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phil@unicamp.br

2 State University of Campinas, Faculty of Civil Engineering
Av. Albert Einstein, 901 - Cidade Universitária, Campinas - SP, 13083-852
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Abstract. Saddle point problems frequently appear in many mathematical and engineering
applications. Most systems of partial differential equations with constraints give rise to saddle
point linear systems. Typical examples include mixed finite element formulations to solve fluid
flows and/or elasticity problems under full incompressibility. The inversion of saddle point
problems is challenging due to inherent numerical instability in the direct inversion methods.
Many direct and iterative methods have been proposed to overcome this challenges, such as
the Schur complement and the Uzawa’s method. In the context of mixed finite element for
incompressible flows using stable H(div)-L2 spaces for velocity and pressure, we propose an
iterative method that can effectively solve a saddle point problem iteratively by summing a
small compressibility to the original matrix. The preconditioning matrix is symmetric positive-
definite, which allows the usage of Cholesky decomposition and/or CG-like iterative solvers
to compute the incremental solution for the velocities unknowns. A procedure to compute
the average pressure of each element of the incompressible problem is developed using the
unbalanced fluxes caused by the compressibility perturbation. The average is updated during
the iterative process as a function of the velocity increment at each iteration.

1 INTRODUCTION

Saddle point problems frequently appear in many mathematical and engineering applica-
tions. Most sets of partial differential equations with constraints give rise to saddle point linear
systems. This is the case, for instance, when one uses mixed finite element formulations to
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solve incompressible problems such as Darcy flows in a porous media, Navier-Stokes flows and
elasticity [1, 2, 3].

The numerical solution of saddle point problems is one of the most challenging in numerical
analysis for many reasons. This family of matrices often shows poor spectral properties, and
indefiniteness due to the null diagonal block related to the constraint equations. The balance be-
tween the approximation space and restraint space is delicate and the inversion of the algebraic
system of equations can become unstable if terms with large differences are present [4].

On the other hand, numerical inversion of symmetric positive-definite systems are inherently
stable: numerical perturbations introduced by round-off will necessarily be attenuated [5].

A main concern when using iterative methods is to guarantee the convergence within an
acceptable number of iterations. Usually, this condition is directly related to the matrix spectral
properties. In practice, the strategies to solve a saddle-point problem are divided into two groups
- in the first one are the methods that compute the fields in a staggered manner. The most
common method in this category is the Uzawa’s method [6] and its variations. In the second
group are the methods that solve the fields simultaneously [7].

In the context of mixed finite element applied to Darcy equations using stable H(div)-L2

spaces for flux and pressure, we have been developing an iterative method that can effectively
solve a saddle point problem by introducing a small compressibility to the original matrix allow-
ing for the static condensation of pressures. The resulting matrix is symmetric positive-definite,
which allows the usage of Cholesky decomposition or CG-like iterative solvers to compute the
incremental solution for the velocities or displacement unknowns. The pressure correction is
shown to be proportional to the unbalanced force caused by the compressibility perturbation,
and can be explicitly updated during the iterative process once the state variable increment is
obtained.

2 DARCY PROBLEM

Let Ω be an open domain with Lipschitz boundary ∂Ω = ∂ΩD ∪ ∂ΩN , where ∂ΩD and
∂ΩN stand for the Dirichlet and Neumann boundaries, respectively. The mixed form of Darcy
equations consist of finding the flux σ ∈ H(div,Ω) and the pressure u ∈ L2(Ω) such that

σ = −K∇u, in Ω,

∇ · σ = f, in Ω,

u = uD, on ∂ΩD,

σ · n = g, on ∂ΩN ,

(1)

where K is the permeability tensor, f ∈ L2(Ω) is the source term, uD ∈ H1/2(Ω) is the Dirichlet
boundary condition, g ∈ L2(Ω) is the Neumann boundary condition and n is the outward normal
vector to ∂ΩN .
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2.1 Weak statement

Applying the standard Galerkin method to Eqs. (1), the weak form of the Darcy problem
reads: find σ ∈ H(div,Ω) and u ∈ L2(Ω) such that for all wσ ∈ H(div,Ω) and wu ∈ L2(Ω):∫

Ω

K−1σ ·wσ dΩ−
∫
Ω

u∇ ·wσ dΩ = −
∫
∂ΩD

uDJwσK d∂Ω,∫
Ω

∇ · σwu dΩ =

∫
Ω

fwu dΩ,

(2)

where J•K refers to the jump operator.

2.2 Finite element discretization

The discretization of Eqs. (2) is performed using the Finite Element Method [8]. We employ
an approximation space based on stable H(div)-L2 pair which is De Rham compatible [9, 10].
A conformal T = {Ωe, e = 1, · · · , ne} of Ω in ne finite elements Ωe is defined. Let γ(h, k) be
a discretization parameter that solely depends on the mesh size h and the polynomial degree k,
then the finite element spaces are defined as follows:

Vγ = {σ ∈ H(div,Ω) : σ|Ωe ∈ V(Ωe),∀Ωe ∈ T }, (3)

W γ = {u ∈ L2(Ω) : u|Ωe ∈ W (Ωe),∀Ωe ∈ T }. (4)

Rewriting Eqs. (2) using the finite element spaces from Eqs. (3)-(4), the discretized problem
thus reads: find σγ ∈ Vγ and uγ ∈ W γ such that for all wγ

σ ∈ Vγ and wγ
u ∈ W γ:

∑
Ωe∈T

(∫
Ωe

K−1σγ ·wγ
σ dΩ−

∫
Ωe

uγ∇ ·wγ
σ dΩ

)
= −

∑
Ωe∈∂ΩD

∫
∂Ωe

uDJwγ
σK d∂Ω,

∑
Ωe∈T

∫
Ωe

∇ · σγwγ
u dΩ =

∑
Ωe∈T

∫
Ωe

fwγ
u dΩ.

(5)

3 ITERATIVE SOLUTION USING A SYMMETRIC POSITIVE-DEFINITE PRECON-
DITIONER

Equations (5) can be expressed in matrix form as:[
A B
BT 0

] [
σγ

uγ

]
=

[
fγσ
fγu

]
, (6)

where matrix A represents the flux contribution and matrix B is the divergent operator which
plays the role of imposing a constraint to the solution. The right-hand side vectors fγσ and fγu are
the Dirichlet contribution and source term, respectively. This latter often is assumed to be zero.

It is worth a discussion about some properties of problem (6). Matrix A is symmetric
positive-definite and contains contributions from facet and internal fluxes. The latter ones can
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be eliminated from the global system by using a static condensation procedure [11]. Using
the element-wise divergence constant approximation space of [9] results in a single pressure
unknown per element. Thus, the global system comprises only facet fluxes and elemental pres-
sures contributions.

Assuming a solution vector u = {u1,u2}T such that BT .u1 = 0 (i.e. u1 ∈ Ker
(
BT

)
),

then:

{u1,u2} ·G ·
{
u1

u2

}
= uT

1 ·A · u1 > 0 (7)

We propose a modified matrix

G̃ =

[
A B
BT −C

]
(8)

where matrix C is symmetric positive-definite. Once C plays the role of adding an artificial
compressibility to the system, the static condensation procedure can also be applied to eliminate
the pressure unknowns:

G̃/C = A+BC−1BT (9)

where G̃/C is also symmetric positive-definite and can be seen as the Schur complement of
block C of matrix G̃.

The proposed iterative method uses matrix G̃/C as a preconditioner for matrix G. Given an
approximate solution uk, where k stands for the iteration counter, an updated solution uk+1 can
be retrieved by doing: first, the residual rk is computed as:

rk = f −Guk (10)

with f standing for the external forces. Then, we compute the solution increment:

∆uk = G̃−1rk (11)

finally yielding

uk+1 = uk +∆uk (12)

In engineering terms, the matrix of an incompressible problem is preconditioned by a matrix
corresponding to a slightly compressible system. To demonstrate its convergence, we start from
the basic description of the iterative method:

∆uk = uk+1 − uk = G̃−1
(
f −Guk

)
(13)

∆uk+1 = uk+2 − uk+1 = G̃−1
(
f −Guk+1

)
(14)

such that

∆uk+1 −∆uk = G̃−1G∆uk (15)

or

∆uk+1 =
(
I− G̃−1G

)
∆uk (16)
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which implies that the iterative method will converge if
(
I− G̃−1G

)
is a contraction i.e. if its

maximum eigenvalue is less than one. One notices that for G̃ = G, no solution increment is
obtained, so the method converges in a single iteration.

From [12], we can approximate the inverse of G̃ as:

G̃−1 = G−1 −G−1

[
0 0
0 −C

]
G−1 +O(C) (17)

so neglecting higher order terms yeilds:(
I− G̃−1G

)
≃ G−1

[
0 0
0 −C

]
(18)

demonstrating that the convergence of the iterative method can be controlled by the size of C.
For all the examples analyzed, we arbitrarily chose C = αI, where α refers to the artificial
compressibility parameter.

4 NUMERICAL RESULTS

In this section, a tridimensional problem is used to assess the performance and stability of
the proposed iterative method. In all analyses, convergence is reached when the Euclidian norm
of the residual is less than 10−9, and the maximum number of iterations is set to 50. The solver
step is performed with 8 threads on a workstation with an Intel(R) Xeon(R) Gold 6130 2.10GHz
CPU.

4.1 3D Darcy problem

The computational domain consists on a unit cube Ω = (0, 1)× (0, 1)× (0, 1) and a uniform
mesh of hexahedral elements with k = 2 and characteristic size he = 1/n, where n = nx =
ny = nz is the number of elements used in each dimension, starting from n = 5 up to n = 60.
The permeability tensor is assumed to be isotropic and unitary, so K = I3. The following
harmonic solution is adopted for the pressure field:

u(x, y, z) =
sin(πx) sin(πy) sinh(

√
2πz)

sinh(
√
2π)

. (19)

It is straightforward to derive the corresponding flux field from Eq. (19). Figure 1 shows the
analytic solutions over the domain. Dirichlet boundary conditions are imposed on all the facets.

Firstly, we analyse the convergence of the iterative method as a function of the compress-
ibility parameter α. Figure 2 shows the number of iterations required to reach convergence
for different values of α. It is evident that α plays a key role on the method efficiency, as the
higher it gets, the more iterations are required to reach convergence. As the value decreases, we
observe a faster convergence as the preconditioner system approximates to the original matrix.
However, for excessive small values of α, the method shows a loss in the precision. This be-
haviour is expected as the lower the α, the problem tends to the original indefinite saddle-point
matrix where Cholesky decomposition likely will fail to find a solution. The optimal value of α
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(a) (b)

Figure 1: 3D Darcy problem - analytic solution for the pressure (at left) and flux magnitude (at
right).

also varies with the mesh size. The more refined the mesh, the smaller is the magnitude of the
elemental contributions in the global matrix, so the compressibility parameter must be adjusted
accordingly.

The computational cost of the proposed iterative method is also investigated and displayed
in Table 1. For these analyses, we use the Cholesky implementation of PARDISO [13] to build
the positive-definite preconditioner for the iterative solver, while the solution of the original
saddle-point problem is performed with the LDLT decomposition from PARDISO as well. It
shall be highlited that matrix G̃/C only needs to be decomposed once within the proposed
iterative scheme. Thus, the total time is computed as the sum of the time required to build the
preconditioner plus the time spent during each iteration solve.

Table 1: 3D Darcy problem - Computational cost of the proposed iterative method as a function
of the compressibility parameter α.

Method
Time (ms)

n = 5 n = 10 n = 20 n = 40 n = 50 n = 60
α = 10−2 133 756 20 605 764 405 - -
α = 10−3 106 541 7 000 279 441 - -
α = 10−4 97 458 4 869 145 215 521 451 1 552 290
α = 10−5 100 441 4 308 127 344 460 492 1 335,251
α = 10−6 95 432 4 065 115 296 425 015 1 281 101
α = 10−7 137 507 4 055 112 178 416 897 1 267 023
α = 10−8 - - - - - 1 253 520

Direct 80 379 4 150 150 839 540 429 1 757 863

6



Philippe Devloo, Giovane Avancini and Marina Meneghel

0 5 10 15 20 25
10−11

10−9

10−7

10−5

10−3

10−1

Iteration k

∥r
k
∥

α = 10−2

α = 10−3

α = 10−4

α = 10−5

α = 10−6

α = 10−7

α = 10−8

(a) n = 10

0 5 10 15 20 25
10−11

10−8

10−5

10−2

101

Iteration k

∥r
k
∥

α = 10−2

α = 10−3

α = 10−4

α = 10−5

α = 10−6

α = 10−7

α = 10−8

(b) n = 20

0 5 10 15 20 25
10−11

10−8

10−5

10−2

101

Iteration k

∥r
k
∥

α = 10−2

α = 10−3

α = 10−4

α = 10−5

α = 10−6

α = 10−7

α = 10−8

0 5 10 15 20 25
10−11

10−8

10−5

10−2

101

Iteration k

∥r
k
∥

α = 10−2

α = 10−3

α = 10−4

α = 10−5

α = 10−6

α = 10−7

α = 10−8

(c) n = 40

0 5 10 15 20 25
10−11

10−8

10−5

10−2

101

Iteration k

∥r
k
∥

α = 10−2

α = 10−3

α = 10−4

α = 10−5

α = 10−6

α = 10−7

α = 10−8

(d) n = 60
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Figure 2: 3D Darcy problem - Number of iterations required to reach convergence as a function
of the compressibility parameter α.

It can be noticed that, for an optimum value of α, the iterative method starts to be more
efficient than the direct solver for n ≥ 20. For the finest mesh, a speedup of up to 30 % can be
achieved for α = 10−8. However, further studies are needed to determine the optimal value of
α as a function of the mesh size. Figure 3 shows the time spent during the solution step using
the proposed method with the optimum α as a percentage of the time consumed by the direct
solver.
5 CONCLUSIONS

In this work, an iterative method was proposed based on the introduction of a small com-
pressibility to solve saddle point problems using a symmetric positive-definite preconditioner.
This scheme not only reduces the number of unkonwns in the global system but also allows the
usage of optimized solvers such as Cholesky decomposition and CG-like methods to compute
the fluxes increment. The use of an iterative solver to also decompose the preconditioner matrix
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Figure 3: 3D Darcy problem - Time consumption obtained using the optimum value of α com-
pared to the direct method for different levels of refinement.

shall be studied in future works.
The numerical results demonstrated that as the compressibility parameter increases, the num-

ber of iterations required to reach convergence also increases. However, for smaller values of
α, the method converges in less than 3 iterations. Also, an excessive small value of α can lead
to numerical instability, as the system becomes ill-conditioned. Therefore, a criterion on how
to determine the optimal value of α a priori must be investigated in the future.

As the number of degrees of freedom increases, the proposed method demonstrated to be
more efficient than the direct solver. Choosing the apropriate α, the computational cost was
reduced by up to 30 % for the most refined mesh.
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