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Abstract. The distribution of material phases is crucial to determine the composite's mechanical 

properties. While the entire structure-mechanics relationship of highly ordered material 

distributions can be studied with a finite number of cases, this relationship is challenging to 

reveal for complex irregular distributions, preventing the design of such material structures 

from meeting specific mechanical requirements. The noticeable developments of artificial 

intelligence algorithms in material design enable the discovery of hidden structure-mechanics 

correlations, which is essential for designing composites of complex structures. It is intriguing 

how these tools can assist composite design. Here, we focus on the rapid generation of complex 

irregular composite structures and the stress distribution in loading. We find that generative AI, 

enabled through fine-tuned Low-Rank Adaptation models, can be trained with a few inputs to 

generate synthetic composite structures and the corresponding von Mises stress distribution. 

The results show that this technique is convenient in generating massive composite designs 

with useful mechanical information that dictates stiffness, fracture, and robustness of the 

material with one model, and such must be done by several different experimental or simulation 

tests. This research offers valuable insights for improving composite design to expand the 

design space and automatic screening of composite designs for improved mechanical functions. 
 

 

1 INTRODUCTION 

Composites are multi-phase materials composed of two or more distinct materials, typically 

in the form of a matrix and a reinforcement with different mechanical properties. Composites 

excel beyond traditional materials in various engineering fields such as aerospace [1], defense 

[2], automotive [3], healthcare [4], and construction [5]. The optimization of composite designs 
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has become crucial in modern engineering, enabling the combination of multiple advanced 

mechanical functions that individual components cannot achieve on their own, such as stiffness 

[6], toughness [7], elasticity [8], ultimate strength [9], and thermal conductivity [10]. 

Traditional manufacturing methods have limited the design and production of complex 

geometric arrangements in composite materials due to challenges in effectively bonding 

multiple base materials with strong adhesion [11]. However, advancements in additive 

manufacturing have made it possible to 3D print various materials, allowing the design and 

production of complex architectures with diverse properties in all three spatial dimensions and 

with any geometry and combination of distinct materials [12]. Nature offers numerous 

examples of composite materials that demonstrate the benefits of integrating multiple material 

phases, refined over millions of years of evolution [13][14] . Almost all natural materials exhibit 

composite structures, typically composed of a limited set of polymeric substances such as 

proteins or polysaccharides, along with ceramic components like calcium salts or silica, which 

are themselves composites [15][16][17]. For instance, bone is a natural composite consisting of 

a collagen matrix reinforced with hydroxyapatite, providing both strength and flexibility [18]. 

Other examples include nacre [19], a biomineral composite of calcium carbonate crystals 

embedded in an organic matrix, and bamboo [20], a natural composite of cellulose fibers 

embedded in a lignin matrix. Principles derived from exceptional biological composites 

include: (i) the integration of rigid and soft materials for combined strength and toughness 

[21][22][23], (ii) the formation of robust three-dimensional interconnections between phases to 

distribute loads and dissipate energy effectively [24][25], and (iii) the alignment of structurally 

anisotropic elements to enhance performance in specific orientations [25]. Interpenetrating 

phase composites (IPCs) are a type of composite material where two or more phases are 

interconnected in a continuous and intertwined manner, creating a complex microstructure [26]. 

This unique configuration differentiates IPCs from traditional composites, where one phase is 

typically dispersed within another in a more straightforward manner (e.g., fibers within a 

matrix). The design of IPCs has advanced significantly, leveraging bioinspired architectures to 

achieve superior mechanical properties. Studies have demonstrated that IPCs with bioinspired 

architectures, such as brick-and-mortar, Bouligand, and crossed-lamellar, exhibit enhanced 

stress transfer, damage delocalization, and crack arresting mechanisms, leading to improved 

strength, toughness, and impact resistance compared to traditional composites [27]. Research 

on 3D-printed Mg-Ti IPCs, for instance, has highlighted the effectiveness of these designs in 

providing a synergistic enhancement in both strength and fracture toughness, making them 

suitable for structural and biomedical applications [28]. The continuous and interpenetrated 

phases in these composites mimic the intricate arrangements found in natural materials, 

contributing to their exceptional mechanical efficiency [29].  

Optimizing composite mechanics per se has become a fundamental question: how to decide 

the material distribution that yields the optimal material functions? Having an efficient tool to 

facilitate design and reveal the structure-mechanics relationship will help give a quick answer 

to the question and lead to material innovations for broader engineering applications. MD 

simulations, particularly when executed with precise force fields, yield highly accurate 

predictions of the mechanical response of nanomaterials, including the atomistic scale 

molecular behavior level and large-scale stress field [30][31][32]. However, they are 

computationally demanding and can easily exceed the available computational capacity if used 

to produce massive data for brute-force designing and optimization purposes. In contrast, deep 
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learning has arisen as a promising solution for tackling this challenge, offering an alternative to 

first-principle methods like MD or finite element methods (FEM) [33]. It acts as an auxiliary 

model for MD and FEM by integrating the constitutive relationship and differential equations 

and simply replacing the correlation functions, which accelerates mechanical behavior 

prediction [34]. It also enables the massive consideration and comparison of different design 

configurations and the use of the results to make material design and rational reverse design 

possible [35]. However, most of these supervised learning methods are limited by the high 

training data and the quality requirements. They prevent it from being used in research 

applications because pioneering research usually lacks data, and the available data must be 

better structured.  

Since 2022, artificial intelligence generated content (AIGC) has performed exceptionally 

well and garnered significant interest from researchers. AI-based image generators, including 

DALL-E 2 [36], Imagen [37], Midjourney [38],  and Stable Diffusion (SD) [39], have emerged 

as a notable area of study. The main objective of these generative AI algorithms is to create 

new synthetic images that accurately replicate the patterns found in their training dataset [40]. 

Among these tools, SD is a generative AI model enabled through image diffusion in the latent 

space, which facilitates the synthesis of high-resolution images by leveraging perceptual and 

semantic compressions. This model has proven effective across various applications, including 

text-to-image [41], text-to-video [42], and super-resolution [43]. Compared to traditional 

diffusion models [44], SD offers greater computational efficiency, enabling the creation of 

higher-resolution images. Unlike the original generative adversarial networks (GANs) [45], SD 

does not suffer from mode collapse or training instabilities. The success of these models 

suggests the possibility of applying generative AI to process a small amount of data/image and 

use the augmented data/image for rational design and optimization. While these models have 

demonstrated their ability to produce realistic images [39][46][47], their potential for material 

design and characterization remains largely unexplored. Similar to Large Language Models 

(LLMs) like GPT by open AI [48], developing special-purpose SD models that are experts in 

specific tasks or scientific domains can be costly, especially when diverse sets of capabilities 

are required. However, methods like Low-Rank Adaptation (LoRA) [49], Differential Learning 

Rates (DLR) [50], Prompt Tuning [51], and Full Model Fine-Tuning [52] have been proposed 

as a more efficient way to fine-tune a pre-trained model by updating the weights and make the 

model improve its ability for specific tasks. For example, Buehler has utilized LoRA to fine-

tune an LLM, creating MechGPT, which leverages LLMs to improve multiscale modeling of 

materials failure. [53]. Another fine-tuned LLM, BioinspiredLLM, highlights the potential for 

AI to accelerate research and scientific discovery in bio-inspired materials [54]. In another 

study, X-LoRA was presented as a mixture-of-experts, framework enhancing LLMs with 

LoRAs for specialized tasks in protein mechanics and molecular design [55]. Zhao et al. 

employed LoRA to train a special-purpose SD model that can efficiently generate remote 

sensing image-annotation pairs, drastically reducing the time and effort required for detailed 

pixel-level annotations in semantic segmentation [56]. In our recent research [57], we explored 

the ability of a fine-tuned SD model to simultaneously generate a bicontinuous composite 

structure and its corresponding von Mises stress field. We demonstrate that the model is highly 

data-efficient and successfully captures the essential mechanical characteristics of a 

bicontinuous composite under load. These studies demonstrate LoRA's effectiveness in fine-

tuning general-purpose models into specialized experts focusing on a target scientific domain. 
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LoRA is a training strategy designed to accelerate the training of large models while reducing 

memory usage, commonly employed for specific, targeted tuning. In LoRA modeling, the 

principle involves integrating low-rank matrices with the original full-scale matrix, where these 

low-rank matrices are the sole trainable components of the model. This approach allows the 

model to retain the extensive knowledge acquired during its initial pre-training phase while 

adapting more specifically to particular tasks [49]. 

 Here, to efficiently generate composite designs with complex material distributions and 

quickly reveal their mechanical responses under loading, we develop a workflow that integrates 

physics-based models with Generative AI (GenAI). As shown in Fig. 1, this workflow involves 

steps such as dataset generation, GenAI model training, and model validation. We use a phase-

field model to create IPCs with complex material distributions and employ molecular dynamics 

(MD) simulations to determine the mechanical responses of these composites under loading. 

The resulting stress fields are then used to fine-tune a pretrained Stable Diffusion model using 

LoRA to tailor it for stress field prediction in IPCs. This approach allows for the rapid 

generation of complex composite structures and their corresponding stress distributions when 

subjected to external loads. We demonstrate that the generated results differ from the training 

inputs and that the stress fields can be validated through MD simulations. Our models can 

massively generate composite designs with stress distributions, enabling the prediction of 

vulnerable areas and leading to improved material design with enhanced mechanical properties. 

 

 
 

Figure 1: Workflow of the Study: Data Set Generation, Model Training, and Model Validation. 
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2 MATERIALS AND METHODS 

2.1 Phase field model to create the initial composite structures 

We use phase field model to simulate the evolution of microstructure in a binary composite 

during phase transformations and pattern formation. It represents the material microstructure 

with continuous field variables that describe the spatial distribution of phases or components. 

The evolution of these field variables is governed by partial differential equations derived from 

thermodynamic principles and kinetic laws. The primary equation in the phase field model is 

the Cahn-Hilliard equation which is represented as:  
𝜕𝑢

𝜕𝑡
= 𝛻2 [

𝑑𝑓(𝑢)

𝑑𝑢
− 𝜃2𝛻2𝑢]                                                                  (1) 

where -1 < u(x,y,t) < 1 is the difference in concentration of the two phases, with u<0 denoting 

the soft and u≥0 representing the rigid phases, t is the evolutionary time of the system, f(u) is 

the free energy function, and θ is the width of transition region between the two phases. In our 

study, we adopt the double-well potential function 𝑓(𝑢) =
1

4
(𝑢2 − 1)2 and set θ=0.004. A two-

dimensional IPC structure is generated by solving Eq. (1) in a square box which is discretized 

into N×N lattice, where N is sufficiently large taken to be N=256. We define 𝑢𝑖𝑗𝑘
𝑚  denoting the 

discrete value of u(ib,jb,mτ) at lattice node point (ib,jb), where b and τ are the mesh size and 

the integration time step, respectively. Discretizing Eq. (1) with central approximation of spatial 

derivatives results in the following discrete equation:  
𝑢𝑖𝑗

𝑚+1−𝑢𝑖𝑗
𝑚

𝜏
= ∇2[(𝑢𝑖𝑗

𝑚)3 − 𝑢𝑖𝑗
𝑚 − 𝜃2∇2𝑢𝑖𝑗

𝑚]                                                                   (2) 

where ∇2𝑢𝑖𝑗
𝑚 = [𝑢(𝑖+1)𝑗

𝑚 + 𝑢(𝑖−1)𝑗
𝑚 + 𝑢𝑖(𝑗+1)

𝑚 + 𝑢𝑖(𝑗−1)
𝑚 − 4𝑢𝑖𝑗

𝑚]/𝑏2  is used to approximate the 

continuous Laplacian on the discrete lattices. To numerically solve Eq. (2), an adaptive 

integration time step τ should be properly selected. Numerical tests suggest that 𝜏 = 0.00001 

is an appropriate choice that ensures high accuracy, good stability, and reasonable 

computational cost. A set of initial values u(ib,jb,0) are randomly generated, and periodic 

boundary conditions are adopted in x and y directions of the box. A cutoff 𝑢𝑐
𝑚  is set to 

distinguish the soft phase from the rigid phase. The phase of point u(ib,jb) at time t=m 𝜏 is 

defined as:  

𝐺𝑖𝑗
𝑚 = 𝐻(𝑢𝑖𝑗

𝑚 − 𝑢𝑐
𝑚)                                                                  (3) 

where 𝐻(𝑢𝑖𝑗
𝑚 − 𝑢𝑐

𝑚)  is the standard step function. When 𝑢𝑖𝑗
𝑚 > 𝑢𝑐

𝑚 , 𝐻(𝑢𝑖𝑗
𝑚 − 𝑢𝑐

𝑚) = 1 , 

indicating that the point is occupied by rigid phase; otherwise, 𝐻(𝑢𝑖𝑗
𝑚 − 𝑢𝑐

𝑚) = 0, showing that 

the point belongs to the soft phase. Table 1 summarizes the parameters used in our model along 

with their values.  
Table 1: Parameters adopted to generate the structures following phase field model. 

 

Parameter Value 

N 256 

θ 0.004 

b 1/128 

τ 0.00001 
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ttotal 200000 
 

The process of data set generation begins with the creation of 150 random models through 

the phase field model. In Fig. 2b, an example of these structures is shown, with green indicating 

the presence of rigid component and red denoting the soft phase. In this study, we build the 

structures with a volume fraction of 55% wt of rigid and 45% wt of soft, resulting in the 

emergence of some soft inclusions (depicted in red) dispersed within the rigid matrix (depicted 

in green). 

2.2 Elastic Network Model to model mechanics of the composite materials 

We use a triangular elastic network of mass and springs to model the mechanics of each 

material phase in composite structures. This model enables us to compare the deformation and 

stress field of the composites by performing MD simulation. Each particle in the composite 

structure is considered a bead which is bonded to neighboring particles by a spring (Fig.2a).                                                                                                   

In a triangular lattice, each bead is connected to six neighboring beads, forming a hexagonal 

pattern. The area associated with each bead can be determined by calculating the area of the 

hexagon and considering that each bead effectively occupies one-third of this area. The total 

area of a hexagon, which consists of six equilateral triangles with side length 𝑎, is 
3√3

2
𝑎2. Since 

each bead contributes to one-third of this hexagonal area, the area per bead in the lattice is 
√3

2
𝑎2. 

In a triangular elastic network with N beads and 3N bonds, the deformation energy can be 

calculated by:  

𝑈 =
3

2
𝑘𝛿2𝑁                                                                  (4) 

where 𝛿 is the elongation of a bond, N is the total number of atoms and k is stiffness of a bond. 

The deformation energy of a triangular lattice can also be derived by considering the energy 

per unit volume due to uniform deformation. The bulk modulus K relates to the energy density 

and the strain with 𝑢 =
1

2
𝐾휀2. The total deformation energy 𝑈 is given by multiplying the 

energy density by the total volume, which includes the area per bead, the thickness 𝑡, and the 

number of beads 𝑁. Substituting the relationship 𝐾 =
𝐸

3(1−2𝜐)
  into the energy equation, where 

𝐸 is Young's modulus and ν=0.05 is Poisson's ratio, we obtain: 

𝑈 =
√3

2.7
𝐸𝛿2𝑡𝑁 (5) 

Using Eqs. (4) and (5), we have: 

𝑘 =
√3

4
𝐸𝑡 (6) 

 

which is the stiffness of each bond at zero deformation. To incorporate the bond rupture, each 

bond is modelled by a Morse potential in which the bond energy and bond force is therefore 

given by: 

𝑈 = 𝐷[1 − 𝑒−𝛼(𝑟−𝑎)]
2
 (7) 
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𝑓 =
𝑑𝑈

𝑑𝑟
= 2𝐷𝛼𝑒−𝛼(𝑟−𝑎)[1 − 𝑒−𝛼(𝑟−𝑎)] (8) 

here, D and α are parameters related to the potential energy, and a represents the initial length 

of the spring, corresponding to the lattice constant of the triangular network. The bond stiffness 

is obtained by: 

𝑘 =
𝑑2𝑈

𝑑𝑟2
(𝑟 = 𝑎) = 2𝐷𝛼2 =

√3

4
𝐸𝑡 (9) 

Considering Eqs. (8) and (6), the bond strength is given by: 

𝑚𝑎𝑥(𝑓) =
1

2
𝐷𝛼 =

√3

3
𝐸𝑡 ∗ 𝛿 =

√3

3
𝐸𝑡

𝜎𝑐

𝐸
𝑎 =

√3

3
𝜎𝑐𝑡𝑎 (10) 

Combining Eqs. (9) and (10), we can obtain Morse potential parameters by 𝛼 =
3𝐸

16𝜎𝑐𝑎
 and 𝐷 =

32√3

9
𝜎𝑐

2𝑎2𝑡/𝐸. 

We summarize the numerical value of the potential parameters of the two material phases in 

Table 2. We use mechanical properties of Agilus 30 black as the soft and digital ABS plus as 

the rigid material.  
 

Table 2: The numerical values of the potential parameters used in the computational simulations in 

LAMMPS. Micro units are used to perform simulations and obtain parameters in table. 

 

Parameter Rigid phase Soft phase 

Material thickness t (μm) 1 1 

Young’s modulus E 

(pg.μm-1.ms-2) 
973000 383 

Ultimate strength 𝜎𝑐 

(pg.μm-1.ms-2) 
30000 700 

Bond stiffness k (pg.μm-2) 4.21 × 105 165.84 

Bond length a (μm) 0.373 0.373 

Bond parameter 𝛼 (1. μm-1) 16.304 0.275 

Bond energy 𝐷  

(pg.μm-2.ms-2) 
792.529 1096.183 

2.3 MD Simulation setup and parameters 

We simulate uniaxial strain in 2D composite structures in LAMMPS package [58] with 

Morse potential and micro units. The sample geometry is varied by randomly changing the 

distribution of soft and hard materials following phase field model to generate the training data. 

Each sample is meticulously relaxed to its minimum energy configuration using the conjugate 

gradient method prior to the application of any external loads. After that, using a Nosé-Hoover 

thermostat, the samples are thermally equilibrated at 300 K for 40 µs. We use 2 ns as the time 

step and apply periodic boundary conditions in x-y dimensions. The simulation box is stretched 

with a constant strain rate (0.0001μs-1) in the y-direction to create uniaxial tension as it is shown 

in Fig. 2. To create the dataset, we subject the structures to an external load for a duration of 

only 10 µs. This brief exposure allows us to observe the initial stress distribution under 

relatively low external loads and to remain in the elastic region. OVITO [59] is used to visualize 

the atomic structures, dynamics, and stress fields. Images portraying the von Mises stress fields 

at a strain of 휀 = 0.008, within elastic region, are processed and collected as the ground truth 
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for the training dataset. The “hot” color map is used for visualizing these stress field contours, 

which spans from "black" [RGB = (0, 0, 0)], indicating a lower limit stress of 0.02 MPa, to 

"white" [RGB = (255, 255, 255)], representing an upper limit stress of 15 MPa. Although the 

specific lower and upper bounds may differ across various cases, they remain uniform within 

our dataset. Ultimately, the images were saved with a resolution of 2048 × 2048 pixels. 

2.4 Stable diffusion image generator 

We employ generative AI enabled through SD models for image generation and fine-tune a 

pre-trained SD model using the Low Rank Adaptation (LoRA) method, tailoring it specifically 

for generating IPC composite stress field images under tensile load. 

SD is based on the foundational diffusion approach, specifically denoising diffusion 

probabilistic models. This method involves two main phases: the forward phase and the 

backward phase (Fig. 3a). In the forward phase, noise is incrementally added to an original 

image in a controlled manner, with each step of added noise adhering to a specific normal 

distribution. This process transforms the original image into one that is completely obscured by 

noise. During the backward phase, denoising modules that resemble the architecture of a U-Net 

are trained to predict and remove the noise that was added during the forward phase. This 

denoising process is carried out step by step, starting from the fully noised image and gradually 

restoring it to resemble the original image. Once the denoising modules are effectively trained, 

the model can reconstruct images from their noised states, reversing the noise addition process. 

The general term formula for the forward process can be expressed mathematically: 

𝑥𝑡 = √𝛼𝑡𝑥𝑡−1 + √1 − 𝛼𝑡휀𝑡 (11) 

where 𝑥𝑡 is the image at timestep t, 𝑥𝑡−1 is the image at the previous timestep, 휀𝑡 represents the 

noise added at step t, which is sampled from a normal distribution, and 𝛼𝑡 is a parameter to 

describe the noise intensity with  0 ≤ 𝛼𝑡 < 1. As t increases, more noise is added to 𝑥𝑡, making 

it less recognizable as the original image 𝑥0. The entire forward processing can be rewritten as: 

𝑥𝑡 = √𝛼𝑡̅̅ ̅𝑥0 + √1 − 𝛼𝑡̅̅ ̅𝜖𝑡 , 𝜖𝑡  ∈ 𝒩(0, 𝐼), 𝛼𝑡̅̅ ̅ = ∏ 𝛼𝑖
𝑡
𝑖=1  (12) 

The coefficients {𝛼𝑡} are predetermined and its value decreases for each step t, guiding how the 

original image is gradually converted into a noise-dominated image by the end of the forward 

process (i.e., 𝑥𝑡 ⟶ 𝜖𝑡). This noised image then serves as the starting point for the backward 

process, where the model learns to denoise the image step by step, ultimately recovering an 

approximation of 𝑥0. In the backward processing phase, under the assumptions of a Gaussian 

process and Markov chain, the objective is to progressively denoise the image, moving from a 

state of high noise back to the original or a close approximation of the original image. The 

mathematical formulation for this process is focused on iteratively estimating and removing the 

noise added during the forward phase to recover the clean image. The general term formula for 

the backward process, at a timestep t, can be expressed as: 

𝑥𝑡−1 =
1

√𝛼𝑡̅̅̅̅
(𝑥𝑡 −

1−𝛼𝑡

√1−𝛼𝑡̅̅̅̅
𝜖𝜃(𝑥𝑡 , 𝑡)) + 𝜂𝑡𝑧𝑡 , 𝑧𝑡 ∈ 𝒩(0, 𝐼) (13) 

where the first term represents the t step recovered image, 𝜖𝜃(𝑥𝑡, 𝑡) is the model’s estimate of 

the noise added at time t, that is, the output of the denoising U-Net, 𝜂𝑡 =
1−�̅�𝑡−1

1−�̅�𝑡
 is a parameter 

controlling the amount of stochasticity or randomness reintroduced at step t, and 𝑧𝑡 is a random 
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noise vector sampled from a Gaussian distribution.  

 

 
Figure 2: a) Random IPC structures generated by the phase-field model alongside a schematic of the triangular 

elastic network model. In the image, the red color represents the soft phase, while the green color indicates the 

rigid phase. The ratio of the phases is controlled during phase filed model to create structures with Vrigid = 55% 

wt, Vsoft = 45% wt volume ratio (a) Stress-Strain curve from coarse-grained MD simulation. (b) Internal structure 

of the composites with different strain states (i.e., (1) 휀 = 0 (2) 휀 = 0.002 (3) 휀 = 0.008  (4) 휀 = 0.2 ) that 

correspond to the marks in panel (b), and (d) Von Mises stress distribution related to the corresponding strain 

levels shown by red dots on the curve. 

 

In the workflow, the process starts with a stress field image 𝑥0
𝐿. In forward processing, the 

noise is systematically introduced to 𝑥0
𝐿 following Eq. 11 for t times. The culmination of this 

phase is 𝑥𝑡
𝐿. The backward processing phase begins with 𝑥𝑇

𝐿 . The image undergoes a denoising 

process aimed at restoring it to the original image, 𝑥0
𝐿, by Eq. 13. Once the U-Net is adequately 

trained to predict and negate the noise, it becomes capable of generating any number of stress 

field images from a given set of arbitrarily noised images. Fig. 3a illustrates the pixel space 

transformations for clarity. However, most forward and backward processing happens in the 

latent space. 

As illustrated in Fig. 3b, SD begins by compressing the original image from its pixel format 

(x) into a more compact latent representation (z) using the encoder 휀  of a Variational 

Autoencoder (VAE). The model then undergoes forward processing, resulting in zT. The model 

is then refined through backward processing with a denoising U-Net, which aims to remove 

noise and reconstruct z from zT. Lastly, the VAE decoder 𝒟 translates this refined latent 

representation (z) back into the original pixel space (�̃�), completing the image generation 

process. The transformer 𝜏𝜃 encodes the input prompt into a highly informative form for the 

subsequent image generation steps, ensuring that the final output is a visual representation that 
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matches the prompt's description. Regarding the network details, the diffusion step number t of 

𝑥𝑡
𝐿  in Fig. 3a was set to 40, implying that the denoising process in the diffusion model is 

conducted through 40 distinct U-nets in each iteration.  

2.5 Technical details of LoRA method 

To limit the generation of stress field images in the training dataset’s pixel distribution and 

to accelerate the training process, we integrate the LoRA method into a pre-trained model. We 

apply LoRA to a pre-trained SD model to guide it toward generating the stress field of IPCs 

under load. The LoRA block number was the same as the pre-trained model (Fig. 3c). Unlike 

complete parameter tuning methods that necessitate updating all weights during the fine-tuning 

phase, LoRA retains the weights of the original model and integrates trainable low-rank 

matrices to the transformer layers to simulate the weight adjustment. Fig. 3d presents the 

mechanism of LoRA. Suppose 𝑊0  ∈  𝑅𝑑×𝑘 as the matrix from the pre-trained model. LoRA 

approximates the transition from 𝑊0 to 𝑊0 + ∆𝑊 in the following manner: 

𝑊0 + ∆𝑊 =  𝑊0 + 𝑊𝑑𝑜𝑤𝑛𝑊𝑢𝑝 (14) 

where 𝑊𝑑𝑜𝑤𝑛 ∈  𝑅𝑑×𝑟 and 𝑊𝑢𝑝 ∈  𝑅𝑟×𝑘, with r << min(d,k). W0 is held constant throughout 

the fine-tuning stage, but 𝑊𝑑𝑜𝑤𝑛 and 𝑊𝑢𝑝 are the adjustable parameters. For any given input x 

with its original output h, the updated output ℎ̅ is calculated as:  

ℎ̅ = 𝑊0𝑥 + ∆𝑊𝑥 = ℎ + 𝑊𝑑𝑜𝑤𝑛𝑊𝑢𝑝𝑥 (15) 

When fine-tuning the SD model, LoRA can be explicitly employed on the cross-attention 

layers (Figs.3b-c) that are responsible for establishing connections between image 

representations and corresponding descriptive prompts.  

2.6 Model training 

We train eight LoRA-tuned SD models using varying numbers of stress field images from 

our collection pool of 150 IPC composite structures. Specifically, the models were trained with 

2, 5, 10, 25, 50, 100, 125, and 150 images, designated as T2, T5, …, and T150, respectively. 

To ensure a robust evaluation and mitigate the influence of selection bias, we employed a 

randomized selection process to draw images from our training set. This methodological 

approach was designed to rigorously evaluate the impact of training set size on model 

performance while minimizing potential subjectivity in the selection process. The selected 

training images were adjusted to a resolution of 2048 × 2048. Our training utilizes the stable-

diffusion-v1-5 pre-trained model, adopting a batch size of 1, a training duration of 10 epochs, 

and a learning rate of 0.0001 without any adjustments (constant learning rate schedule). 

Optimization was performed using the AdamW8bit optimizer, facilitating effective network 

adjustment. The training hyperparameters are detailed in Table 3. The training procedure is 

conducted using the open-source Kohya SS library in Python. 

 

 
Table 3: Summary of the hyperparameters used to fine-tune SD model using LoRA technique. 

 
 Parameter Value/Type 
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Lora Type Standard 

Model checkpoint file stable-diffusion-v1-5 

Learning rate 0.0001 

Batch size 4 

Learning rate scheduler Constant 

LR warmup (% of steps) 10 

Optimizer AdamW8bit 

Network Rank (dimension) 128 

Network Alpha 1 

Number of epochs 10 

Mixed precision fp16 

Save precision fp16 

Number of CPU threads per core 2 

Maximum resolution 512,512 

Minimum bucket resolution 128 

Maximum bucket resolution 2048 

Text Encoder learning rate 0.00005 

Unet learning rate 0.0001 

 

2.7 Stress field generation 

We employe text-to-image approach to generate stress field images from the trained models. 

A predefined text prompt is the input for the text-to-image approach, guiding the model to 

generate random stress field images. Subsequently, a binary mask is applied to these images to 

transform the stress fields into their initial configurations so that the MD simulation is 

performed, and the obtained stress field is compared with the generated stress field. Image 

generation uses the open-source "Automatic 1111" GUI [60], a user-friendly platform for 

interaction with the SD model.  
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Figure 3: Overall procedure and network architecture of LoRA-tuned SD model (a) An illustration showing 

how diffusion and denoising processes are carried out by integrating LoRA and pretrained SD models. The 

model ultimately learns to create an image from complete noise based on the input text prompt. Although these 

tasks occur in latent space, they are presented in pixel space for clarity. (b) SD architecture (c) details of SD 

denoising module and LoRA (d) The core components of LoRA and mechanism of fine-tuning a pre-trained SD 

model, showing how the weights of the pre-trained model are fine-tuned by LoRA matrices according to Eqs. 14 

and 15. 

2.8 Image normalization and comparison 

Using OpenCV, PIL, and NumPy Python libraries, we first convert generated RGB images 

into grayscale using: 

𝜎𝑔𝑟𝑎𝑦 = 0.2989𝑅𝜎𝑅𝐺𝐵
+ 0.5870𝐺𝜎𝑅𝐺𝐵

+ 0.1140𝐵𝜎𝑅𝐺𝐵
 (16) 

where 𝜎𝑔𝑟𝑎𝑦 is the matrix of pixel values for a grayscale image, and 𝑅𝜎𝑅𝐺𝐵
, 𝐺𝜎𝑅𝐺𝐵

, and 𝐵𝜎𝑅𝐺𝐵
are 

the red, green, and blue components of the 𝜎𝑅𝐺𝐵matrix. Next, we normalize 𝜎𝑔𝑟𝑎𝑦, adjusting 

pixel values to fall between 0 and 1 using: 
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𝜎 =
𝜎𝑔𝑟𝑎𝑦 − min (𝜎𝑔𝑟𝑎𝑦)

max(𝜎𝑔𝑟𝑎𝑦) − min (𝜎𝑔𝑟𝑎𝑦)
 (17) 

 
 

Then 𝜎 is turned into a 2D configuration through the application of a binary mask combined 

with a threshold using: 

Ω = {
1          𝑖𝑓 𝜎 < 𝜃
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18) 

 

where Ω  is the matrix of binary configuration, and 𝜃  is a defined threshold. These 

configurations are then subjected to uniaxial strain in LAMMPS (refer to Materials and 

Methods section 2.3), and the resulting stress fields are compared to the ground truth images. 

To facilitate the comparison and evaluation of the models, we postprocess both synthetic 

and ground truth images. After cropping and resizing to 512 × 512, we use Eqs. 16 and 17 to 

obtain 𝜎𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 and 𝜎𝑔𝑟𝑜𝑢𝑛𝑑 as the normalized pixel value of the generative image and MD 

output. This step ensures uniformity and enhances contrast. For accuracy assessment, we 

calculate the Root Mean Squared Error (RMSE) between the ground truth and synthetic images 

by 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅
𝑠𝑡𝑟𝑒𝑠𝑠 = √

1

𝑁
∑ (𝜎𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐𝑖

− 𝜎𝑔𝑟𝑜𝑢𝑛𝑑𝑖
)2𝑁

𝑖=1 , where N is the total number of pixels in 

the images, 𝜎𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐𝑖
 and 𝜎𝑔𝑟𝑜𝑢𝑛𝑑𝑖

 are the pixel values at the i-th position in 𝜎𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐and 

𝜎𝑔𝑟𝑜𝑢𝑛𝑑 , respectively. Additionally, the absolute error map is calculated for each pixel to 

visually highlight discrepancies between the synthetic and the ground truth values. This map 

effectively summarizes the model's performance by illustrating where and how 𝜎𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 and 

𝜎𝑔𝑟𝑜𝑢𝑛𝑑 differ. The absolute error is computed by  𝐸𝑟𝑟𝑜𝑟̅̅ ̅̅ ̅̅ ̅̅
𝑠𝑡𝑟𝑒𝑠𝑠 = |𝜎𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 − 𝜎𝑔𝑟𝑜𝑢𝑛𝑑|. We 

also calculate Structural Similarity Index (SSIM) between each pair of synthetic and ground 

truth images.                                                                                                                   

3 RESULTS AND DISCUSSION 

We have developed eight SD models as described in the Materials and Methods section 2.6. 

Each model is trained using a unique text prompt, such as "a photo of an IPC stress field," to 

direct the generation of images. Post-training, we evaluate the models' performance through 

both quantitative metrics and qualitative assessments. 

3.1 Mode collapse analysis 

Mode collapse is a phenomenon observed in generative models, such as Generative 

Adversarial Networks (GANs), where the model produces a limited variety of outputs despite 

the diverse training data. This issue occurs when the generator, instead of learning to produce 

a wide range of outputs, generates only a few types of outputs that the discriminator cannot 

easily distinguish from real data. Consequently, the generator repeatedly produces similar 

outputs, resulting in a lack of diversity and exploration in the generated data. To evaluate the 

occurrence of mode collapse in our data generation process, we compute the Structural 

Similarity Index (SSIM) matrix for the generated images and training images for models T5, 

T50, and T100, as summarized in Fig. 4. The results indicate that the SSIM between generated 

and training images is low, suggesting that the new structures exhibit significant diversity and 
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uniqueness, effectively mitigating the risk of mode collapse. This common issue in generative 

models limits output variety and restricts exploration of the design space. However, the 

consistently low SSIM values between any pair of generated images, as shown in Fig. 4, 

demonstrate the robustness of our model against mode collapse. This indicates the model's 

capability to explore a broad and varied design landscape, facilitating the generation of diverse 

and distinct structures, which is essential for effective generative modeling. 

 

 
Figure 4: SSIM analysis of generated images and training images for (a) T5 (index ∈ [1,5] for generated, 

index ∈ [6,10] for training), (b) T50 (index ∈ [1,10] for generated, index ∈ [11,20] for training), and (c) T100 

Models (index ∈ [1,10] for generated, index ∈ [11,20] for training). 

3.2 Analysis for stress prediction errors and distributions 

3.2.1 Qualitative analysis 

Fig. 5 compares two synthetic images alongside their actual ground truth counterparts. Our 

analysis reveals that the models successfully capture key features, including stress 

concentration on rigid phase, especially on thinner regions, meaning that those regions are 

prone to crack initiation and failure of the structure. The synthetic stress fields display a von 

Mises stress value close to zero in the soft phase, indicating that the rigid phase bears the 

majority of the load. This observation aligns well with the ground truth stress fields. 
 



Milad Masrouri, Zhao Qin 

 15 

3.1.2 Quantitative analysis 

For evaluating the accuracy of the models, we use pixel-wise root mean square deviation 

(RMSE) and the structural similarity index (SSIM). Pixel-wise RMSE quantifies the 

dissimilarity between two images by calculating the square root of the average squared 

differences in pixel values. This involves determining the squared differences in intensity 

values for corresponding pixels, reflecting the disparity in stress levels at specific locations. 

The resulting single numerical value encapsulates the overall difference in pixel intensities, 

offering a measure of how effectively one image aligns with another in terms of stress intensity. 

Since there is no specific RMSE threshold that defines good model performance, we use SSIM 

to enhance our understanding of the models' performance, recognizing that a diverse set of 

metrics provides a more comprehensive assessment. SSIM evaluates the perceived quality of 

two images by analyzing their structural information, including luminance, contrast, and 

structure. Unlike pixel-wise RMSE, SSIM considers these aspects in its assessment. The SSIM 

index is computed by analyzing the mean, standard deviation, and cross-covariance of these 

components, ultimately providing an overall index that ranges from -1 to 1, where higher values 

indicate greater structural similarity between the images. Fig. 5 shows the comparison between 

the synthetic images (generated by Generative AI) and the ground truth images (LAMMPS 

output) for two structures. The pixel-wise difference map highlights variations in stress 

distribution by contrasting the values of corresponding pixels. The normalized RMSE values 

demonstrate that the model achieves a sufficient level of accuracy, making it suitable for 

predicting stress distribution within random IPC composite structures. However, it is important 

to note that the SSIM values, which quantify structural similarity, do not reach the ideal level 

of 100% similarity (1). We assume that an SSIM higher than 0.5, when accompanied by a 

sufficiently small RMSE, indicates satisfactory alignment of stress distribution. 

 
 

Figure 5: Comparison b etween synthetic and the corresponding ground truth stress fields. The error map 

employs a "Blues" heatmap to represent normalized error values, where lighter pixels correspond to lower errors 

and darker blue pixels indicate higher error magnitudes. 
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3.1.2.1 Effect of training data size on model’s performance 

To assess the impact of the number of training images on the precision of the LoRA model, 

we train models T2, T5, T10, T25, T50, T100, T125, and T150. For each model, we generate 

10 images and repeat the model validation process by comparing synthetic images with their 

corresponding ground truth images. The comparison shown in Fig. 6 demonstrates that while 

there is no significant visual improvement in the accuracy of the models with an increasing 

number of training images, the ability of the model to explore and generate a diverse range of 

structures improves with more training data. Models trained with fewer images (e.g., T2) tend 

to be biased towards the limited training data, leading to a smaller design space. In contrast, 

models trained with more images (e.g., T100, T150) are capable of designing more varied and 

unique structures, indicating a broader and richer design space. 

   In Fig. 7a, we present the RMSE and SSIM values for each model. Notably, the lowest 

RMSE value is observed T100, whereas the T125 model demonstrates the highest SSIM value. 

To select the most accurate model, we undertake a process of normalizing the RMSE and SSIM 

values and then calculate the aggregate error. Higher RMSE values denote heightened error 

levels, whereas lower SSIM values signify increased error. The combined error considers the 

normalized RMSE and SSIM values, standardizing them onto a uniform scale, for the 

computation of the overall error associated with each model. The combined error is calculated 

by Eq. (19). 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 = 𝜔1 ∗ 𝑅𝑀𝑆𝐸norm + 𝜔2 ∗ 𝑆𝑆𝐼𝑀norm (19) 

where 𝑅𝑀𝑆𝐸norm = (
𝑅𝑀𝑆𝐸−min(𝑅𝑀𝑆𝐸)

max(𝑅𝑀𝑆𝐸)−min(𝑅𝑀𝑆𝐸)
) , 𝑆𝑆𝐼𝑀norm = (

max(𝑆𝑆𝐼𝑀)− 𝑆𝑆𝐼𝑀

max(𝑆𝑆𝐼𝑀)−min(𝑆𝑆𝐼𝑀)
) , 𝜔1 =

0.5 and 𝜔2 = 0.5 denotes the weights of RMSE and SSIM respectively, showing the relative 

impact of RMSE and SSIM on the combined error. RMSEnorm is a normalized term that gives 

the pixel-wise difference between ground truth and synthetic images and has a value from 0 

(identical) to 1 (very pixel-wisely different) for each generated design. SSIMnorm is a normalized 

term that gives the overall difference between ground truth images and synthetic images and 

varies from 0 (identical) to 1 (very overall different). This normalization process allows for the 

fair assessment of the combination, ensuring that the lowest RMSE and the highest SSIM were 

represented by consistent values. We seek to determine the most favorable combination of 

RMSE and SSIM as a measure of accuracy of the models. We address this multi-objective 

decision-making by developing a combined error function that combines RMSE and SSIM 

errors. The objective is to minimize the combined error, which in practice means searching for 

a combination that achieves the lowest RMSE while maximizing SSIM simultaneously. Fig. 7b 

shows the combined error for each model, indicating that T100 has the lowest combined error. 

This outcome signifies that T100 exhibits the highest level of accuracy. Achieving this level of 

accuracy with only 100 training images highlights the significant advantages of our approach 

compared to the conventional deep learning methods. For instance, Zhenze et al. required a 

dataset of 2000 paired training composite configurations to achieve acceptable accuracy when 

using the cGAN method to predict the stress or strain field binary composites microstructure 

[61]. Gu et al. generated a total of 80,000 random microstructures as the training data to predict 

composite material employing CNN [62]. Mann et. al used 12,800 training configurations to 

capture highly non-linear microstructure-property in high contrast composite material systems 

by developing a new CNN architecture [63]. Kim et al.  developed a CNN-based model aimed 
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at predicting the transverse mechanical behavior of unidirectional composites. This model uses 

9000 microstructure images as input datasets to predict the stress-strain curves of the 

composites in the transverse direction [64]. These numbers are orders of magnitude larger that 

the size of data set we use. While our method focuses on predicting stress distribution in various 

complex IPCs, as opposed to the studies mentioned that predict mechanical properties, we are 

optimistic that our approach has the potential to pave the way for the development of data-

efficient methods for predicting the correlation between mechanics and structure.  

We also observe that T2 model, using just 2 training images, can produce stress fields and 

composite structures although they exhibit lower accuracy compared to the T100 model. T2 

model struggles to predict stress concentration regions within the stress field but is proficient 

in showing the overall Von Mises stress distribution in both rigid and soft phases. This 

distinction underscores the significance of our model, which can achieve its performance with 

just two training images, highlighting its efficiency and non-dependence on extensive data. 

 
Figure 6: Comparison of synthetic and ground truth images for models trained with different numbers of 

images: (a) T2 (trained with 2 images), (b) T50 (trained with 50 images), (c) T100 (trained with 100 images), 

and (d) T150 (trained with 150 images). Each pair of images consists of a synthetic image (left) and a ground 

truth image (right). Visually, there is no significant difference in the accuracy of the models with increasing 

training dataset size. However, with more training data, the design space learned by the model expands, enabling 

the generation of more diverse structures. In contrast, models trained with fewer images show a tendency to 

become biased towards the training data, resulting in a smaller design space. 
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Figure 7: Comparison of (a) normalized RMSE and SSIM and (b) Combined error for the models with 

different number of training images, computed with Eq. (19). All other hyperparameters such as optimizer type, 

learning rate, network architecture remains the same for different models. 

4 CONCLUSIONS 

In this study, we effectively combined Molecular Dynamics and generative AI techniques, 

enabled through SD, to design and rapidly predict the stress fields of complex composites under 

mechanical load, demonstrating the powerful synergy between these components. By 

leveraging MD simulations for initial data generation and employing the high-dimensional 

data-learning capabilities of SD, particularly through LoRA, we have effectively created an AI 

model to rapidly find and utilize structure-mechanics correlation to design complex IPC 

structures. We demonstrate that outputs of multiscale modeling can finely tune generative AI 

models. It forms a rapidly evolving technique that can understand and massively produce 

distinctive designs in response to simple natural language instructions. This tool will, therefore, 

reduce the technical barrier and computational amount for regular users of numerical modeling. 

The predicted outcome can be directly applied to composite synthesis for validation or 

application to broad engineering fields, including aerospace, wind energy industry, high-end 

automotive, healthcare, sports gear, and construction restoration, by generating coherent 

designs not limited by human experience or existing models or trapped by local optimal results. 
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