Lower Allu-
vium units within the same group; moreover, a much
lower value of epsilon was needed to reproduce the lay-
ering observed in the manually-defined ground model
compared to the eps used during individual cluster-
ing. On the other hand, HDBSCAN had an excellent

clustering capability, being able to detect the thin Or-
ganic layer and a clear separation between the upper
and lower alluvium units; moreover, the optimal clus-
tering was achieved using mcs = 20, which was easily
found by scaling the mcs used during individual clus-
tering to this larger dataset.
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