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ABSTRACT 

This paper presents the methodology for calculating the peak deviator stress and strain at peak deviator stress 

uncertainty of triaxial compression tests on water saturated, non-cohesive soils consolidated under isotropic conditions. 

A silicious sand sample is prepared in the same way to produce identical cylindrical specimens. These are then tested 

under the same conditions. Type A and type B uncertainty are calculated separately and used to yield the 

combined and expanded uncertainty of the main results, peak deviator stress and strain at peak deviator stress. For 

both measurands, type A uncertainty is significantly higher that type B and it is the factor mainly affecting the overall 

uncertainty of the results. 
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1. Introduction

When all of the known or suspected components of

error have been evaluated and the appropriate corrections 

have been applied, there still remains an uncertainty 

about the correctness of the stated result, that is, a doubt 

about how well the result of the measurement represents 

the value of the quantity being measured. (IPM et al. 

2008, 0.2). In order for a measurement result to be 

meaningful, it must be accompanied by a quantified 

indication of its quality and reliability. This is the 

measurement uncertainty. 

While the concept of error has always been 

considered when making measurements and reporting 

results, uncertainty is a more recent approach. Error 

focuses on the worst case and aims to determine the 

maximum possible error so that any conclusions tend 

towards the conservative. Uncertainty focuses on 

probability. The aim is to determine the most probable 

range for the result and the possibility of a measurement 

lying outside this range. (IPM et al. 2008). 

The term “uncertainty” might be perceived as a 

theoretical and qualitative one. Yet IPM et al. (2008) 

gather all the principles and present in detail the 

methodology to be followed to determine measurement 

uncertainty. The metrologist needs a thorough 

understanding of the measurement to initially identify 

and then quantify the parameters that influence its 

uncertainty. IPM et al. (2008) refer to the “art of 

measurement” because both an insight into the depths of 

the measuring model and a good understanding of the 

mathematical tools necessary to describe the 

measurement and its uncertainty are required. 

Accredited laboratories are required to determine 

measurement uncertainty. However, as geotechnical test 

results do not have to comply with specification limits or 

legal requirements, uncertainty is rarely reported.  

The triaxial compression test is fundamental in 

geotechnical engineering. The information this provides 

on the mechanical properties of soils helps foundation 

designers to understand how the soils investigated would 

behave under stress. This paper presents the methodology 

used to determine the uncertainty of the two basic results 

of a triaxial test, peak deviator stress and strain at peak 

deviator stress. The principles of triaxial tests are 

described first, together with the conditions applied. 

Then the focus moves to the mathematical models for 

determining the uncertainty of the results, the 

assumptions for calculating uncertainty, and the final 

uncertainty values. Finally, the outcome and potential 

future steps are discussed. 

2. Triaxial tests

A measurement begins by specifying the measurand,

the method of measurement, and the measurement 

procedure. (IPM et al. 2008, 3.1.1).  

2.1. Basic principles of triaxial tests 

The objective of triaxial testing is to assess the 

mechanical properties of a cylindrical soil specimen. 

Testing is performed within a cell where the pressure can 

be controlled and maintained. The pressure is often set to 

replicate the in-situ conditions of the soil. The specimen, 

confined within a watertight membrane, is initially 

saturated so that all air voids are filled with water, then 

consolidated to return to its in-situ stress conditions. 

Finally, during the compression stage, force is applied 

vertically to the sample in either drained or undrained 

conditions. During the compression stage, several 

parameters are measured and the test continues until the 

sample fails. The peak deviator stress and the strain at 

peak deviator stress are calculated as the main results.  

Triaxial compression tests are carried out as described 

in ISO 17892-9:2018 (ISO 2018). 



 

2.2. Measurement equipment and resolution 

The initial sample dimensions are measured with 

electronic calipers, reading to 0.01 mm and accurate to 

0.05 mm.  

The applied vertical force is measured through load 

cells, which are compensated for the applied pressures. 

The load cells are of various capacities; the maximum 

accepted error is 1% of the applied load for force 

measurements above 10% of their capacity. 

Linear displacement transducers reading to 0.001 mm 

and accurate to 0.1 mm are used to measure the change 

in height of the specimen. 

Automatic volume change apparatus or pressure 

controllers, both reading to 0.001 cm3 and accurate to 0.2 

cm3, measure the change in volume caused by water 

moving in or out of the sample. 

Pressure transducers of various capacities measure 

pore-water pressure and cell pressure. The transducers 

have a resolution from 1 kPa to 2 kPa depending on their 

capacity. The maximum accepted error is 0.25% of the 

transducer’s full range, which might be up to 7.5 kPa for 

a 3000 kPa transducer. 

3. Exercise layout 

The total number of tests included in this paper is 140. 

Tests were conducted from June 2020 until September 

2023 by 17 technicians, using 34 different triaxial testing 

systems with a variety of measuring devices.  

3.1. Material used 

A washed, dried, and closely graded silica sand with 

a 99.8% content of SiO2 was used to prepare the 

specimens. The sand originated from the Lower 

Greensand Formation in Bedfordshire, UK. Its particles 

were rounded to subangular, with a grading of more than 

99% passing 600 μm and less than 1% passing 63 μm. 

The particle density was 2.65 gr/cm3. 

3.2. Test conditions 

The sand samples were wetted to an initial moisture 

content of 10% by mass and compacted to an initial dry 

density of 1.60 ± 0.2 gr/cm3 using the Ladd 

undercompaction method (Ladd 1978). The cell pressure 

was set to 150 kPa. Initial saturation was performed 

either by incremental increase or by slowly ramped 

increase of pressure. Consolidation was then carried out 

under isotropic conditions, with the pressure applied to 

the sample being the same in all three directions. 

Shearing was performed under drained conditions, 

allowing water to flow freely out of the sample and 

maintaining constant pore water pressure during 

compression. 

The laboratory’s temperature was maintained 

between 18°C and 22°C throughout the tests. 

3.3. Formulas for peak deviator stress and 

strain 

Deviator stress is calculated from the force applied to 

the specimen divided by the area to which that force is 

applied – the cross-sectional area of the cylindrical 

specimen. During a drained test, this area changes as the 

sample is compressed, based on the change in height of 

the sample and the volume change caused by water 

moving out of the sample. Strain, as a percentage, is 

calculated by dividing the change of height of the 

specimen by its initial height. The relevant formulas are 

all given in the testing standard. The peak deviator stress 

and strain at peak deviator stress are calculated from 

quantities directly measured during the test. The main 

measurement models are presented in Section 5.1. 

4. Principles and methodology for 
measurement uncertainty 

Although taking measurements is a specified, strict 

process, the results are heavily driven by statistics. This 

is because the metrologist needs to evaluate whether the 

data obtained during experiments reflect reality or if they 

are random deviations from it. This is the reason why the 

result of a measurement is not univocal. It depends on 

several parameters and thus can be considered a 

stochastic variable (Mathioulakis 2004). 

4.1. Basic concepts of uncertainty 

The basic mathematical model for a measurand is 

shown in Eq. (1), where Y is the measurand and Xi are N 

quantities Y is determined from. Considering xi as the 

best estimate for Xi, then the best estimate of Y is y. 

𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑁) → 𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑁) (1) 

Uncertainty is divided in two types, type A and type 

B, indicating the two different ways of evaluating 

uncertainty components. A type A standard uncertainty 

is obtained from a probability density function derived 

from an observed frequency distribution, while a type B 

standard uncertainty is obtained from an assumed 

probability density function based on the degree of belief 

that an event will occur. Both types of evaluation are 

based on probability distributions, and the uncertainty 

components resulting from either type are quantified by 

variances or standard deviations (IPM et al. 2008). 

Strictly by definition, uncertainty is the standard 

deviation of the distributions mentioned above. Variance, 

the standard deviation squared, is a more fundamental 

property and more widely used as a measure of the 

uncertainty. In the following sections, the term 

‘uncertainty’ is used to mean both the variance and the 

standard deviation. Symbols, squared or not, indicate 

exactly which. All steps up to combined uncertainty are 

referred to in terms of variance, and the final expanded 

uncertainty is referred to in terms of standard deviation. 

To be more precise, the distinction between type A 

and B uncertainties should not focus on their nature, as 

they are both probability density functions. It should 

focus on the way they are estimated (Mathioulakis 2004). 

The combined standard uncertainty arises from 

multiple input quantities and is determined by 

considering all variance and covariance components 

through the application of the law of propagation of 

uncertainty. 

The expanded uncertainty is finally calculated, 

choosing a coverage factor, to provide a range of values 

most likely to include the measurement result. 



 

4.2. Type A uncertainty 

Considering normal distribution, in a set of n 

repeated, independent observations of quantity q under 

the same conditions, the best estimate of q is their average 

according to Eq. (2). 

𝑞̅ =  ∑ 𝑞𝑘

𝑛

𝑘=1

 (2) 

The type A uncertainty of q is given by the variance 

of the mean 𝑠2(𝑞̅) as shown in Eq. (3). 

𝑠2(𝑞̅) =
𝑠2(𝑞𝑘)

𝑛
=  

1

𝑛(𝑛 − 1)
∑(𝑞𝑗 − 𝑞̅)

2
𝑛

𝑗=1

 (3) 

To evaluate type A uncertainty, independent 

observations must be performed under repeatability 

conditions to ensure that the results are not influenced by 

systematic components. Moreover, this type of 

uncertainty does not give any information on the 

reliability of the method or the measuring apparatus and 

can produce distorted results when the observations are 

less than 10 (Mathioulakis 2004). 

4.3. Type B uncertainty 

When repeated observations are not feasible, the 

metrologist needs to find other sources to evaluate 

uncertainty. These might include previous experience, 

manufacturer specifications, calibration certificates, 

limitation of use based on operation principles, and more. 

The only example described here, which is commonly 

used, is the declared error. Where it is stated that the 

value of Xi lies within the interval of ± b, there is 100% 

probability that Xi is between 𝑥𝑖 − 𝑏 and 𝑥𝑖 + 𝑏. Without 

knowing where exactly in this range the value of Xi might 

be, xi follows a rectangular distribution and the associated 

variance is given in Eq. (4). 

𝑢2(𝑥𝑖) =
(2𝑏)2

12
→  𝑢2(𝑥𝑖) =

𝑏2

3
 (4) 

4.4. Combined uncertainty 

Following the Eq. (1) model, the combined standard 

uncertainty of y, uc(y), is obtained using the law of 

propagation of uncertainty. According to it, the combined 

standard uncertainty is the positive square root of the 

combined variance 𝑢𝑐
2(𝑦), given in Eq. (5) where 𝑢(𝑥𝑖 , 𝑥𝑗) 

is the estimated covariance associated with xi and xj, and 

is given as a function of the correlation coefficient r in 

Eq. (6). 

𝑢𝑐
2(𝑦) = ∑ (

𝜕𝑓

𝜕𝑥𝑖
)

2

𝑢2

𝑁

𝑖=1

(𝑥𝑖) + ∑ ∑
𝜕𝑓

𝜕𝑥𝑖

𝜕𝑓

𝜕𝑥𝑗
𝑢(𝑥𝑖 , 𝑥𝑗)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 (5) 

𝑟(𝑥𝑖 , 𝑥𝑗) =
𝑢(𝑥𝑖 , 𝑥𝑗)

𝑢(𝑥𝑖)𝑢(𝑥𝑗)
 (6) 

Where all xi variables are independent, then 

𝑟(𝑥𝑖 , 𝑥𝑗) = 0 and Eq. (5) is simplified to Eq. (7). 

𝑢𝑐
2(𝑦) = ∑ (

𝜕𝑓

𝜕𝑥𝑖
)

2

𝑢2

𝑁

𝑖=1

(𝑥𝑖) (7) 

To calculate the combined uncertainty, all incoming 

uncertainties must have the same probability and refer to 

the same confidence interval. Whether they are type A or 

type B is irrelevant. 

4.5. Expanded uncertainty 

The expanded uncertainty U is obtained by 

multiplying the combined standard uncertainty 𝑢𝑐(𝑦) by 

a coverage factor k according to Eq (8). 

𝑈(𝑦) = 𝑘𝑢𝑐(𝑦) (8) 

The result of a measurement is then conveniently 

expressed as Y = y ± U, which is interpreted to mean that 

the best estimate of the value attributable to the 

measurand Y is y, and that y − U to y + U is an interval 

that may be expected to encompass a large fraction of the 

distribution of values that could reasonably be attributed 

to Y (IPM et al. 2008, 6.2.1). 

5. Deviator stress and strain results 

5.1. Measurement model 

The measurement models for peak deviator stress and 

strain at peak deviator stress, following the 

ISO 17892-9:2018 (ISO 2018) standard test method, are 

given in Eq. (9) and (10). 

𝜎𝑣 =
4000𝐹(𝛨0 − 𝛥𝛨)

𝜋𝐷0
2𝐻0 − 4𝛥𝑉

→ 𝜎𝑣 = 𝑓(𝐹, 𝛨0, 𝛥𝛨, 𝐷0, 𝛥𝑉)  (9) 

𝜀 =
𝛥𝛨

𝛨0
100 → 𝜀 = 𝑓(𝛨𝜊, 𝛥𝛨) (10) 

Where: 

• σv (kPa) is the peak deviator stress; 

• F (N) is the force applied at peak stress; 

• H0 (mm) is the initial height of the specimen; 

• ΔH (mm) is the change in height of the specimen 

at peak deviator stress; 

• D0 (mm) is the initial diameter of the specimen; 

• ΔV (mm3) is the change in volume of the specimen 

caused by the drainage of water; 

• ε (%) is the strain, the percentage of change in 

height of the specimen at peak deviator stress. 

5.2. Test results 

Fig. 1 and 2 present peak deviator stress and strain 

results. 

 
Figure 1. Peak deviator stress σv (kPa) results  

 
Figure 2. Strain at peak deviator stress ε (%) results  



 

Probability density distribution charts were used to 

check the results for symmetry and quantile–quantile 

plots to check for normality. All the results were found to 

follow normal distribution as shown in Fig. 3 and 4. 

 
Figure 3. Distribution of test results  

 
Figure 4. Quantile-Quantile (QQ) plot of test results. 

6. Type A uncertainty 

6.1. Calculation of type A uncertainty 

When the objective is to calculate the uncertainty of 

a method, type A uncertainty should be evaluated under 

repeatability conditions where the operator carries out 

repeated tests on the sample within a short period of time, 

under the same conditions and using the same equipment, 

as outlined in ISO 5725-1:2023 (ISO 2023). However, 

the objective in this exercise is to evaluate the uncertainty 

of the laboratory, accounting for all involved equipment 

and personnel, under intermediate precision conditions. 

Several different intermediate checks were made with 

the available data. Type A uncertainty for peak deviator 

stress and strain at peak deviator stress was calculated for 

individual technicians using a number of testing systems 

and for a number of technicians using individual testing 

systems. The results are presented in tables 1 and 2 

respectively.  

Table 1. Type A uncertainty for technicians 

Technician 
No of 

systems 

No of 

tests 

σv (kPa) 

average 
s2(σv) 

ε (%) 

average 
s2(ε) 

T1 7 18 593.8 103.7 2.7590 0.0237 

T2 10 21 555.3 122.2 3.0745 0.0105 

T3 12 29 572.9 289.1 3.2499 0.0165 

T4 6 16 604.0 162.4 2.8598 0.0092 

Table 2. Type A uncertainty for systems 

System 
No of 

technicians 

No of 

tests 

σv (kPa) 

average 
s2(σv) 

ε (%) 

average 
s2(ε) 

S1 4 17 538.3 424.1 3.2773 0.0303 

S2 4 13 605.3 219.0 2.8998 0.0673 

The above tables indicate that equipment variance is 

a little higher than the personnel variance.  

Type A uncertainty was eventually calculated from 

the whole data set of 140 test results. 

6.2. Type A uncertainty results 

Based on the above methodology and assumptions, 

type A uncertainty is 𝑢𝐴
2(𝜎𝑣) = 31.269 𝑘𝑃𝑎2 for peak 

deviator stress and 𝑢𝐴
2(𝜀) = 0.003344 %2 for strain at peak 

deviator stress. 

These results are considerably lower than the results 

shown in Tables 1 and 2. They incorporate significantly 

more variables, technicians and testing systems, but they 

are in total a lot more. The increased number of test 

results in principle lowers the uncertainty and gives an 

overall better estimation of how the measurands behave. 

7. Type B uncertainty 

7.1. Calculation of type B uncertainty from the 

mathematical model 

Following the mathematical models set in Eq. (9) and 

(10), it is evident that each of the measuring devices 

contributes its own uncertainty to the overall uncertainty 

of the output value of peak deviator stress and strain at 

peak deviator stress. The law of propagation of 

uncertainty, as shown in Eq. (5) using also Eq. (6), is in 

this case applied to calculate the type B uncertainty of 

peak deviator stress and strain at peak deviator stress as 

shown in Eq. (11) and (12) respectively. 

𝑢𝐵
2 (𝜎𝑣) = (

𝜕𝜎𝑣

𝜕𝐹
)

2
𝑢2(𝐹) + (

𝜕𝜎𝑣

𝜕𝐻0
)

2
𝑢2(𝐻0) +
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)

2
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𝜕𝐷0
)

2
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𝜕𝐹
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𝜕𝐻0
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2 (
𝜕𝜎𝑣

𝜕𝐹
) (

𝜕𝜎𝑣
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) (
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2 (
𝜕𝜎𝑣

𝜕𝐹
) (

𝜕𝜎𝑣

𝜕𝛥𝑉
)  𝑟(𝐹, 𝛥𝑉)𝑢(𝐹)𝑢(𝛥𝑉) +

2 (
𝜕𝜎𝑣

𝜕𝐻0
) (

𝜕𝜎𝑣

𝜕𝛥𝐻
)  𝑟(𝐻0, 𝛥𝐻)𝑢(𝐻0)𝑢(𝛥𝐻) +

2 (
𝜕𝜎𝑣

𝜕𝐻0
) (

𝜕𝜎𝑣

𝜕𝐷0
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𝜕𝜎𝑣

𝜕𝐻0
) (

𝜕𝜎𝑣

𝜕𝛥𝑉
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𝜕𝐷0
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𝜕𝛥𝑉
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) (
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𝜕𝛥𝑉
)  𝑟(𝐷0, 𝛥𝑉)𝑢(𝐷0)𝑢(𝛥𝑉)  

(11) 

  

𝑢𝐵
2 (𝜀) = (

𝜕𝜀

𝜕𝛨0
)

2
𝑢2(𝛨0) + (

𝜕𝜀

𝜕𝛥𝛨
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2
𝑢2(𝛥𝛨) +
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𝜕𝜀

𝜕𝛨0
) (
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𝜕𝛥𝛨
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(12) 

Where: 

• 𝑢(𝐹) is the uncertainty of load, equal to the 

uncertainty of the load cell; 

• 𝑢(𝐻0) is the uncertainty of the initial height, equal 

to the uncertainty of the caliper; 

• 𝑢(𝛥𝐻) is the uncertainty of the change in height, 

equal to the uncertainty of the linear displacement 

transducer; 

• 𝑢(𝐷0) is the uncertainty of the initial diameter, 

equal to the uncertainty of the caliper; 

• 𝑢(𝛥𝑉) is the uncertainty of the change in volume, 

equal to the uncertainty of the volume transducer. 

Except for the mathematical transformations to 

calculate the partial derivatives in Eq. (11) and (12), the 



 

other parameters needed to acquire type B uncertainty are 

the uncertainty of each measuring device, derived from 

its calibration records and the correlation coefficients r 

between the individual variables. These are described in 

the following paragraphs.  

7.2. Calculation of equipment uncertainty 

Any error found in measuring equipment should be 

corrected before uncertainty is calculated (IPM et al. 

2008). However, it is not possible to correct the errors of 

the measuring equipment used in triaxial tests. All the 

measuring devices described in Section 2.3 operate 

within a range and are calibrated at specified intervals. 

From these points a linear correlation a factor is derived 

and applied for the whole range. But this carries on an 

error, as the relationship is never perfectly linear. 

 Since errors cannot be corrected, they must be 

accounted for within the uncertainty of the measuring 

device. This has the unfortunate outcome that uncertainty 

is both overestimated and averaged over a range of 

results, thus increasing its value.  

The methodology described in IPM et al. (2008, 

F.2.4.5) was followed for including the error in the 

uncertainty budget. The other parameters included in it 

are the error and uncertainty of the reference equipment 

used, the standard deviation of the mean for repeated 

measurements, and the device resolution. The uncertainty 

results for force, change in height and volume, in terms 

of variance, are presented in Fig. 5, 6 and 7. 

 
Figure 5. Variance of load  

 
Figure 6. Variance of change in height  

 
Figure 7. Variance of volume  

As there are few calipers in the laboratory and it was 

not possible to trace which were used for each test, all the 

uncertainties for the calipers were calculated from 

calibrations done over the duration during which the tests 

were performed, by the same methodology. Their 

average was used as the uncertainty of the initial height 

𝑢(𝐻0) and diameter 𝑢(𝐷0) of the sample. That value, in 

terms of variance, is shown in Eq. (13). 

𝑢2(𝐻0) = 𝑢2(𝐷0) = 𝑢2(𝐶𝑎𝑙𝑖𝑝𝑒𝑟𝑠) = 0.000041 𝑚𝑚2 (13) 

One assumption made in this methodology is that the 

error is a linear function of the reference equipment units, 

introducing one more uncertainty parameter as this is not 

always the case. This uncertainty parameter was not 

quantified in this experiment as it was deemed 

insignificant compared with the others. 

7.3. Calculation of correlation coefficients 

The variables for calculating deviator stress and strain 

during triaxial tests cannot be considered independent. 

For deviator stress, the initial diameter and height are 

dependent on each other, as samples have a defined 

diameter to height ratio in the testing standard. Load, 

changes in height and volume changes are measured 

simultaneously during the same shearing process on the 

same sample. Similarly, for strain, change in height is 

dependent on the initial height. 

This qualitative suspicion was verified by following 

the Pearson correlation method. Although this method 

assumes linearity, it gives a strong indication of 

correlation and is suggested by IPM et al. (2008). 

According to it, two variables, x1 and x2, measured in k 

pairs with respectively 𝑥1̅̅̅ and 𝑥2̅̅ ̅ averages, have a 

correlation coefficient as shown in Eq. (14). 

𝑟(𝑥1, 𝑥2) =
∑(𝑥1 − 𝑥1̅̅ ̅) (𝑥2 − 𝑥2̅̅ ̅)

√∑(𝑥1 − 𝑥1̅̅ ̅)2 ∑(𝑥2 − 𝑥2̅̅ ̅)2
 (14) 

The correlation coefficients were calculated by 

applying Eq. (14) to the data from the 140 tests and are 

presented in Table 3. 

Table 3. Correlation coefficients 

Correlation 

coefficient 
Value 

Correlation 

coefficient 
Value 

𝑟(𝐹, 𝐻0) 0.805378 𝑟(𝐻0, 𝐷0) 0.915558 

𝑟(𝐹, 𝛥𝐻) 0.319700 𝑟(𝐻0, 𝛥𝑉) 0.496690 

𝑟(𝐹, 𝐷0) 0.797554 𝑟(𝛥𝐻, 𝐷0) 0.280781 

𝑟(𝐹, 𝛥𝑉) 0.519739 𝑟(𝛥𝐻, 𝛥𝑉) 0.551701 

𝑟(𝐻0, 𝛥𝐻) 0.322815 𝑟(𝐷0, 𝛥𝑉) 0.452457 

Normally a correlation coefficient below 0.3 implies 

a weak relationship between the two variables, between 

0.3 and 0.5 a moderate relationship, and above 0.5 a 

strong one. 

7.4. Type B uncertainty results 

All the data necessary to calculate type B uncertainty 

for every separate test, following Eq. (11) for peak 

deviator stress and Eq. (12) for strain at peak deviator 

stress, were obtained by following the process outlined 

above. 

 Type B uncertainty for peak deviator stress 

Equation (11) is the sum of 15 different summands, 

each derived from a different source of uncertainty. 



 

These summands are calculated and presented separately 

to make it possible to identify which factors have a 

greater effect on the final uncertainty. The first five 

summands are labelled as v and the correlated summands 

as r. They appear in Eq. (11) in the order they are 

presented in Fig. 8 and 9. The first factor for load has 

been separated as those results were significantly 

different. 

 
Figure 8. Variance due to force  

 
Figure 9. Variance due to all factors in Eq. (11)  

While not all the factors are clearly distinguished, it 

is evident that most fluctuate very close to 0, with some 

varying between − 0.2 and + 0.2. The force uncertainty is 

an order of magnitude higher, with most values between 

0 and 2 and some as high as 4. 

The total type B uncertainty based on the individual 

equipment used, calculated by applying Eq. (11) and 

summing all parts, is presented in Fig. 10. 

 
Figure 10. Type B uncertainty for peak deviator stress  

A comparison of graphs 8, 9 and 10 shows that force 

is the most significant factor affecting type B uncertainty. 

All other factors have less influence. 

 Type B uncertainty for strain at peak deviator 
stress 

The three summands of Eq. (12) are plotted separately 

in order to identify the parameter that has the most 

significant effect on type B uncertainty for strain. These 

summands are shown in Fig. 11. 

 
Figure 11. Variance due to all factors in Eq. (12) for strain 

Fig. 11 shows that, for strain at peak deviator stress, 

each parameter is affected to a different order of 

magnitude: uncertainty due to initial height is calculated 

to the 8th decimal; uncertainty due to covariance of initial 

height and change in height is calculated to the 6th 

decimal; and uncertainty due to change in height is 

calculated to the 4th decimal. Thus the last one is 

significantly impacting type B uncertainty for strain. 

The overall type B uncertainty for strain is plotted in 

Fig. 12 and, as expected, overall type B for strain is 

almost equal to uncertainty due to change in height. 

 
Figure 12. Type B uncertainty for strain at peak deviator stress 

8. Combined standard uncertainty 

Type A and type B uncertainty have now been 

calculated for each of the individual test results. Eq. (15) 

gives the combined uncertainty for peak deviator stress 

and Eq. (16) for strain at peak deviator stress, using the 

law of propagation of uncertainty. 

𝑢𝐶
2(𝜎𝑣) = 𝑢𝐴

2(𝜎𝑣) + 𝑢𝐵
2 (𝜎𝑣) (15) 

𝑢𝐶
2(𝜀) = 𝑢𝐴

2(𝜀) + 𝑢𝐵
2 (𝜀) (16) 

As type A uncertainty, for both results, is higher than 

type B, it is evident that this will drive the final results. 

8.1. Peak deviator stress combined uncertainty 

The results of Eq. (15) are plotted in Fig. 13, which 

shows the combined uncertainty for peak deviator stress. 

 
Figure 13. Combined uncertainty for peak deviator stress  

Fig. 10 and 13 are identical in shape, with Fig. 13 

shifted upwards by the amount of type A uncertainty. 



 

8.2. Strain at peak deviator stress combined 

uncertainty 

The results of Eq. (16) are plotted in Fig. 14, which 

shows the combined uncertainty for strain at peak 

deviator stress. 

 
Figure 14. Combined uncertainty for strain at peak deviator stress 

The impact of type A uncertainty is again the most 

significant. The slight variation is due to type B 

uncertainty, but all results have shifted to be almost equal 

to type A uncertainty. 

9. Expanded uncertainty 

9.1. Calculation of expanded uncertainty 

According to Eq. (8), a coverage factor (k) must be 

chosen to calculate the expanded uncertainty. The 

coverage factor is generally based on the level of 

confidence required and the distribution followed by the 

measurement result. 

9.2. Selection of coverage factor 

Peak deviator stress and strain standard uncertainties 

are calculated from separate uncertainty factors, adding 

up to 16 for stress and 4 for strain. In both these cases, 

based on the central limit theorem, it can be safely 

assumed that the overall combined uncertainty follows 

the normal distribution (IPM et al. 2008). 

Both deviator stress and strain results also follow a 

normal distribution, as described in Section 5.2. 

Based on the above, normality can be assumed for the 

two measurands and their corresponding uncertainties. 

Therefore, a coverage factor of 2 will lead to a 95% level 

of confidence, and a coverage factor of 3 to a 99.7% level 

of confidence. A 95% level of confidence is normally 

acceptable in this this type of testing.  

For each individual test result, the combined 

uncertainty is calculated as the positive square root of the 

combined variance. This is then multiplied by the 

coverage factor to yield the expanded uncertainty 

according to Eq. (17) and (18). 
𝑈(𝜎𝑣) = 2𝑢𝑐(𝜎𝑣) (17) 
𝑈(𝜀) = 2𝑢𝑐(𝜀) (18) 

Expanded uncertainty is then averaged across all 140 

tests. Percentage expanded uncertainty is also calculated 

for every test and averaged across all results. 

9.3. Expanded uncertainty results 

Fig. 15 and 16 show expanded uncertainty results, in 

terms of standard deviation, for peak deviator stress and 

strain at peak deviator stress respectively. Table 4 

summarises all the uncertainty results, including 

uncertainty as a percentage. 

 
Figure 15. Expanded uncertainty for strain at peak deviator stress 

 
Figure 16. Expanded uncertainty for strain at peak deviator stress 

Table 4. Final uncertainty results 

 
Peak deviator 

stress σv (kPa) 

Strain 

ε (%) 

Average test result 593 2.97 

Average combined uncertainty u 5.7 0.059 

Average expanded uncertainty U 11 0.117 

Average percentage expanded 

uncertainty U 
1.9 % 4.2 % 

10. Discussion 

10.1. Evaluation of results and conclusions 

 Equipment calibration uncertainty 

The calibration results indicate a spread of 

uncertainty depending on the type of measuring 

equipment used. The equipment used in the laboratory 

varies in operating principle, make and model, capacity, 

and length of time in service. All these factors affect 

overall error and calibration uncertainty. 

For load cells in particular, uncertainty and error 

increase towards the lower end of their capacity. This 

means that if a higher capacity load cell is used in a test, 

and the final load is less than 20% of its maximum 

capacity, the load uncertainty will be higher than that 

obtained using a lower capacity load cell, where the peak 

load was achieved above 20% of its maximum capacity. 

Regarding volume, triaxial machines use two 

different types of devices: automatic volume change 

apparatus and pressure controllers. These operate 

differently and achieve different accuracies and 

uncertainties. 

Calipers have three functions, measuring internal 

diameter, external diameter and depth, and these are 

calibrated separately. Each comes with different errors 

and different uncertainties, although these are not 

significant. Sample dimensions might be measured in any 

of these ways, and so the final error and uncertainty might 

vary slightly. 



 

Deformation is usually measured externally and not 

directly on the sample. Minor variation from vertical 

direction as well as surface texture of the point where the 

transducer comes in contact with the frame, increase the 

measurement uncertainty. 

Equipment uncertainty could be calculated more 

efficiently if the error had already been corrected. 

However, due to the nature of this type of test, Section 

10.1.2 shows that this would not be expected to affect the 

overall results significantly. 

 Comparison between type A and type B 
uncertainty results 

The difference between type A and B uncertainties in 

both peak deviator stress and strain at peak deviator stress 

was significant. All the uncertainties that contributed to 

the final test result through the measuring devices were 

essentially insignificant and had almost no effect on 

uncertainty. The most important factor appeared to be 

type A uncertainty, the random variability of repeated 

test results. 

 Overall uncertainty results 

Table 2 shows 11 kPa (1.9%) uncertainty for peak 

deviator stress and 0.117 % (4.2%) uncertainty for strain 

at peak deviator stress. These results appear to be normal, 

and relatively low when the number of factors affecting 

the overall result is taken into account. 

10.2. Considerations for further steps 

This paper describes a methodology for calculating 

the peak deviator stress and strain uncertainty of 

isotropically consolidated triaxial compression tests on 

saturated non-cohesive soils. Some issues still remain to 

be addressed and considered. 

The specimen’s dry density was prescribed between 

1.58 and 1.62 gr/cm3. No record was kept of the exact 

achieved density of each specimen, adding an extra 

uncertainty parameter. To increase the reliability of the 

uncertainty results, this should be quantified either by 

ensuring that all test results are performed with the exact 

same dry density or by dividing the comparisons for each 

density value. The same applies to the initial water 

content, which also strongly influences initial bulk and 

dry density. However, as the sample is saturated, its 

overall effect is probably insignificant. 

The Ladd (1978) undercompaction method attempts 

to produce homogenous specimens, but this is only an 

indication and is not verified. If (some) specimens do not 

have a uniform structure throughout, this could be a 

parameter potentially affecting uncertainty. 

The layout of the experiment indicates uncertainty in 

a very narrow range of triaxial test results and conditions. 

As only one material was tested, no assumptions can be 

made about the behaviour of coarser or finer sands, or 

how the same material will behave in different densities 

and under different pressures, or what the uncertainty for 

undisturbed cohesive samples will be. Each of these is a 

separate exercise on its own. 

Significantly, initial sample height was assumed to be 

the height calculated at the end of consolidation rather 

than the actual initial height measured at the beginning of 

the test. As the focus was on the shear stress of the 

sample, the effect of this is expected to be minor and to 

be reduced further based on the conclusions regarding 

type A and B uncertainties above. Nevertheless, the 

initial height uncertainty should be added to the change 

in height uncertainty during the consolidation stage to 

obtain the overall height uncertainty at the beginning of 

the shearing stage 

All the tests specify a cell pressure to be achieved. 

The actual cell pressure achieved, and whether it was 

different from the target, has not been verified. As the 

results passed the laboratory’s quality assurance checks, 

even if they deviated, any difference would only have 

been a few kPa. But even a small variation in cell 

pressure is expected to influence the test results and their 

respective uncertainties. 

Finally, the shear stress of the membrane used to 

confine the sample was not considered. The ISO 17892-

9:2018 (ISO 2018) standard specifies a nominal shear 

stress to be used, and the peak deviator stress is then 

adjusted based on the membrane thickness and the strains 

that occur in the sample. The results are in the region of 

a few kPa and thus, assuming the uncertainty is of the 

same order of magnitude as for the sample, probably have 

insignificant influence on the sample’s peak deviator 

stress uncertainty. But it would be worth carrying out 

tests to measure both the membrane’s deviator stress and 

the corresponding uncertainty. 
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