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Summary: This paper presents a comprehensive review and critical discussion of existing 
numerical benchmarks in Structural Health Monitoring (SHM), focusing on the challenges and 
limitations of accurately simulating real-world conditions. The review presents the evolution of 
benchmarks from simplistic models to more complex simulations that aim to replicate 
operational and environmental variabilities (EOVs) and various damage scenarios. Despite 
these advancements, benchmarks currently available in the literature have yet to incorporate 
additional phenomena, such as long-term environmental effects and sensor faults or 
malfunctions. A proposal for a new benchmark integrating these factors into the simulation 
process is presented in the paper. This benchmark aims to facilitate comprehensive testing and 
validation of SHM techniques in a controlled, realistic numerical setup by including both fast 
and slow-varying damage scenarios and sensor malfunctions. The proposed framework is 
applied to a simple structural model—a steel beam subject to varying loads and environmental 
conditions—demonstrating its potential to simulate a wide range of real-world phenomena. 

1. INTRODUCTION 
In the field of Structural Health Monitoring (SHM) of civil structures and infrastructures, 

the acquisition of large amounts of data has become a regular practice. Measured or derived 
quantities from monitored data are chosen with the objective of operating damage identification 
(DI) for effects in the short-term (fast-varying) and in the long-term due to the natural ageing 
of the structure over time (slow-varying). However, the data collected is affected by the 
variability of environmental and operations conditions (EOVs). Air temperature and humidity 
variations act on structural components, and the changes in use or maintenance activities in the 
structure cause variations of the structure behaviour under “nominally identical”  operational 
loading conditions. Noise and the fault or malfunction of the measurement system can also 
affect the monitored data. These effects are sources of uncertainty and variability and could 
overlap and mask one another, hindering the interpretability of the results and the identification 
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of the presence of damage. 
In order to test the applicability of damage identification techniques and evaluate the content of 
monitored data, experimental benchmark studies for SHM and, more broadly, for structural 
dynamics applications have been developed and published with their data made publicly 
available from the first and most famous Z24 bridge [1], [2], to the most recent applications on 
aircraft structures [3]. Experimental datasets are limited by time and economic constraints. 
Therefore, numerical benchmarks were also developed, either starting from simple analytical 
formulations of mechanical systems [4] or expanding on existing experimental studies [5]. The 
focus of SHM numerical benchmark research has been the simulations of large quantities of 
reference undamaged data, with the additional simulation of damage scenarios due to stiffness 
reduction and the account of variations in the loading conditions. In such studies, environmental 
variabilities or long-term damage effects were rarely considered and never in combination with 
sensor fault or malfunction data in the simulations. 
The present work reviews existing numerical benchmarks for SHM application, followed by a 
description of the challenges in generating realistic synthetic SHM data and the strategies to 
address them. This discussion is supported by a case study involving the 4-year simulated 
monitoring of a simple structural system: a steel beam, modelled as a simple Single Degree of 
Freedom system (SDOF) for the dynamic analysis and a fixed-fixed Euler-Bernoulli beam for 
the static analysis. This study accounts for EOVs, sensor faults or malfunctions, and fast-
varying or slow-varying damage scenarios. 

2. SHM NUMERICAL BENCHMARK 
Previous research efforts have developed benchmark experimental and numerical datasets 

to study SHM problems. The contributions in terms of numerical benchmarks are summarised 
in Table 1. Initially, numerical applications were developed to either generate specific quantities 
[4] or to build a calibrated model to reproduce the experimental setups [6], [7], [8], [9]. Later, 
the limited availability of real-world damage data and the economic constraints of damaging 
prototypes and simulating EOVs led to the generation of synthetic data [10], [11], providing an 
improved control of uncertainties and interferences if compared to experimental applications.  
In terms of environmental variabilities, the lack of general theoretical models describing the 
effects of temperature and humidity on material properties has led few studies to include them. 
In particular, Tatsis and Chatzi’s data generation benchmark allows for the introduction of the 
variability of the steel Young’s Modulus given a specific temperature but relies on the presence 
of experimental data describing the relationship [11]. When benchmarking is done to study 
prefabricated and industrially produced structural elements, the accounts for humidity and 
temperature variability in terms of impact on the material properties are more accessible, for 
example, on the numerical and experimental benchmark of a wind turbine blade from Tatsis et 
al. [12]. Finally, temperature effects and weather conditions are commonly measured when a 
full-scale experimental structure is set up, but the monitored environmental data are not yet 
used as input for the numerical application. Percentage reduction or increase of material 
properties such as Young’s modulus or density is often used to obtain the corresponding 
variability in the modal properties referencing real case studies [5].  
In terms of operational conditions, ambient vibration simulated as a white Gaussian noise is 
most commonly used as a dynamic input, and the variability of the applied static load [10], the 
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impact of shakers or the presence of moving loads are also accounted for in numerical 
simulations [11]. Long-term damage effects are introduced only by Tatsis et al. in a numerical 
benchmark, reducing the structural section to simulate corrosion wastage [11] and adding mass 
to model icing accretion [12]. The simulation of sensor faults and malfunction is not included 
in combination with damage scenarios and EOVs in any numerical benchmarks in the literature. 
There are still significant challenges in developing numerical benchmarks regarding the over-
simplification in simulations, with the risk of not capturing the full complexity of real-world 
conditions and material behaviours and the limited accuracy of numerical models, which rely 
on the quality of input parameters, but further steps can be made to include as many sources of 
variability and uncertainty as possible in the data simulations.  

Table 1: Review of numerical benchmark studies 

# Reference Year Structure Objective OVs FVD 

1 Worden  
et al. [4] 1996 

Multi Degree of 
Freedom (MDOF) 

Mechanical System 

Novelty detection using 
the  transmissibility 
function as a feature 

Harmonic  
excitation 

1, 10 and 50%  
stiffness reduction 

2* 
Spencer  

et al. 
[6] - [7] 

1999 
SAC Phase II  
Steel Moment 

Frame 

Test control strategies 
after strong motion 

earthquakes 

Ground  
acceleration 

Stiffness reduction 
corresponding to an 18% 
reduction in frequency 

3 Johnson  
et al. [8] 2002 

IASC-ASCE SHM 
2x2bay  

steel frame 

Evaluation of  
SHM methods 

White Gaussian 
Noise (WGN) 

Shakers 

6 scenarios with braces 
removal or bolts 

loosening 

4* Burkett  
Thesis [9] 2003 IABMAS 

1-2 span bridge 
Test damage  

detection algorithms 

WGN  
Hammer impact 

Shakers 

Reduced stiffness 
Boundary condition 

change 

5 Tiso  
et al. [10] 2017 Two offset 

cantilevered beams  

Complex nonlinear  
dynamics for system 

identification 

Load amplitude 
variations 

No damage 
scenarios 

6 Tatsis,  
Chatzi [11] 2019 2-span  

steel beam 
Validation of decision-

making tools  

WGN 
Deterministic 
moving load 

6 scenarios with 
stiffness reduction 

7 Tatsis  
et al. [12] 2021 Wind turbine  

blade  
Condition assessment of 

a wind turbine blade 
Rotor  

speed changes 

Cracks openings 
simulated as local 
stiffness reduction 

8 Vlachas et 
al. [13] 2021 

Two-story steel 
frame structure 
with Bouc-Wen 
hysteretic links 

Validations of SHM, 
model reduction, and 

structural identification 
methods 

Ground motion 
excitation 
scenarios 

Bouc-Wen model 
parameter variations for 

strength and stiffness 
deterioration 

9* Svendsen  
et al. [5] 

2022 
 

Steel truss bridge  
(Hell Bridge Test 

Arena) 

Hybrid SHM  
for DI on steel bridges WGN Stiffness reduction in 

connections 

* The study is also experimental 
   If the authors’ names are underlined, the data is available for public use 
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3. The numerical benchmark 
The proposed numerical benchmark is designed to address some of the open challenges in 

generating synthetic data and developing viable numerical strategies for Structural Health 
Monitoring (SHM). A simple but informative case study is utilised: a fixed steel beam modelled 
as a Single Degree of Freedom (SDOF) system for the simulated dynamic monitoring and an 
Euler Bernoulli beam for the simulated static monitoring. The selection of an SDOF system is 
based on its capacity to balance computational simplicity with the ability to capture key 
behaviours in illustrative measured SHM data. It serves as an appropriate framework for 
examining all the components interacting in the data, as discussed in the previous section.  
Simulated monitoring is generated over four years, considering single static hourly acquisitions 
of the beam midspan deflection and three-minute-long length acceleration time histories. This 
setup includes the effects on the measured data of the following key phenomena or occurrences:  

- the variation in time of the input operational static load; 
- the variation in time of the ambient vibration frequency content and amplitude; 
- the partial effect of the environmental conditions’ variability on the linear properties of 

the structure materials, applied with the use of an empirical relationship between the 
linear stiffness of steel and temperature; 

- the effect of sudden/fast damage on the data (shift), modelled as a sudden stiffness 
decay, and of progressive/slow damage (trend), simulating accelerated corrosion 
conditions decreasing the area of the beam and, therefore, its stiffness and mass; 

- the effect of typical sensor malfunctions is applied a posteriori to the simulated data. 
Therefore, the structural response variable, denoted as 𝑥𝑥(𝑡𝑡) (see Eq. (1)), includes for both 
dynamic and static simulations the cumulative effect of the variation of temperature 𝑇𝑇(𝑡𝑡) as an 
exogenous environmental factor of the variation of the operational load l(𝑡𝑡), and two types of 
damage effects: 𝑑𝑑fast(𝑡𝑡) for sudden events (e.g., stiffness decay indicative of rapid damage 
occurrence), and 𝑑𝑑slow(𝑡𝑡) for progressive damage (e.g., corrosion). Sensor malfunction or failure 
is represented by 𝑔𝑔(𝑡𝑡), capturing the anomalies in data not directly related to the structural health 
itself, applied at this time only to the acceleration data. The term 𝜀𝜀(𝑡𝑡) is included to account for 
potential random errors or noise within the measurements, modelled as Gaussian white noise. 

𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) =  𝑓𝑓 �𝑇𝑇(𝑡𝑡), 𝑙𝑙(𝑡𝑡),𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡),𝑔𝑔(𝑡𝑡)� + 𝜀𝜀(𝑡𝑡) 

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) =  𝑓𝑓 �𝑇𝑇(𝑡𝑡), 𝑙𝑙(𝑡𝑡),𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)� + 𝜀𝜀(𝑡𝑡) 
(1) 

In the remainder of this paper, the reference structure is described in terms of geometry, 
materials, and constraints, together with the above-mentioned simulated effects of operational 
and environmental variability, damage, and sensor fault.   

3.1. Geometry, materials, constraints 
The benchmark model is designed to balance the simulation of conditions as realistically 

as possible with computational cost and complexity, thereby providing a comprehensive but 
manageable dataset simulating structural behaviour. The benchmark model for this study 
consists of a steel IPE400 beam paired with a concrete slab, representing a typical residential 
structure component. The beam measures 6 meters in length in S235 grade steel. The beam's 
Young’s modulus is 210,000 MPa, with a density of 7,850 kg/m³. The beam is designed to 
support the slab's self-weight and additional non-structural permanent loads, creating a total 
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dead load of 28.72 kN/m and a reference value for the live load of 15.00 kN/m. The beam is 
fixed at both ends, allowing no horizontal or vertical displacement or rotation at the supports. 
The chosen benchmark setup, while simplified, effectively captures the structural response 
under EOVs and ensures that the model remains sufficiently realistic while being 
computationally efficient and accessible for testing SHM methods. 

3.2. Environmental and operational variability 
Simulating EOVs numerically presents significant challenges, particularly in achieving a 

balance between the realism of simulated responses and the practical constraints of numerical 
simulations. Research on the simulation and mathematical formulation of such effects is either 
limited to extreme events (e.g. material behaviour under high temperatures [14], [15]) not 
considering the operational range or extremely specific serviceability issues (e.g. the simulation 
of human-induced vibrations [16]). Nonetheless, the distinction between the effect of EOVs 
and the presence of damage is key in SHM applications for DI.  
In this case study, these challenges are addressed by combining artificial, numerically generated 
responses with real monitored environmental data to produce realistic results. Similarly, 
operational variability is recreated as realistically as possible by referencing ranges of 
operational values obtained from established codes and literature, balancing complexity and 
adherence to reality. 
In order to simulate the effect of environmental conditions, the Young’s Modulus 𝐸𝐸 of steel is 
made vary for each simulation as per Eq. (2), in which 𝐸𝐸0 is the value of 𝐸𝐸 at 20°C, 𝑇𝑇∗ the 
surface temperature, 𝛼𝛼 an amplification parameter is added to scale the temperature effect. The 
constants e1, e2, e3, and e4 are obtained experimentally in [17]. 

𝐸𝐸(𝑇𝑇) = 𝐸𝐸0 (1 − α ∙ 𝑇𝑇∗) exp �−
1
2
�
𝑇𝑇∗

𝑒𝑒3
�
𝑒𝑒1
−

1
2
�
𝑇𝑇∗

𝑒𝑒4
�
𝑒𝑒2
� (2) 

Temperature data were obtained for four consecutive years from 2020 from a sensor in the 
vicinity of the University of Florence. The data obtained shows the clear presence of seasonality 
and its effects on the structural stiffness of steel. It is to be noted that the relationship describes 
a nonlinear effect, but in the range of operative temperatures, it is sufficiently close to a simple 
linear dependency of stiffness from temperature. Furthermore, an amplification parameter is 
included to increase the effect of the environmental variability (EV) on the Young’s Modulus 
to accentuate the effect of temperature (α = 0.0015 in Eq. (2)) (see Figure 1).  

 
Figure 1: Simulated variability of the steel Young’s Modulus with temperature in 

time (left) and the relationship between E and T (right). 
In order to include the operational variability, the permanent load 𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 due to self-weight is 
calculated deterministically as a constant, but the live load 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is not considered as time-
invariant. It is, in fact, a sum of  two components: one sustained (or long-term 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿) and one 
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intermitted (or short-term 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿), evaluated with a probabilistic approach according to the 
Probability Model Code of the Joint Committee on Structural Safety (JCSS) [18]. This approach 
considers time variability due to occupancy changes and possible crowded events. The total 
load acting on the structure is a combination of these components, considering for the 
simulation a serviceability limit state combination [19], as per Eq. (3). 

𝑙𝑙(𝑡𝑡) = 1.0 ∙ 𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  + 1.0 ∙ (𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  � 𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) +  𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡)�) (3) 

The sustained live-load is modelled as a stationary process, while the intermitted live-load with 
occasional high-intensity events as a non-stationary process, specifically using a Poisson spike 
process. The intensity and occurrence are determined by sampling from statistical distributions 
defined with specific parameters from [19]. Figure 2 shows the profile of the total live load. 

 
Figure 2: Simulated variability of the applied live load in time (left) and variation of 

the live load vs density (right). 

3.3. Static and dynamic response simulation 
The static monitoring simulation is operated by calculating the single value of the deflection at 
mid-span for the reference fixed-fixed Euler-Bernoulli beam under the time-varying uniformly 
distributed load. The deflection results for the undamaged condition simulated for the 4 years 
of monitoring as shown in Figure 3. 

 
Figure 3: Simulated static monitoring: mid-span deflection with the effect of EOVs 

The dynamic monitoring simulation is operated under ambient vibration conditions, 
differentiating the sources of dynamic input by superimposing different WGN signals. A band-
pass filter is applied to two different signals to selectively target specific frequency bands 
corresponding to the effects of human activities (1.2 ÷ 4.8 Hz) and vehicular traffic (7 ÷ 15 Hz). 
The signals are generated with a different amplitude randomly sampled (between 5e-3 – 5e-1 
mm/s2, and 1e-6 ÷ 2e-4 mm/s2, respectively) and then summed to obtain a different input, 𝜔𝜔𝐴𝐴𝐴𝐴 
for each simulated acquisition.  
Given the equivalent stiffness 𝑘𝑘, mass 𝑚𝑚, damping coefficient 𝑐𝑐, the defined  input vibration 
𝜔𝜔𝐴𝐴𝐴𝐴, and the addition of measurement noise 𝜔𝜔𝑀𝑀, the dynamic response is calculated with a 
state-space approach, starting from the equation of motion describing the dynamic behaviour 



F. Marafini, G. Zini, A. Barontini, M, Betti, G. Bartoli, N. Mendes, A. Cicirello 

 7 

of the SDOF. To convert this second-order differential equation into a form suitable for state-
space analysis, the state variables, 𝑥𝑥1 = 𝑥𝑥(𝑡𝑡), 𝑥𝑥2 =  𝑥̇𝑥(𝑡𝑡) corresponding respectively to 
displacement and acceleration, were substituted in the equation of motion leading to solve a 
system of two first-order differential equations (see Eq. (4)).  

𝑥̇𝑥(𝑡𝑡) = �
0 1

−
𝑘𝑘
𝑚𝑚

−
𝑐𝑐
𝑚𝑚
� �
𝑥𝑥1
𝑥𝑥2� + � 

0
1
𝑚𝑚

 � (𝜔𝜔𝐴𝐴𝐴𝐴  𝑚𝑚) + � 
0
1
𝑚𝑚

 �𝜔𝜔𝑀𝑀 (4) 

From each simulated acceleration, it is then possible to extract derived quantities commonly 
used in SHM applications, for example, the natural frequency of the structure (see Figure 4).  

 
Figure 4: Time history of extracted natural frequency with the effect of EOVs and additional noise. 

3.4. Fast and slow varying damage 
Simulating damage numerically needs to account for the diverse nature of damage 

scenarios and the complexity of accurately capturing their effects. Fast-varying damage (FVD) 
is particularly difficult to model because it encompasses a wide range of potential defects or 
events, each with unique characteristics. Additionally, it is not guaranteed that real damage will 
directly impact the quantities measured by SHM systems, adding another layer of uncertainty 
to simulations. On the other hand, slow-varying damage (SVD) occurs gradually over an 
extended period, making it challenging to detect and model. However, accurately simulating 
SVD is crucial, as ageing effects might be overlooked if they are learned as part of the training 
in DI approaches. Moreover, to produce a manageable dataset for analysis, these slow processes 
need to be artificially accelerated. 
In the proposed numerical benchmark, FVD is modelled as a localised sudden shift in stiffness, 
as commonly done in numerical SHM benchmarks. SVD is instead modelled as diffused, 
simulating the effects of corrosion. This is applied as a loss of mass to the beam due to thickness 
reduction of the whole area at a specific rate and a loss of stiffness due to the reduction of the 
section inertia at the same identified rate. The rate of loss references a specific relationship 
representing the interaction with environmental variables. The model proposed in 2007 [20] is 
used to define the corrosion rate given the environment of the beam, according to the 
relationship in Eq. (5). Here, 𝑑𝑑 represents the corrosion loss [𝜇𝜇𝜇𝜇] as a function of 𝑡𝑡, the 
exposure time [𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦]. 𝑇𝑇𝑇𝑇𝑇𝑇 is the annual time of wetness � ℎ

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�, namely the fraction of time 

that the metal surface remains wet. For simplicity, the TOW is approximated as the time in 
which the RH is greater than 80% and the temperature is greater than 0°C [21]. T is the 
temperature [°C] and 𝐴𝐴,𝐵𝐵,𝐷𝐷,𝐸𝐸,𝐹𝐹,𝐺𝐺,𝐻𝐻, 𝐽𝐽 and 𝑇𝑇0 are coefficients proposed in [20] and adapted 
for the present case. 

𝑑𝑑(𝑡𝑡) =  𝐴𝐴 ⋅  𝑡𝑡𝐵𝐵 ⋅  �
𝑇𝑇𝑇𝑇𝑇𝑇
𝐶𝐶

�
𝐷𝐷

⋅  �1 +
[𝑆𝑆𝑂𝑂2]
𝐸𝐸

�
𝐹𝐹

⋅  �1 +
[𝐶𝐶𝐶𝐶]
𝐺𝐺
�
𝐻𝐻

⋅  𝑒𝑒𝐽𝐽(𝑇𝑇 + 𝑇𝑇0) (5) 
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3.5. Sensor faults and malfunction simulation 
The accurate simulation of sensor faults and malfunctions has yet to be introduced in the 

development of numerical benchmarks for SHM. These faults can significantly impact the 
integrity of the data collected, potentially leading to incorrect assessments of structural health 
if not properly identified and managed. The simulation of sensor faults or malfunctions is 
operated a posteriori on the acceleration signals in the proposed benchmark. The possible 
faults/malfunctions are classified as per Table 2, according to literature research [22], [23], [24] 
and real data observations.  
Seven classes of sensor faults/malfunctions are identified:  

- drifting (D) due to temperature changes or mechanical wear relaxation, characterized by 
a change in the sensor's output over time;  

- the presence of spikes (S) due to power surges and weather disturbances, introduced 
into the signal by adding a large amplitude value at a specific time instant;  

- bias or shift (B) due to power interruptions and incorrect recalibrations of the 
instruments, introducing a constant offset to the sensor output;  

- gain (G), due to the incorrect design of the sensor or change in sensitivity requirements 
of the sensor, shown as amplification or attenuation of the signal;  

- noise (N), due to electronic noise and environmental factors, simulated with a 
superimposed Gaussian noise;  

- the interruption of sensor recording resulting in missing data (M), resulting in gaps in 
the time series;  

- cable detachment (C), due to mechanical failure or human interaction, characterised by 
a sinusoidal wave with a rapidly decreasing amplitude, simulating the sensor becoming 
disconnected. 

For each classified type, a short description is provided in terms of the effect in the time domain 
and a mathematical formulation for the simulation. In each formulation 𝑎𝑎(𝑡𝑡) represents the 
original signal and 𝑎𝑎∗(𝑡𝑡), with the appropriate subscript, represents its updated version after the 
application of the fault or malfunction, dependent on the time vector 𝑡𝑡. The term 𝑠𝑠∗ is a scale 
factor representing the magnitude of each malfunction (i.e. the shift, the maximum value of the 
spike, the scale factor for the gain, etc.), each 𝑠𝑠∗ factor is calibrated according to the magnitude 
of the measured accelerations. 𝑙𝑙𝑠𝑠 is the length of the signal, 𝑡𝑡𝑠𝑠𝑠𝑠 represents the point in the time 
history at which the fault or malfunction is applied, generally randomly sampled starting from 
10 seconds or recording onwards, 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 the end of the signal time history. Specific durations are 
defined for spikes and cable detachment as ∆𝑡𝑡∗. 𝜂𝜂(𝑡𝑡) represents a Gaussian noise with zero 
mean of zero and a standard deviation 𝑠𝑠𝑁𝑁 reflecting the noise level in the sensor. Finally, in the 
cable detachment simulation, 𝑠𝑠𝐶𝐶 is the initial amplitude of the sinusoidal wave, 𝑓𝑓𝐶𝐶  its frequency, 
and 𝜆𝜆𝐶𝐶 its decay rate, which causes the amplitude to decrease rapidly after the detachment 
begins. An example of the simulated sensor faults and malfunctions is provided in Figure 5.  
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Figure 5: Example of generated sensor fault, in order from top to bottom: (1) drift, (2) spikes, (3) bias, (4) gain, 

(5) noise, (6) missing data, and (7) cable detachment.  
  



F. Marafini, G. Zini, A. Barontini, M, Betti, G. Bartoli, N. Mendes, A. Cicirello 

 10 

Table 2: Typologies of sensor faults simulated  
Class Description Formulation 

Drifting Decay of the signal,  
up to a shifted mean 𝑎𝑎𝐷𝐷(𝑡𝑡) =  𝑎𝑎(𝑡𝑡) + 𝑠𝑠𝐷𝐷  ∙ exp�−

𝑡𝑡
𝑙𝑙𝑠𝑠
10

�+  𝑠𝑠𝐷𝐷 , 𝑡𝑡 ∈ [𝑡𝑡𝑠𝑠𝑠𝑠 , 𝑡𝑡  𝑒𝑒𝑒𝑒𝑒𝑒] 

Spike Sharp changes over or 
under 3std 𝑎𝑎𝑆𝑆(𝑡𝑡) =  𝑎𝑎(𝑡𝑡) + 𝑠𝑠𝑆𝑆 ∙ �∆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�,                             𝑡𝑡 ∈ �∆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�          

Bias Fixed offset  𝑎𝑎𝐵𝐵(𝑡𝑡) = 𝑎𝑎(𝑡𝑡) + 𝑠𝑠𝐵𝐵 ,                                                 𝑡𝑡 ∈ [𝑡𝑡𝑠𝑠𝑠𝑠 , 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒] 

Gain Output scaled by a factor 𝑎𝑎𝐺𝐺(𝑡𝑡) = 𝑎𝑎(𝑡𝑡) ∙ 𝑠𝑠𝐺𝐺 ,                                                   𝑡𝑡 ∈ [𝑡𝑡𝑠𝑠𝑠𝑠 , 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒] 

Noise Gaussian superposition 𝑎𝑎𝑁𝑁(𝑡𝑡) = 𝑎𝑎(𝑡𝑡) + 𝜂𝜂(𝑡𝑡),                                             𝑡𝑡 ∈ [𝑡𝑡𝑠𝑠𝑠𝑠 , 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒] 

Missing data Discontinuities and gaps  
in the signal 𝑎𝑎𝑀𝑀(𝑡𝑡) = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,                                   𝑡𝑡 ∈ [𝑡𝑡𝑠𝑠𝑠𝑠 , 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒] 

Cable 
detachment 

Sinusoidal wave with fast 
decreasing amplitude 𝑎𝑎𝐶𝐶(𝑡𝑡) = 𝑠𝑠𝐶𝐶 sin(2 𝜋𝜋 𝑓𝑓𝐶𝐶  𝑡𝑡) exp(−𝜆𝜆𝐶𝐶  𝑡𝑡) ,                   𝑡𝑡 ∈ [∆𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ] 

3.6. Data generation 
From the numerical benchmark setup described before, it was possible to generate a series of 
datasets containing different levels and types of damage, accounting for EOVs effect, 
measurement noise and sensor faults or malfunctions. The numerical nature of the benchmark 
allowed to exploit the computing power of parallel computing, generating a large amount of 
data for years of monitoring in a few hours (e.g. four years of simulated acceleration 
measurements can be generated in three hours using the full power of an Intel Core i7-8750H 
processor, 12 cores, 2.2 GHz, implementing the simulation in Python 3.11 using the Ray 
package). Two examples of frequency time histories extracted from the generated data are 
shown in Figure 6 with fast-varying damage (decrease of 10% in k), and slow-varying damage 
(corrosion rate equal to 47.03 [μm/year] multiplied by 10). 

 

 
Figure 6: Plot of the effect of FVD and SVD on the extracted frequency. 
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4. CONCLUSIONS 
This paper reviewed existing numerical benchmarks for SHM and proposed a new, 
comprehensive one designed to highlight the inherent challenges in developing artificial SHM 
data. The objective of this work is to underscore the complexities involved in accurately 
simulating the various factors that impact SHM data, including EOVs, FVD and SVD and 
sensor faults and malfunctions. Each of these factors presents specific difficulties in the 
numerical simulation, such as the gradual nature of structural degradation or the possible 
overlap between damage and sensor faults effects. To address these challenges, the proposed 
benchmark offers solutions to provide an approach that is as realistic as possible for SHM data 
generation. The incorporation of ageing damage and sensor faults and malfunctions extends 
what was found in existing methods in the literature, broadening the spectrum of effects that 
can be modelled in a synthetic SHM dataset. 
In conclusion, the proposed benchmark design allowed to address the complexities of SHM 
data generation, underscoring currently unexplored limitations. The critical considerations 
operated on synthetic data generation will facilitate a more comprehensive testing and 
validation of SHM methodologies and damage-sensitive feature extraction and selection, 
enhancing their applicability and reliability in real-world scenarios. 
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