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Summary. In this work, the conditions for a projection method, such as FSM or PISO,
to be unconditionally stable are discussed for staggered and collocated configurations. In this
regard, energy stability is guaranteed by preserving the underlying symmetries of the differential
operators, assuming a suitable time integration, for staggered configurations. However, if a wide-
stencil Laplacian is used in collocated arrangements, the checkerboard problem arises. For this
reason, a compact Laplacian is usually preferred over the wide-stencil Laplacian. This choice
avoids the checkerboard problem, but, on the other side, it introduces a new term in the kinetic
energy equation that can introduce energy to the system. The conditions for this term to be
non-positive are determined in this work.

1 INTRODUCTION

The Navier-Stokes equations for Newtonian, incompressible flows in dimensionless primitive
variables read:

∂u

∂t
+∇ · (u⊗ u) =

1

Re
∆u−∇p, (1a)

∇ · u = 0, (1b)

where Re is the dimensionless Reynolds number. A fully-conservative finite-volume discretiza-
tion, respecting the underlying symmetries of the continuous differential operators at a discrete
level for collocated unstructured meshes, was first introduced in [1]. Assuming there are n
control volumes and m faces:

Ω
duc

dt
+ C (us)uc + Duc + ΩGcpc = 0c, (2a)

Mus = 0c, (2b)

where pc = (p1, p2, . . . , pn)
T ∈ Rn and uc ∈ R3n are the cell-centered pressure and collo-

cated velocity fields, respectively. The cell-centered variables are marked with the subindex
c, while the subindex s indicates that the variables are staggered at the faces. Mass conser-
vation within each control volume is verified by defining a velocity field at the faces us =
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(
(us)1, (us)2, (us)3, . . . , (us)m

)T
∈ Rm. Variables defined at cells and at faces are related by

using an interpolator from cells to faces Γc→s ∈ Rm×3n:

us ≡ Γc→suc. (3)

The matrices Ω ∈ R3n×3n, C (us) ∈ R3n×3n and D ∈ R3n×3n are block-diagonal matrices con-
structed using the Kronecker product:

Ω = I3 ⊗ Ωc, C (us) = I3 ⊗ Cc (us) , D = I3 ⊗ Dc, (4)

where I3 ∈ R3×3 is the identity matrix and Ωc ∈ Rn×n is a diagonal matrix containing the cell-
centered volumes. Cc (us) ∈ Rn×n and Dc ∈ Rn×n are the cell-centered convective and diffusive
operators for a discrete scalar field, respectively. Finally, Gc ∈ R3n×n is the discrete gradient
operator, and M ∈ Rn×m is the face-to-center discrete divergence operator matrix.

The 3−dimensional interpolator from cells to faces Γc→s is constructed by using the Kro-
necker product to create a 3−dimensional interpolator from the scalar one and projecting the
interpolated quantities with the face-normal vectors:

Γc→s = N(I3 ⊗Πc→s), (5)

where Πc→s ∈ Rm×n is the scalar cell-to-face interpolator, and N = (Ns,xNs,yNs,z) ∈ R3m×m,
where Ns,i ∈ Rm×m is a diagonal matrix containing the xi spatial components of the face normal
vectors.

This formulation only requires five operators: the cell-centered and staggered control volumes,
Ωc and Ωs, respectively, and the face normal vectors N (geometrical operators given by the
chosen mesh), the scalar cell-to-face interpolation operator Πc→s, and the cell-to-face divergence
operator M. This simplicity improves the portability of a code developed within this framework,
as demonstrated in [2].

1.1 GLOBAL DISCRETE KINETIC ENERGY

Defining the discrete inner-product following [3];

< vc,uc >= v∗
cΩuc, (6)

the global discrete kinetic energy is computed by ||uc||2 ≡ u∗
cΩuc and its temporal evolution

equation can be obtained by left-multiplying Eq.(2a) by u∗
c , summing the resulting expression

with its transpose and applying the chain rule:

d

dt
||uc||2 = −u∗

c (C (us) + C∗ (us))uc − u∗
c (D+ D∗)uc

−u∗
cΩGcpc − p∗

cG
∗
cΩ

∗uc. (7)

In absence of diffusion (D = 0), the global kinetic energy ||uc||2 is conserved if the convective
and pressure terms vanish for any:

C (us) = −C (us)
T , (8a)

− (ΩGc)
T = MΓc→s, (8b)

2



D. Santos, J. A. Hopman, C.D. Pérez-Segarra and F.X. Trias

thus relating the gradient operator with the divergence operator and assuming the convective
operator to be skew-symmetric. The pressure term vanishes if, for any uc, MΓc→suc = 0c,
that is, by using a wide-stencil Laplacian Lc = McGc. However, the well-known checkerboard
problem is found with this approach. Alternatively, the use of a compact Laplacian L = MG will
be discussed in this work. Note that this problem is not encountered in staggered configurations,
where respecting the symmetry of the gradient and the divergence is enough because Mus = 0c.

2 AN UNCONDITIONALLY STABLE PISO ALGORITHM

If explicit or implicit time integration is assumed, the spatially discrete momentum equation
(2a) can be expressed in the following manner:

Suc = r− Gcpc, (9)

where the matrix S ∈ R3n×3n is obtained from the application of a discretization method like the
Finite Volume Method. The vector r ∈ R3n×1 holds all the explicit terms except for the pressure
gradient. Once the discretization process is chosen, all the coefficients are already known.

When the pressure gradient is regarded as an explicit source, and the velocity is solved, the
momentum predictor at time step n+ 1 is obtained:

u∗
c = S−1rn − S−1Gcp

n
c . (10)

A corrector step must be performed to ensure that the velocity satisfies the continuity equa-
tion. A diagonal matrix A (which will be easily invertible) is obtained by extracting the diagonal
coefficients of S, and the off-diagonal coefficients will be kept in a matrix H′. Then, assuming
that the diagonal matrix acts on a new corrected velocity u∗∗

c while the off-diagonal part acts
on the predictor velocity u∗

c , a divergence-free velocity is obtained.
The final algorithm reads [4]:

u∗
c = S−1r− S−1Gcpc, (11a)

MÃ−1Gp∗
c = MΓc→sA

−1(r−H′u∗
c) −→ p∗

c , (11b)

u∗∗
c = A−1(r−H′u∗

c)−A−1Gcp
∗
c , (11c)

u∗∗
s = Γc→sA

−1(r−H′u∗
c)− Ã−1Gp∗

c , (11d)

where Ã−1 = diag(Πc→svec(A
−1
c )) and A = I3 ⊗Ac (the matrix A has three equal (diagonal)

blocks). The PISO algorithm iterates through the corrector steps until the desired level of
convergence is achieved. In this context, the compact Laplacian operator, L, is assumed to
mitigate checkerboard problems.

2.1 ARTIFICIAL KINETIC ENERGY ADDED BY THE COMPACT LAPLA-
CIAN ASSUMPTION

Applying the face-to-cell Mc = MΓc→s divergence operator to Eq.(11c) (apart from the pre-
dictor velocity mark, let us drop the superscript for simplicity):

Mcuc = McA
−1(r−H′u∗

c)−McA
−1Gcpc (12)
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Subtracting the divergence M of Eq. (11d) from Eq. (12):

Mcuc = MÃ−1Gpc −McA
−1Gcpc. (13)

Now, using Eq.(8b), the pressure gradient term in Eq.(7) can be rewritten as:

−pT
c G

T
c Ω

Tuc = pT
c Mcuc. (14)

Finally, plugging Eq.(13) into Eq.(14):

pT
c Mcuc = pT

c (MÃ−1G−McA
−1Gc)pc. (15)

This term would be the artificial kinetic energy the pressure gradient adds when the compact
Laplacian is used. In the particular case of explicit schemes, A−1 = ∆t · I3n×3n, so:

pT
c (MG−McGc)pc∆t = pT

c (L− Lc)pc∆t. (16)

Defining, for both explicit and implicit time-integration, the wide-stencil Laplacian and the
compact Laplacian as Lc = McA

−1Gc and L = MÃ−1G, respectively, the (artificial) contribution
to the kinetic energy will be:

pT
c (MÃ−1G−McA

−1Gc)pc = pT
c (L− Lc)pc. (17)

Both L and Lc are symmetric and semi-negative definite. This term’s contribution should be
strictly non-positive (it damps kinetic energy) and ideally as small as possible in absolute value.

It should be noted that any projection method that results in equations being solved this
way will face the same issue. For instance, the classical Fractional Step Method [5], which
resembles the PISO algorithm but lacks a predictor step and corrector iterations, will encounter
this problem.

2.2 RELATION BETWEEN L− Lc AND THE INTERPOLATOR OPERATOR

To maintain a non-positive contribution to the global kinetic energy, it is required L− Lc to
be semi-negative definite (see Eq. (17)). This matrix reads,

L− Lc = −MÃ−1Ω−1
s MT +MΓc→sA

−1Ω−1ΓT
c→sM

T

= −M(Ã−1Ω−1
s − Γc→sA

−1Ω−1ΓT
c→s)M

T . (18)

The next step consists of removing both divergence operators from the extremes. According
to [6] (Theorem 4.2.1, page 141), the definiteness of −M(Ã−1Ω−1

s − Γc→sA
−1Ω−1ΓT

c→s)M
T is

given by the definiteness of Ã−1Ω−1
s −Γc→sA

−1Ω−1ΓT
c→s, so, requiring L−Lc to be semi-negative

definite is equivalent to require Ã−1Ω−1
s −Γc→sA

−1Ω−1ΓT
c→s being semi-positive definite. Then,

multiplying each side of the expression by Ã
1
2Ω

1
2
s (note that both Ωs and Ã are diagonal with

positive components) we obtain:

I− Ã
1
2Ω

1
2
s Γc→sA

−1Ω−1ΓT
c→sΩ

1
2
s Ã

1
2 . (19)

If B = Ã
1
2Ω

1
2
s Γc→sA

−1Ω−1ΓT
c→sΩ

1
2
s Ã

1
2 , we require ρ(B) ≤ 1, being ρ(·) the spectral radius

(observe that B is semi-positive definite).
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Defining E = A− 1
2Ω− 1

2ΓT
c→sΩ

1
2
s Ã

1
2 , the previous matrix can be constructed as B = ETE.

Another matrix C = EET switching the transpose operator can be constructed.
Observe that, if λ is a non-zero eigenvalue of ETE:

ETEw = λw =⇒ (EET )Ew = λEw, (20)

so eigen(ETE) = eigen(EET ) except for λ = 0 (and its multiplicity) eigenvalue. So,

ρ(C) = ρ(B) ⇒ (ρ(B) ≤ 1 ⇔ ρ(C) ≤ 1). (21)

Then, we require I − A− 1
2Ω− 1

2ΓT
c→sÃΩsΓc→sΩ

− 1
2A− 1

2 to be semi-positive definite. Finally,

multiplying the previous expression by A
1
2Ω

1
2 at each side:

AΩ− ΓT
c→sÃΩsΓc→s. (22)

Summarizing, it has been shown that L − Lc being semi-negative definite is equivalent to
AΩ− ΓT

c→sÃΩsΓc→s being semi-positive definite.

3 GEOMETRICAL CONDITIONS OF A PROJECTION METHOD TO BE UN-
CONDITIONALLY STABLE

Let us assume a general 2D or 3D mesh is constructed such that each control volume satisfies:

• 1. Vk =
∑

f Ṽk,fn
2
i,f , ∀k ∈ {1, ..., n}, i ∈ {x, y, z},

• 2.
∑

f Ṽk,fni,fnj,f ≤ 0,∀k ∈ {1, ..., n}, i, j ∈ {x, y, z}, i ̸= j,

where Vk is the volume of the control volume, ni,f are the components of the normal vector to
the face f , and Ṽk,f is constructed multiplying the distance between the cell center and the face
by the face area (see Fig.3). Then, L−Lc is semi-negative definite for the provided discretization
if the chosen interpolator is the volume-weighted one (this choice is unique for both Gcpc in the
velocity correction equation and in the computation of Ã). The converse is also true. The proof
of this fact is cumbersome and consists of proving when Eq.(22) is semi-positive definite. It was
developed by the author and can be found in [7].

The volume-weighted interpolator [8] can be computed in any mesh as follows:

Πc→s = ∆−1
s ∆T

sc, (23)

where ∆s ∈ Rm×m is a diagonal matrix containing the projected distances between two adjacent
control volumes, and ∆sc ∈ Rn×m is a matrix containing the projected distances between an
adjacent cell node and its corresponding face. Fig.3 shows a representation of these distances.

Some consequences of the previous theorem are the following ones:

• Even highly distorted square or cubic meshes are stable when using the volume-weighted
interpolator.

• Triangular meshes are stable when placing the cell node at the circumcenter. However,
this restricts how to construct them because the circumcenter lies outside obtuse-angled
triangles.

• If the geometrical conditions are not met, it is possible for L − Lc to be neither positive
nor negative definite, so it may or may not introduce energy. Typically, energy is not
introduced for low-aspect ratio meshes, even when using other interpolators.

5
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i ji,j

Figure 1: Control volume i and control volume j, sharing a common face f(i, j). The volume crossed
with a continuous line is the quantity of staggered volume associated with control volume i, Ṽi,f(i,j).
The volume crossed with a discontinuous line is the quantity of staggered volume associated with control
volume j, Ṽj,f(i,j).
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Figure 2: δni are the components of ∆s, while the components of ∆sc would be calculated similarly,
taking the distance between a control volume and their corresponding face centers.

4 TEST CASE: TURBULENT CHANNEL FLOW AT Reτ = 395

This section evaluates the method’s robustness and accuracy through simulations of a channel
flow at Reτ = 395, using different meshes. The simulation domain selected is in line with the
work of Moser et al. [9] and is 2π × 2 × π. All meshes maintain a y+ value of approximately
1. In these simulations, a volume-weighted interpolation is used, and it is compared with other
interpolations such as a midpoint interpolation (with interpolation coefficients of 1

2) and a linear
interpolation.

4.1 ACCURACY OF THE INTERPOLATOR ON HIGH-QUALITY MESHES

The mesh illustrated in Fig. 3 was selected to study the accuracy. It features stretching
along the y-direction. In Fig. 4, the normalized mean velocity (in wall units) and the < u′v′ >
component of the Reynolds stress tensor are shown. The results are compared against the
DNS data from Moser et al. [9]. The results show remarkable similarity between all three

6
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interpolators. This was expected because all three interpolators converge to the same (midpoint)
interpolator for regular Cartesian meshes. Furthermore, when the stretching ratio is relatively
small, the mesh is virtually regular and locally Cartesian.

Figure 3: 64x64x64 mesh used to test our method with different interpolators.
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Figure 4: Normalised mean velocity profile in wall units for channel flow at Reτ = 395 and normalized
turbulent shear stress profile − < u′v′ > in wall units at Reτ = 395.

4.2 ROBUSTNESS IN DISTORTED MESHES

The mesh shown in Fig. 5 is chosen to assess the method’s robustness. Long control volumes
are present in the center, and the mesh is stretched towards both ends. As expected for this
type of mesh, the results are unsatisfactory, even from a qualitative standpoint (turbulence
is not triggered, and the central control volumes filter out any eddy). Despite this, the only
interpolation method that converges to a solution is the volume-weighted interpolation, while
the others were unstable.

In Fig. 6, you can see a mesh with less distortion, featuring a maximum aspect ratio between
adjacent control volumes of 5, which is typical in many cases. The linear interpolation does not
cause turbulence even with this moderately distorted mesh. On the other hand, the results from
the midpoint and volume-weighted interpolations are pretty similar, as shown in Fig. 7 (results
from linear interpolation are not shown due to their inaccuracy).
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Figure 5: Highly distorted mesh used to test the method’s robustness. The maximum aspect
ratio between adjacent control volumes is 250.

Figure 6: Mesh which starts growing the control volumes at 1/3 of total length. The maximum
aspect ratio between adjacent control volumes is 5.

The results are not as precise as those achieved with the initial Cartesian mesh, as expected,
but they are still acceptable. It might be unexpected that the midpoint and volume-weighted
interpolators produce similar results, while the linear interpolation, despite converging, generates
unsatisfactory results. It is expected to find a stretching point when the midpoint interpolation
fails while the volume-weighted interpolation remains unconditionally stable.

5 CONCLUSIONS

In this work, the necessary and sufficient conditions for a projection method, such as FSM or
PISO, to be unconditionally stable are established for both staggered and collocated arrange-
ments. In this regard, energy stability is guaranteed by preserving the underlying symmetries
of the differential operators, provided that appropriate time integration is utilized for stag-
gered configurations. However, for collocated meshes, a wide-stencil Laplacian will lead to
checkerboarding. To avoid that problem, a compact Laplacian is usually preferred. This choice
introduces an artificial term in the kinetic energy equation that can introduce energy to the
system. The conditions for this term to be non-positive, apart from respecting the underlying
symmetries of the operators, were identified: it is required to use the volume-weighted interpo-
lator for momentum quantities, and the mesh must satisfy some geometrical restrictions. These

8



D. Santos, J. A. Hopman, C.D. Pérez-Segarra and F.X. Trias
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Figure 7: Normalised mean velocity profile in wall units for channel flow at Reτ = 395 and normalized
turbulent shear stress profile − < u′v′ > in wall units at Reτ = 395.

geometrical restrictions are automatically satisfied by Hexahedral grids (such as cuboidal ones)
and by triangular grids if the cell node is placed at the circumcenter. The method’s robustness
was tested with a turbulent channel flow at Reτ = 395. The volume-weighted interpolator, along
with a midpoint and a linear interpolator, was tested using hexahedral meshes. The results were
the same for low-distorted meshes, while the volume-weighted interpolator was the only one able
to provide results for high-distorted ones.
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