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ABSTRACT  

Site characterization methods to extract the shear-wave velocity (Vs) structure over the first few tens to few hundred of 
meters or the soil’s resonance frequency using seismic noise recordings have become widespread over the last 40 years. 
Being cost-effective and easy to implement, especially in urban environment, passive seismic methods have been shown 
reliable to retrieve the soil resonance frequency and the Vs profile of near-surface geological layers. International efforts 
over the last 20 years have outlined the capabilities and limitations of passive seismic methods and lead to a series of 
good-of-practice, state-of-the-art and recommendations on data acquisition and processing. Recent methodological 
developments using three-component single-station and three-component array methods are promising approaches to 
better constrain Vs profiles. Also, the very high spatial and temporal resolution offered by the Distributed Acoustic 
Sensing (DAS) makes this emerging technology one with very high potential for near-surface site characterization, 
especially in urban environment.  
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1. Introduction 
Site characterization methods to extract the shear-wave 
velocity (Vs) structure over the first few tens of meters to 
a few hundred meters or the soil resonance frequency 
using seismic noise recordings (also named passive 
seismic methods or non-invasive methods) have become 
widespread over the last 40 years. The main reason for 
this success is their ease of implementation, particularly 
in urban environments, and their lower cost compared 
with conventional methods based on borehole seismic. 
After a brief history of the development of passive 
seismic methods, this paper summarizes the main 
outcomes from international efforts to evaluate the 
performance and limitation of passive seismic methods. 
Then, the recent methodological developments using 
single-station methods or array methods are presented, as 
well as the huge potential of Distributed Acoustic 
Sensing (DAS) for site characterization. 

2. Short historical review 
Since the first publication on seismic ambient noise at 

the end of the 19th century (Bertelli 1872), the first half 
of the 20th century was marked by numerous studies on 
the origin (atmospheric depressions, storms, wind, 
offshore waves, ...) and the nature (Rayleigh waves, Love 
waves, stationary waves) of low-frequency seismic noise 
(periods between 3 and 10 s), see (Bonnefoy-Claudet et 
al, 2006) for a review.  

The Cold War context and the need to reach an 
agreement on the technical feasibility of monitoring 
nuclear tests led to the development of dense 
seismological networks and, hence, to the development 
of array processing methods primarily developed for 

detecting and locating events, e.g. (Capon, 1969), 
(Lacoss et al., 1969), see (Rost and Thomas 2002) for a 
summary. 

Followed a time when 'classical' seismology was 
turning away from seismic noise. Meanwhile (Aki 1957) 
became interested in the spatial correlation properties of 
noise in order to extract the dispersive properties of 
surface waves and developed the SPAC (Spatial Auto 
Correlation) method, which has been the source of many 
subsequent variants : ESAC (Ling and Okada 1993),  
(Ohori et al. 2002), MMSPAC (Asten 2006), MSPAC  
(Bettig et al. 2001), 2s-SPAC (Morikawa et al. 2004) and 
applications aimed at recovering the Vs profile of 
superficial geological formations (from a few meters to a 
few hundred meters). In addition to the SPAC method, 
array methods directly measuring the phase differences 
between the seismic noise recorded simultaneously at 
array stations were also used, in their conventionnal 
(Frequency-Wavenumber, FK) (Lacoss et al. 1969) and 
high-resolution (High-Resolution Frequency-
Wavenumber, HRFK) (Capon, 1969; Asten and 
Henstridge, 1984) formulations, to extract dispersion 
characteristics of surface waves propagating in shallow 
geological layers. As mentioned by (Bonnefoy-Claudet 
et al. 2006), the noise array methods have been very 
popular in engineering seismology, mainly for 
applications in urban environments, e.g. some 
applications in various places worldwide among many 
others : (Sato et al 2001), (Kudo et al. 2002), (Di Giulio 
et al. 2006), (Stephenson et al. 2009), (Zor et al. 2010), 
(Salloum et al. 2014), (Molnar et al. 2015), (Farrugia et 
al. 2017), (Teague et al. 2018), (Cushing et al., 2020). 

 
However, the uptake of noise array methods was not 

as spectacular as that of the single-station H/V method 



 

popularized by Nakamura (1989), which consists of 
computing the ratio between the horizontal and vertical 
spectral components of the seismic noise in order to 
extract the soil’s fundamental resonance frequency. Due 
to its ease of use and low cost, the H/V method was 
widely used to (i) image and/or estimate the depth of 
seismic bedrock, e.g. (Ibs-von Seht et al. 1999), (Hinzen 
et al. 2004); (ii) estimate and/or map the frequencies 
likely to be amplified during earthquakes, e.g. (Lermo 
and Chavez-Garcia 1993) (Field and Jabob 1995) 
(Haghshenas et al. 2008) (Picozzi et al. 2009a); (iii) study 
the relationship between observed damages and soil’s 
resonance frequencies, e.g. (Leyton et al. 2013). Recent 
reviews on the use of the H/V method are provided in 
(Molnar et al. 2018), (Molnar et al. 2022). 

Since 2004, there has been a phenomenal revival of 
interest in seismic noise in 'classical' seismology. 
(Shapiro and Campillo 2004) have indeed shown that 
correlation of the seismic noise recorded at two stations 
makes it possible to extract the Green's function of the 
medium between these two stations (hereafter named the 
seismic noise interferometry method). Taking advantage 
of the instrumental developments of the last twenty years 
(lower instrumental cost that led to deployment of dense 
arrays) and the development of computing resources, the 
seismic noise interferometry has been widely used for 
seismic tomography at global and crustal scales. 
However, this method has been less often used at near-
surface scale (i.e. first tens of meters), e.g. (Gouédard et 
al. 2008), (Picozzi et al. 2009b), (Pilz et al. 2012), 
(Hannemann et al. 2014), (Inzunza et al. 2019), 
(Anthymidis et al. 2022). 

 

3. Performance of passive seismic 
methods for site characterization 

A number of international benchmarks/blind tests 
have been carried out over the last twenty years to 
evaluate the performance of passive and active surface 
waves methods for recovering the Vs structure (Table 1). 
These different benchmarks have highlighted: 
a) The measurement of phase velocities is extremely 

robust, whatever the processing method used. When 
provided, the uncertainty in the phase velocity 
estimate varies from 5 to 20% 

b) Participants are often too optimistic about the ability 
of methods to extract phase velocities at low 
frequencies, and thus about the maximum depth 
reached 

c) In the first few tens of meters, the variability of the 
inverted Vs profiles is very similar to the variability 
obtained by invasive methods (cross-holes, down-
holes, PS-logging), the variability being greater in 
the top 5 to 10 meters for both methods. 

d) Estimating the depth and velocity of seismic bedrock 
or known interfaces, as well as the uncertainty in the 
inverted Vs profiles is still a challenge  

e) Passive and active surface waves methods are not 
able to retrieve the fine Vs layering 

f) Time-averaged VS estimates (VS10, VS30, and VS100) 
are reliable  

 

These benchmarks stimulated the recent writing of 
good-of-practice/state-of-the art papers, e.g. (Foti et al. 
2018), (Hayashi et al. 2022), (Gosselin et al. 2022). 

The performance of passive seismic methods to 
retrieve Vs profile and soil fundamental resonance 
frequency together with their cost effectiveness and 
easiness to implement in urban environment compared to 
invasive methods (Cultrera et al. 2021) made these 
methods the most used today for extensive site 
characterization at seismological permanent sites, e.g. 
(Michel et al. 2014), (Felicetta et al. 2017), (Hollender et 
al. 2018). Recommendations on required minimum 
information on data acquisition and processing together 
with quality metrics have been recently proposed to reach 
an homogeneous set of high-level metadata for site 
characterization at seismological sites (Cultrera et al. 
2021), (Di Giulio et al. 2021).  

Table 1. List of benchmarks comparing non-invasive 
methods (active of passive surface waves methods) and 

invasive ones (drilling methods). 

Benchmark Number 
of sites 

Reference 
Vs profile Methods 

(Asten and 
Boore 2005) 
(Boore and 
Asten 2008) 

2 yes 
Passive and 
active 
methods 

(Cornou et al. 
2006) 

6 
(including 
4 virtual 

sites) 

yes Passive 
methods 

(Cox et al. 
2014) 1 no 

Passive and 
active 
methods 

(Garofalo et 
al. 2016a) 
(Garofalo et 
al. 2016b) 

3 yes 
Passive and 
active 
methods 

(Asten et al. 
2022) 4 yes Passive 

methods 

(Chimoto et 
al. 2023) 1 yes 

Passive and 
active 
methods 

 

4. Recent development and emerging 
technologies 

4.1. Single-station and array methods 

 Inversion of H/V curve and Rayleigh wave 
ellipticity  

Inversion of H/V curve to recover the shear-wave 
velocity structure has been a hot topic in the scientific 
community during the last three decades. H/V inversion 
requires forward modelling of the H/V curve in the 
inversion algorithm. 

In 1D tabular media and elastic materials, the H/V can 
be modelled from the ratio of the power spectral densities 
of the Rayleigh and Love modes excited by a random and 
isotropic distribution of surface point sources placed 
around the receiver, among others (Tokimatsu et al. 
1992), (Arai and Tokimatsu 2004), (Parolai et al. 2005), 
García-Jerez et al. 2007). (Lunedei and Albarello 2010) 



 

and (Lunedei and Albarello 2015) extended the approach 
to account for all wave types (body and surface waves) 
and the attenuation of the medium. 

Based on diffuse field theory, (Sánchez-Sesma et al. 
2011) formulated the relationship between the H/V and 
the imaginary parts of the Green's functions of the 
horizontal and vertical components. This formulation 
allows the contributions of all wave types and the 
attenuation of the medium to be accounted for. As 
outlined in (Molnar et al. 2022), this approach has led to 
recent numerous developments and applications, e.g. 
(Lontsi et al. 2015), (Piña-Flores et al. 2016), (Lontsi et 
al. 2019), (Sánchez-Sesma et al. 2017), (Tchawe et al. 
2020), (Ito et al. 2021), (Carrasco et al. 2023), (Farazi et 
al. 2023), (Lontsi et al 2023). 

Rather than inverting the H/V curve, an alternative is 
to invert the ellipticity of the Rayleigh waves. As shown 
by (Boore and Toksöz 1969), (Fäh et al. 2001), 
(Malischewsky and Scherbaum 2004), the ellipticity of 
Rayleigh waves, and particularly its right flank, carries 
information on the Vs structure. Assuming the proportion 
between Rayleigh and Love waves in the seismic noise 
wavefield, e.g. (Castellario and Mulargia 2009), or 
extracting Rayleigh waves from the noise wavefield, e.g. 
(Hobiger et al. 2009), (Poggi et al. 2012),  inversion of 
Rayleigh wave ellipticity has been performed by, among 
others,  (Yamanaka et al. 1994), (Konno and Ohmachi 
1998), (Fäh et al. 2001), (Fäh et al. 2003), (Scherbaum et 
al. 2003), (Castellaro and Mulargia 2009), (Poggi et al. 
2012), (Hobiger et al. 2013). 

The inversion of the H/V curve and/or ellipticity of 
Rayleigh waves are promising methods for recovering 
the Vs structure, provided however that prior information 
on the subsurface structure is available or that H/V or 
ellipticity are jointly inverted with dispersion estimates 
of surface waves, e.g. (Piccozi et al. 2009) (Hobiger et al. 
2013), (Poggi et al. 2012), (Lontsi et al. 2015), (Farazi et 
al. 2023). 

 

 Three-component array analysis 

Most of the noise array analysis are performed on the 
vertical component of recorded seismic noise wavefield 
with the aim to extract dispersion curves of Rayleigh 
waves. Several methods based on three-component array 
analysis were however proposed in the recent years to 
extract both Love and Rayleigh waves dispersion 
characteristics in terms of dispersion curves and, for 
some approaches, Rayleigh wave signed ellipticity 
curves (Köhler et al., 2007), (Fäh et al. 2008), (Poggi and 
Fäh 2010), (Hobiger et al. 2012), (Maranò et al. 2012), 
(Riahi et al. 2013), (Maranò et al. 2017), (Wathelet et al. 
2018), (Wathelet et al. 2024). Capturing the complexity 
of the noise wavefield, the 3C array methods help 
identifying Rayleigh and Love modes of propagation.  
The various modes of surface waves in terms of 
dispersion curves and ellipticity curves of Rayleigh 
waves are then often jointly inverted to better constrain 
the Vs profile, e.g. (Michel et al. 2014), (Hollender et al. 
2018), (Fotouhimehr et al. 2021), (Hobiger et al. 2021), 
(Vantassel et al. 2024). 

4.2. Fiber-optic Distributed Acousting Sensing  

Fiber optic based data such as DAS (distributed 
acoustic sensing) have today become potentially very 
interesting for various applications in earthquake 
seismology, engineering seismology, structural health 
monitoring and ground structure imaging, e.g. (Barrias et 
al. 2016), (Lindsay et al. 2017), (Martin et al. 2018), 
(Spica et al. 2020), (Abbas et al. 2024). Indeed, compared 
to conventional seismic sensors, DAS offers a much 
higher spatial and temporal resolution which makes this 
emerging technology very appealing, especially when 
using existing telecommunication infrastructure (also 
termed dark fibers) in urban environment.  

In terms of site characterization, comparison between 
Rayleigh wave dispersion curves derived from DAS and 
controlled active source experiments (vibroseis, ground 
impact) using the Multichannel Analysis of Surface 
Waves (MASW) (Park et al. 1999) outlines the ability of 
DAS to retrieve correctly the dispersion curves down to 
wavelength of one acquisition gauge length, e.g. (Song et 
al. 2019), (Rossi et al. 2022) (Vantassel et al. 2022).  
Rayleigh surface waves propagating along DAS lines can 
also be reconstructed using seismic interferometry on 
seismic noise generated by anthopogenic sources (urban 
traffic, trains, etc) to get virtual source gathers, from 
which dispersion curves might be then retrieved using 
MASW or phase shift methods, e.g. (Ajo-Franklin et al. 
2019), (Song et al. 2021), (Shao et al. 2022). 
Reconstruction of seismic surface waves along DAS 
lines using seismic ambient noise, -while disregarding 
spurious events related to persistent anthropogenic noise 
sources that may violate the assumption of uniform 
distribution of sources in the noise interferometry 
method-, has been recently proposed (Cheng et al. 2023). 
A few studies focus on using 2D horizontal DAS array in 
order to study the effects of Love and Rayleigh waves 
superimposition on the reconstructed seismic surface 
wavefield (Luo et al. 2020) (Zhao et al. 2023).  

As regards soil fundamental resonance frequency, 
(Spica et al. 2020) outline the ability of DAS 
measurements to map resonance frequencies over wide 
areas using the H/V method, provided that a nearby three-
component velocimeter is employed to extract the 
Fourier amplitude spectra on the vertical component. 

All the recent studies outline that DAS is a very 
promising technology for near-surface characterization, 
especially in urban environment. However, routine use of 
DAS data from dark fibers still needs a number of 
challenges to be overcome: e.g. advancements in data 
acquisition and data processing workflow especially to 
remove near-field noise or to enhance signal-to-noise 
ratio; positioning of channels along the DAS cable using 
tap tests and study of the coupling to the surrounding of 
the cable in conduit (Kennet et al. 2024); understanding 
the urban noise wavefield in relation with spatial and 
temporal change in anthropogenic and environmental 
forcings, e.g. (Fang et al. 2020) (Czarny et al. 2023). 

 



 

5. Conclusions 

Being cost-effective and easy to implement, especially in 
urban environment, passive seismic methods are reliable 
tools to retrieve the soil resonance frequency and the Vs 
profile of near-surface geological layers (i.e first tens to 
hundred of meters). However, these methods are not able 
to retrieve the fine Vs layering and to correctly constrain 
the depth and velocity of seismic bedrock remains a 
recognized challenge. Some state-of-practice and 
recommendations on the acquisition and processing of 
surface wave data have been recently proposed by the 
wide community to promote the use of such methods and 
to achieve homogeneous data analysis. Recent 
methodological development using single-station 
methods (in particular inversion of H/V curve under 
diffuse wavefield assumption) and three-component 
array methods are promising approaches to exploit at best 
the full complexity of the seismic noise wavefield in the 
view of better constraining Vs profiles. Very recent 
studies have all highlighted that the very high spatial and 
temporal resolution offered by the Distributed Acoustic 
Sensing (DAS) makes this emerging technology very 
appealing for near-surface site characterization, 
especially in urban environment thanks to the existing 
telecommunication infrastructure. The capabilities of 
such new technology certainly pave the way to exciting 
research dedicated to high spatial resolution imaging and 
monitoring of the near-surface properties.  
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