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Abstract. Virtual element methods define their shape functions implicitly (tailored to each 

element’s geometry), foregoing the typical reference element and transformation scheme 

usually employed by the finite element method. The formulation leverages the use of 

polynomial projections supplied by heuristic stabilizations when necessary. These projections 

are represented by projector matrices, which require the solution of a local system. Elasticity 

formulations usually employ an 𝐿2-projection from a displacement multifield onto a strain 

multifield, requiring the solution of a considerably larger system than a typical Poisson problem 

would require, with dense matrices and lots of zeroes. This work presents a way to obtain the 

projections for elasticity formulation by assembling from the 𝐿2-projection for each derivative 

of the one-field a Poisson formulation, resulting in smaller local systems being solved and more 

efficient storage. This approach is based on the linearity of both projections and derivatives, 

and is shown in the examples to preserve the convergence rate of the method. 
 

 

1 INTRODUCTION 

The virtual element method (VEM) has seen significant advances since its introduction in 

[1]. These pertain both to formulations of the method (see, e.g., [2, 3, 4, 5, 6]), and to many 

different applications, such as: topology optimization [7, 8], multiscale modelling [9] and 

homogenization [10, 11, 12], flexible particle modeling [13] and contact [14, 15], to mention a 

few examples. 

The method consists in a generalization of the Finite Element Method (FEM) to polytope 

element domains. This is achieved by introducing an implicitly defined function space that 

guarantees, by design, the desired convergence properties (i.e., a full polynomial subspace). 

The degrees of freedom are such that a polynomial projector onto said subspace is computable 
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without additional information. The remaining construction of the method is based on the use 

of the polynomial projection of the functions of the space to compute the discrete terms 

(stiffness matrix and righthand-side) with the eventual supplementation with a stabilization 

term. Computability of the relevant projections is a core feature of any virtual element 

formulation, and their practical computation is also of importance in concrete implementations. 

This work presents a brief overview on two formulations of conformal virtual elements for 

Poisson’s equations in two dimensions and how they translate into equivalent formulations for 

plane linear elasticity by using the assembly of the projection operators. This is useful as the 

formulation is simpler to compute, easier to test and debug, also incurring smaller local linear 

systems to be solved for the projectors. 

The outline of the work is as follows. The underlying problem formulations are presented in 

Section 2. The different virtual element formulations employed are presented in Section 3. The 

projector assembly concept is presented in Section 4. Numerical examples are provided in 

Section 5. 

2 PROBLEM FORMULATION 

Two different partial differential equations are discussed in this work. The first are Poisson’s 

equations, as they provide the simpler framework in which to compute the projectors. The 

second is that of plane linear elasticity, here represented by the plane strain case, representing 

the target framework for their use. 

2.1 Poisson’s Equations in 2D 

The problem consists in finding the solution (𝑢), whose Laplacian inside a domain (Ω ⊂ ℝ2) 

is prescribed as −𝑓. The boundary is partitioned into Dirichlet (Γ𝐷) and Neumann (Γ𝑁) boundary 

condition domains, with 𝒏 being the external unit normal vector at the latter. The differential 

formulation is presented in (1). 

{

Δ𝑢(𝒙) = −𝑓(𝒙), ∀𝒙 ∈ 𝛺;

𝑢(𝒙) = �̅�(𝒙), ∀𝒙 ∈ 𝛤𝐷;

∇𝑢(𝒙) ⋅ 𝒏(𝒙) = 𝑔(𝒙), ∀𝒙 ∈ 𝛤𝑁.

 (1) 

The weak formulation of the problem is presented below, where 𝐻𝐷
1(Ω) and 𝐻0

1(Ω) are, 

respectively, the space of the functions in 𝐻1(Ω) that satisfy the Dirichlet boundary conditions, 

and those which assume null value in Γ𝐷. 

Find 𝑢 ∈ 𝐻𝐷
1(𝛺) s.t. ∀ 𝛿𝑢 ∈ 𝐻0

1(𝛺): 

∫ (∇𝑢 ⋅ ∇𝛿𝑢)𝑑𝒙 = ∫ 𝑓𝛿𝑢𝑑𝒙
𝛺

+ ∫ 𝑔𝛿𝑢𝑑𝜎
𝛤𝑁𝛺

. 
(2) 

2.2 Plane Strain Linear Elasticity 

The formulation for this problem is introduced using Voigt notation. In this case, the solution 

comprises the displacement field (𝒖 ∈ ℝ2) whose strains (𝜺(𝒖) = 𝑺𝒖, with 𝑺 =

[
𝜕𝑥 0 𝜕𝑦

0 𝜕𝑦 𝜕𝑥
]

𝑇

), and associated stresses through Hooke’s law (𝝈 = 𝑪𝜺) satisfy the balance 
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equations considering volume load 𝒃, surface load 𝒕 as Neumann boundary conditions, and 

prescribed displacements �̅� as Dirichlet boundary conditions. Balance is here represented by 

the weak formulation in (3), with similar definitions for Ω, ΓD, Γ𝑁 , 𝐻𝐷
1 and 𝐻0

1. 

Find 𝒖 ∈ [𝐻𝐷
1(𝛺)]2 s.t. ∀ 𝜹𝒖 ∈ [𝐻0

1(𝛺)]2: 

∫ 𝜺(𝜹𝒖) ⋅ 𝝈(𝒖)𝑑𝒙
𝛺

= ∫ (𝜹𝒖 ⋅ 𝒃)𝑑𝒙
𝛺

+ ∫ (𝜹𝒖 ⋅ 𝒕)𝑑𝜎
𝛤𝑁

. 
(3) 

3 VIRTUAL ELEMENT FORMULATIONS 

The method has many different formulations. In this section we focus on presenting a brief 

overview of two of them: the serendipity formulation with [3] and without stabilization [16]. 

For simplicity, these formulations are presented for two dimensions, however they have three-

dimensional counterparts [17, 18] and the projector assembly works for both cases. The 

formulation introduction will be very brief, the authors recommend reading their original works 

for more detailed information. 

Let the domain Ω be partitioned into a collection 𝒯ℎ of polygonal elements. A generic 

element 𝐸 ∈ 𝒯ℎ has 𝑛𝑉 vertices and edges, area |𝐸|, and diameter ℎ𝐸. For each element, let there 

be a local function space, for now denoted 𝑉𝑘(𝐸), with the space of polynomials up to order 𝑘, 

here denoted 𝑃𝑘(𝐸), as a subspace. 

The auxiliar space, ℬ𝑘, defined over the boundary of the element, is as follows 

ℬ𝑘(𝜕𝐸) ≔ {𝑣 ∈ 𝐶0(𝜕𝐸) | 𝑣 ∈ 𝑃𝑘(𝑒), ∀𝑒 ∈ 𝜕𝐸}, (4) 

where 𝑃𝑘(D ⊂ ℝ𝑑), is the space of polynomials of order up to 𝑘 in 𝑑 variables over 𝑉, and 𝑒 

denotes a generic edge in 𝜕𝐸. 

3.1 Serendipity VEM Space 

The serendipity VEM space, 𝑉𝑘
𝑆(𝐸), introduced in [3] is defined as 

�̃�𝑘
𝑆(𝐸) ≔ {𝑣 ∈ 𝐻1(𝐸) ∩ ℬ𝑘(𝜕𝐸)|Δ𝑣 ∈ 𝑃𝑘(𝐸)}, 

𝑉𝑘
𝑆(𝐸) ≔ {𝑣 ∈ �̃�𝑘

𝑆(𝐸)| ∫ 𝑣𝑝𝑑𝒙
𝐸

= ∫ Π𝑘
𝑆𝑣𝑝𝑑𝒙

𝐸
, ∀𝑝 ∈ (𝑃𝑘/𝑃𝑘−𝜂𝐸

 )(𝐸)}. 
(5) 

An auxiliar space �̃�𝑘
𝑆 is introduced, and the actual space is defined as the analog of a level 

set where the polynomial moments of these functions with respect to certain polynomial orders 

coincide with those of the serendipity projection Π𝑘
𝑆. The orthogonality condition for this 

projector is based on the Euclidean inner product of the degree of freedom vector. Furthermore, 

moments are supplied by this projection in substitution to internal degrees of freedom if 𝜂𝐸 >
2, where 𝜂𝐸  is the number of support lines that define 𝜕𝐸. For linear and quadratic elements, 

this implies no internal degrees of freedom are necessary in 2D, thus only the boundary degrees 

of freedom (values at vertices and 𝑘 − 1 points at edges) are left. 

For the discrete weak formulation, both the original Π𝑘
∇ and the 𝐿2 projection of the gradient 

of the solution (Π𝑘−1
0 ∇) are computable. That is, one can use either ∇Π𝑘

∇𝑢ℎ or Π𝑘−1
0 ∇𝑢ℎ as 

projections of the gradient of trial and test functions in (2). The choice for this work is to use 

the latter, as it is shown to be more robust for higher order elements [19]. 
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3.2 Serendipity Enlarged Enhanced VEM Space 

The serendipity self-stabilized VEM space 𝑉𝑘,𝑙
𝑆𝐹(𝐸), known in the literature as Serendipity 

Enlarged Enhanced VEM space, is based on the recent approach for self-stabilized virtual 

elements through projection of the gradient (or other differential operator) of the solution into 

a higher order polynomial space. This supplies the missing rank in the stiffness matrix. This 

was originally proposed in [20], developed along the serendipity formulation in [16], and being 

further expanded in [18, 21]. In this work the formulation in [16] is presented. 

�̃�𝑘,𝑙
𝑆𝐹(𝐸) ≔ {𝑣 ∈ 𝐻1(𝐸) ∩ ℬ𝑘(𝜕𝐸)|Δ𝑣 ∈ 𝑃𝑙−1(𝐸)}, 

𝑉𝑘,𝑙
𝑆𝐹(𝐸) ≔ {𝑣 ∈ �̃�𝑘,𝑙

𝑆𝐹(𝐸)| ∫ 𝑣𝑝𝑑𝒙
𝐸

= ∫ Π𝑘
𝑆𝑣𝑝𝑑𝒙

𝐸
, ∀𝑝 ∈ (𝑃𝑙−1/𝑃𝑘−𝜂𝐸

 )(𝐸)}. 
(6) 

This formulation relies on the computation of the 𝐿2 projection of the gradient of a function 

(Π𝑙
0∇𝑢ℎ) into the space (𝑃𝑙)𝑑, usually with 𝑙 > 𝑘 − 1, chosen so as to stabilize the element. The 

computability of this projection requires additional internal degrees of freedom, i.e., those 

associated with monomials up to order 𝑙 − 1, however, the serendipity formulation supplies 

these moments up to a certain order, as described earlier. Both parameters, 𝑙 and 𝜂𝐸 , depend on 

the geometry of the element. They define the actual number of internal degrees of freedom 

required for the element. However, the usual case for orders 𝑘 = 1 and 2 for Voronoi meshes 

lead to no internal degrees of freedom remaining for the self-stabilized elements. 

4 PROJECTOR ASSEMBLY 

This section presents the core concept of the work. It shows how some basic projectors can 

be used to construct more complex ones, with the main example being the projector of the linear 

strains. This is followed by a subsection with some considerations on how this can be more 

efficient than direct computation. 

The projectors required for full implementation of the elements are Π𝑘
𝑆, Π𝑘

0 and Π𝑙
0∇ (with 

𝑙 = 𝑘 − 1 for the formulation that requires stabilization), in the case of Poisson elements. For 

the elasticity case, 𝚷𝒌
𝑺, 𝚷𝒌

𝟎 and 𝚷𝒍
𝟎𝜺 , here in bold to represent the vectorial nature of the 

argument of the projection. 

The assembly process for the serendipity and 𝐿2 projection of the solution is very direct. For 

example, if one assumes 𝒖𝒉 ∈ (𝑉𝑘)2 = {𝑢0 𝑢1 }𝑇 and 𝑛𝐷𝑂𝐹 being the number of degrees of 

freedom of 𝑉ℎ, then 𝚷𝒌
𝟎 and Π𝑘

0 have (2𝑛𝑘 × 2𝑛𝐷𝑂𝐹) and (𝑛𝑘 × 𝑛𝐷𝑂𝐹) matrix representations, 

respectively, with 𝑛𝑘 = dim 𝑃𝑘(𝐸). The representations are such that the following holds  

𝚷𝒌
𝟎𝒖𝒉 = {Π𝑘

0𝑢0 Π𝑘
0𝑢1}𝑇. (7) 

the same holding with 𝚷𝒌
𝑺 and Π𝑘

𝑆. 

The relation between Π𝑙
0∇ and 𝚷𝒍

𝟎𝜺 requires intermediary steps. First, one decomposes 

Π𝑙
0∇: 𝑉𝑘 → (𝑃𝑙)

𝑑 into its partial derivative components, i.e., Π𝑙
0𝜕𝑥𝑗

: 𝑉𝑘 → 𝑃𝑙, such that 

Π𝑙
0𝛻𝑢ℎ = {Π𝑙

0𝜕𝑥0
𝑢ℎ Π𝑙

0𝜕𝑥1
𝑢ℎ}

𝑇
. (8) 

Considering that the typical procedure of computing the matrix representation of a projector 

can be summarized as follows, using the notation in [22] 

𝚷 = 𝑮−𝟏𝑩, (9) 
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where 𝑮 involves integrals of monomials and 𝑩 the monomial moments of the basis functions 

𝜙𝑖 of 𝑉𝑘. For example, for Π𝑘
0, 𝐺𝛼𝛽 = ∫ 𝑚𝛼𝑚𝛽𝑑𝒙

𝐸
 and 𝐵𝛼𝑖 = ∫ 𝜙𝑖𝑚𝛼𝑑𝒙

𝐸
. The computations 

in 𝐵 usually involve some use of integration by parts or the divergence theorem to put the 

integrals in terms of the degrees of freedom of the virtual element space. 

Due to the linearity of projections and derivatives, one can assemble the projector of the 

strains from the projectors of partial derivatives 

𝚷𝒍
𝟎𝜺(𝒖𝒉) = {Π𝑙

0𝜕𝑥0
𝑢0 Π𝑙

0𝜕𝑥1
𝑢1 Π𝑙

0𝜕𝑥1
𝑢0 + Π𝑙

0𝜕𝑥0
𝑢1}

𝑇
 (10) 

4.1 Considerations 

The definition of every projector, especially if no constitutive quantity is involved, depends 

exclusively on the geometry of the element. Therefore, the problem in (10) must be solved for 

each required projector for each element in the mesh. This task can be frontloaded, being 

computed at the start of solution procedure, and the projectors stored in memory. The use of 

projector assembly helps reduce the size of the system that must be solved for each projector, 

improves reusability of partial results, while allowing the construction of more complex 

projectors. 

As a first example, consider the computation of Π𝑙
0∇, in the context of Poisson’s equations. 

Usually, the computation of the projector in (9) is split into two steps: a decomposition of 𝑮, 

and a solution step for 𝑩, resulting in 𝚷. The typical direct procedure would require the 

decomposition of a (2𝑛𝑙 × 2𝑛𝑙) matrix 𝑮, and solution for a (2𝑛𝑙 × 𝑛𝐷𝑂𝐹) matrix 𝑩. If one 

were to split into the two partial derivatives, this would lead to the same matrix 𝑮 of size 

(𝑛𝑙 × 𝑛𝑙) being decomposed and used in the solution step for two matrices 𝑩 (𝑛𝑙 × 𝑛𝐷𝑂𝐹), one 

for each derivative. Therefore, the matrix to be decomposed has its size reduced 𝑑 times, being 

used 𝑑 times in solution steps. 

Furthermore, the procedure shown for 𝚷𝒍
𝟎𝜺 in [23] requires the decomposition of a 

(3𝑛𝑙 × 3𝑛𝑙) matrix 𝑮 and a (3𝑛𝑙 × 2𝑛𝐷𝑂𝐹) matrix 𝑩. However, one can assemble this projector 

matrix directly using the ones for the partial derivatives, as shown in (10). 

Therefore, if one can compute Π𝑘
𝑆, Π𝑘

0, and Π𝑙
0𝜕𝑥𝑗

, for a given element, one can assemble the 

vector-solution counterparts for the first two (𝚷𝒌
𝑺, 𝚷𝒌

𝟎), and compose the linear strain 

combination of the last ones (𝚷𝒍
𝟎𝜺). The economy becomes even more drastic when one 

considers the three-dimensional case, as not only does the 𝑑-fold economy in the size of the 

decomposed matrix help, but the dimension of the polynomial space (𝑛𝑙) increases more quickly 

with respect to the order 𝑙 in higher spatial dimensions. 

Additionally, in a more implementation minded way, it is easier to test and debug the 

projectors for a simpler formulation (Poisson’s equations). Thus, one can implement element 

projectors based on Poisson’s equations, validate them with patch tests and convergence 

studies, and then employ them to assemble more complex element formulations with the 

certainty of correct behavior on their part. 
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5 NUMERICAL EXAMPLES 

Two convergence studies are presented to validate the proposed process. Both studies show 

the convergence of linear and quadratic virtual elements in both formulations for a problem 

with cubic solution. In the results, the serendipity formulation with stabilization is addressed as 

“SV” and the stabilization free one as “SFV”. The second study shows the convergence of plane 

linear elasticity virtual elements whose projectors are assembled from the ones of the former 

study. For both problems the domain is the unit square centered on the origin. The same three 

polygonal meshes with different levels of refinement (represented by maximum element 

diameter ℎ) are used in both examples. Those are illustrated in Figure 1. 

 

Figure 1: Polygonal meshes with different levels of refinement. 

For each problem, two types of errors are computed: an 𝐿2-error for the solution, and an error 

based on the derivates (𝐻1-error for Poisson problem and 𝜺-error for elasticity). The 

relationship between mesh refinement (ℎ) and error (𝑒) is of the following form 

𝑒 = 𝐶ℎ𝑝, (11) 

with the exponent 𝑝 being 𝑘 + 1 for 𝐿2-type errors and 𝑘 for the derivative based errors in the 

case of optimal a priori estimates. 

5.1 Poisson Convergence Study 

This study consists in a Poisson problem designed around a 3rd order polynomial solution, 

so that both linear and quadratic elements can have their convergence rates assessed. The 

chosen solution is the one in (12) and illustrated in Figure 2. The problem was setup as a pure 

Dirichlet problem (i.e., prescribed values at the boundary). 

𝑢 = 3(𝑥3 + 𝑦3 + 𝑥𝑦) (12) 

Three meshes with Voronoi polygons were generated with different levels of refinement, 

and the both the 𝐿2-(13) and 𝐻1-(14) errors are computed using the 𝐿2 projections of the solution 

and the gradient. 
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Figure 2: Solution chosen for the Poisson convergence study. 

‖𝑒‖𝐿2 = √∑ ∫ (𝑢 − Π𝑘
0𝑢ℎ)2𝑑𝒙

𝐸𝐸

 (13) 

|𝑒|𝐻1 = √∑ ∫(∇𝑢 − Π𝑙
0∇𝑢ℎ)2𝑑𝒙

𝐸𝐸

 (14) 

The results are summarized in Table 1 and visually in Figure 3. 

Table 1: Error results from Poisson convergence study. 

 𝐿2-error 
𝑝 

𝐻1-error 
𝑝 

Mesh M1 M2 M3 M1 M2 M3 

ℎ 1.33E-01 6.81E-02 3.33E-02  1.33E-01 6.81E-02 3.33E-02  

SVO1 3.63E-03 1.04E-03 2.66E-04 1.88 2.00E-01 1.08E-01 5.50E-02 0.93 

SFVO1 3.60E-03 1.03E-03 2.63E-04 1.89 1.28E-01 6.89E-02 3.49E-02 0.93 

SVO2 1.13E-04 1.52E-05 1.91E-06 2.94 8.29E-03 2.19E-03 5.54E-04 1.95 

SFVO2 1.12E-04 1.51E-05 1.91E-06 2.93 7.96E-03 2.07E-03 5.20E-04 1.97 

 

The convergence rates 𝑝 found in Table 1 are in accordance with the a priori estimates for 

these elements, found in the beginning of the section. 

5.2 Elasticity Convergence Study 

For this example, a simple solution displacement field is chosen, as presented in (15) and 

illustrated in Figure 4. The problem setup chosen for the attainment for this solution is 

illustrated in Figure 5. The 𝐿2 (16) and 𝜺 (17) errors are computed using the respective analog 

projections. The stabilization employed for the serendipity formulation is the one presented in 

[23]. A summary of the results is presented in Table 2 and Figure 6. 
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Figure 3: Convergence curves of 𝐿2-error (left) and 𝐻1-error (right) for the Poisson study. 

𝒖 = {(𝑥 + 0.5)/6 0}𝑇 (15) 

‖𝒆‖𝐿2 = √∑ ∫ (𝒖 − 𝚷𝒌
𝟎𝒖𝒉)

2
𝑑𝒙

𝐸𝐸

 (16) 

|𝒆|𝜺 = √∑ ∫(𝜺(𝒖) − 𝚷𝒍
𝟎𝜺(𝒖𝒉))

2
𝑑𝒙

𝐸𝐸

 (17) 

 

Figure 4: Solution chosen for the elasticity convergence study. 
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Figure 5: Problem setup for elasticity convergence study. 

Table 2: Error results from elasticity convergence study. 

 𝐿2-error 
𝑝 

𝜺-error 
𝑝 

Mesh M1 M2 M3 M1 M2 M3 

ℎ 1.33E-01 6.81E-02 3.33E-02  1.33E-01 6.81E-02 3.33E-02  

SVO1 3.18E-04 8.20E-05 2.06E-05 1.97 1.44E-02 7.45E-03 3.76E-03 0.97 

SFVO1 3.27E-04 8.41E-05 2.14E-05 1.96 1.06E-02 5.42E-03 2.73E-03 0.98 

SVO2 8.02E-06 6.92E-07 1.16E-07 3.05 3.42E-04 9.01E-05 2.22E-05 1.97 

SFVO2 5.34E-06 6.97E-07 8.47E-08 2.99 3.04E-04 8.33E-05 2.09E-05 1.93 

 

 

Figure 6: Convergence curves of 𝐿2-error (left) and 𝜺-error (right) for the elasticity study. 
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One can see that the optimal convergence rates are preserved by the projector assembly 

process. 

6 FINAL CONSIDERATIONS 

The procedure of assembling complex projectors from simpler ones has been presented. It is 

a small matter which may help slightly improve the computational efficiency of VEM codes by 

reducing the size of matrices that have to be decomposed to obtain the projectors. 

This framework to constructing virtual element implementations also provides Poisson’s 

equations as simpler context in which to test and debug the necessary projectors. 

The provided examples show that this procedure preserves the convergence of the method. 
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