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ABSTRACT  

Non-linear soil behaviour adds complexity in accurate parameter selection for numerical modelling. One of these param-

eters is the small-strain shear stiffness. This parameter depends strongly on the soil mass density and the shear wave 

velocity; the latter can be determined through in-situ tests or laboratory tests. The paper focuses on training various ma-

chine learning models to predict shear wave velocity estimates based on raw data from cone penetration test soundings. 

Three decision tree algorithms are considered for the analysis: XGBRegressor, HistGradientRegressor, and Random-

Forest. Various data preprocessing approaches are investigated, including noise removal and outlier identification, to 

assess their impact on the model performance. The results indicate that different data preprocessing approaches yield 

significant differences in the model performances. When applied to unseen raw data from a sand site of the Norwegian 

GeoTest Site, the model demonstrates promising predictive capabilities and is in a good agreement with well-known 

correlations. This study underlines the importance of data quality and preprocessing for reliable machine learning models. 

To enhance transparency and reproducibility, a GitHub repository with all the used files is made available online. 
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1. Introduction 

It is well known that soil behaviour is highly non-

linear, which adds complexity to the parameter selection 

in numerical modelling. One of these parameters is the 

shear stiffness that decreases with increasing strain level. 

This has led to the development of constitutive models 

which explicitly account for strain-induced shear 

stiffness degradation. In these constitutive models, the 

stress-dependent shear stiffness at very small strains is 

commonly incorporated as input parameter, denoted as 

G0. This parameter depends on the soil mass density ρt 

and the shear wave velocity vs; the latter can be 

determined through in-situ tests (e.g. seismic cone 

penetration tests) or laboratory tests (e.g. bender element 

tests) (Mayne 2014). The focus of this paper is on in-situ 

tests. 

While an understanding of the local geology and 

experience with comparable sites can provide valuable 

insights into ground conditions, data analysis through site 

investigations provides more precise quantitative details 

of the ground conditions at a particular site (Marzouk et 

al. 2024). Geotechnical practice has traditionally relied 

on empirical methods. However, bridging the gap 

between data and decision-making often involves 

statistical tools and engineering judgement (Phoon et al. 

2022a).  

Machine learning (ML) has been applied to the 

development of prediction models for soil correlations 

due to its ability to extract valuable insights from large 

and multidimensional datasets (Phoon et al. 2022b). 

There has also been increasing interest in the application 

of ML to soil parameter determination (e.g. Zhang et al. 

2022; Patino-Ramirez et al. 2023). The use of ML can 

increase the reliability of parameter determination and 

consequently improve the fidelity of numerical 

simulations. To reduce the uncertainty in the ML-based 

parameter calibration process, the Computational 

Geotechnics Group at Graz University of Technology 

(TU Graz) aims to determine soil parameters for 

constitutive models using ML algorithms applied to 

standard soil tests and in-situ tests (e.g. Erharter et al. 

2023). 

In this paper, supervised ML algorithms are applied 

using raw in-situ data (mainly from CPT tests) as training 

data to predict shear wave velocity estimates. The paper 

begins with a description of the database used for ML 

model training, data preprocessing, and evaluation of 

model metrics. The performance of the trained ML model 

is tested with respect to Norwegian GeoTest sites 

(L’Heureux and Lunne 2020). 

2. Database and data preprocessing  

The database for ML model training contains 1339 

cone penetration tests (CPT) carried out by Premstaller 

Geotechnik in basins and valleys in various Alpine 

regions and foothills, including Austria and Germany 

(van Hused 2000). These basins were formed during the 

last glacial period, remained as lakes after the melting of 

the ice masses and are often filled with fine-grained 

sediments. As a result, their characteristics can vary 

greatly within a basin and are often overlaid by coarse-

grained top layers. In contrast, valley fills tend to have a 

coarser grain size distribution and more heterogeneous 

subsurface properties compared to basins (Oberhollenzer 

et al. 2021). The database mainly contains data of silts, 



 

 

and sands. However, mixtures of different soil types are 

also available (Oberhollenzer et al. 2023). Further 

information can be found in Oberhollenzer et al. 2021.  

The database consists of 50 seismic cone penetration 

tests (SCPTs) and 46 SCPTu, which forms the basis for 

model training. Raw data are rarely available in the 

quality required for “optimal” performance of a ML 

model (Raschka 2015). Various preprocessing 

techniques are explored in this paper. One of these 

approaches is the moving average technique, which is 

used to remove small-scale noise, similar to Ceccato et 

al. (2022). In this case, a 50 cm window is applied to cone 

resistance qc, sleeve friction fs, and friction ratio Rf. 

Furthermore, the performance of different ML models is 

investigated concerning different approaches for data 

preprocessing. 

Table 1 presents statistical measures for various (raw) 

measurements of a CPT, derived from data collected 

from the 96 in-situ tests without and with applied moving 

average on the data points. The table provides insight into 

the dataset through parameters such as the mean value µ, 

standard deviation σ, and interquartile range IQR, which 

represents the distance between the 1st quartile (Q1) and 

3rd quartile (Q3). The raw data of qc demonstrates a 

relatively low standard deviation and interquartile range, 

indicating a homogenous distribution of data points. 

Conversely, sleeve friction and friction ratio exhibit 

higher standard deviation, presumably due to the 

influence of outliers. The interquartile range distance is 

relatively high for fs and quiet low for Rf. Applying a 

moving average to the dataset has very small effect on 

the statistical measures, except for the standard deviation 

of Rf, which increases. 

Table 1. Statistical characteristic measures for SCPT’s and 

SCPTu’s (*with rolling mean) 

measurements Unit µ σ IQR 

qc MPa 4.89 8.54 3.90 

fs kPa 55.43 74.59 54.40 

Rf % 2.68 58.07 1.73 

qc
* MPa 4.89 8.15 3.91 

fs
* kPa 55.33 66.45 54.26 

Rf
* % 2.18 7.53 1.74 

 

 
Figure 1. SCPT’s data points with moving average 

Fig. 1 illustrates the distribution of all data points for 

the four features (depth, qc, fs, Rf), after applying a 

moving average to the raw data, along the shear wave 

velocity (x-axis). It is important to note that negative vs 

values are deleted from the database at this stage. Upon 

observation, no distinct correlation between the features 

is visible. 

Input data (features) are often measured or provided 

in different units. Consequently, feature scaling is an 

essential step before training a ML model, such as for 

neural networks, to achieve an “optimal” model 

performance. Decision trees represents one class of ML 

algorithms that operate without the necessity for feature 

scaling (Raschka 2015; Ahmed Ouameur et al. 2020).  

3. Machine learning models 

The ML models are discussed in this section, 

covering feature selection, the overall workflow, model 

selection, and model evaluation. This paper focuses on 

the use of decision trees. The following ML algorithms 

have been used for investigation:  

 

• RandomForest (Pedregosa et al. 2011) 

• HistGradientBoosting (Pedregosa et al. 2011) 

• XGBoost (Chen and Guestrin 2016) 

 

RandomForest creates an ensemble of decision trees, 

which are built from a sample with replacement (i.e., a 

bootstrap sample) from the training set. When the 

training set for the present tree is generated by sampling 

with replacement, approximately one-third of the 

instances are excluded from the sample. This out-of-bag 

(OOB) data is employed to continuously obtain an 

unbiased estimate of the classification error as trees are 

incorporated into the forest (Pedregosa et al. 2011; 

Breiman 2001).  

HistGradientBoosting is a gradient boosting 

framework that uses tree-based learning algorithms. In 

general, the main optimization target is the pseudo-

residuals calculated at each iteration step. Furthermore, 

the computed residuals are reassigned to each instance. 

This framework can handle more than 10,000 samples 

(Friedman 2001; Pedregosa et al. 2011). 

XGBoost is an optimized version of a gradient 

boosting framework, specifically designed to be highly 

efficient. In this framework, the objective function is 

based on a second-order approximation which considers 

the gradient and hessian of residuals between the true and 

predicted values (Chen and Guestrin 2016). 

3.1. Feature selection 

In ML, a model, or predictor, is a function that 

generates an output based on a specific input (Deisenroth 

et al. 2021). In this case, a feature matrix (input matrix) 

consists of depth, qc, fs, Rf. Fig. 2 illustrates exemplary 

the raw data of CPT ID 1243 from the database in black, 

while the smoothed input features - depth, qc, fs, and Rf - 

are depicted by red dots. Performed preliminary studies 

(not discussed in this paper) indicated that the use of 

depth, qc, fs, and Rf results in a very good model 

performance. 



 

 

 
Figure 2. Raw and smoothed CPT data (CPT ID 1243) 

3.2. Model training workflow 

The ML workflow typically follows the steps outlined 

in Fig. 3, compare Deisenroth et al. (2021). To assess the 

model performance, a preliminary ste0p involves 

splitting the database into training and test sets, typically 

with an 80 % to 20 % ratio, respectively (Rauter and 

Tschuchnigg 2021; Masi 2023) 

Initially, the ML model is trained using the training 

data and initial hyperparameters. At each workflow step, 

the loss is computed by evaluating an objective function 

that compares the ML predictions to the actual dataset. 

After training, the model performance can be assessed 

through the training loss with the training set. 

Subsequently, the model's generalization is assessed 

through a validation step, where its performance on a 

validation set – derived from the 80 % training data – is 

analysed by the validation loss. To mitigate overfitting, 

cross validation is used. This process iteratively 

partitions the data into K subsets, with K-1 used for 

training and the remaining one for validation. The 

model's performance across these K runs is averaged to 

measure its overall performance. A 10-fold cross 

validation approach is employed (Deisenroth et al. 2021). 

As each ML algorithm builds on multiple 

hyperparameters, an optimization algorithm is necessary 

to obtain optimal hyperparameters based on an objective 

metric. In this study, Optuna is employed, an automatic 

hyperparameter optimization software framework 

designed specifically for ML tasks (Akiba et al. 2019). It 

assesses the training and validation loss for various 

hyperparameter settings to obtain optimal settings for 

each ML algorithm by maximizing (or minimizing) an 

objective function. The termination criterion for the 

optimization process is based on the iteration number. 

Details regarding the training metrics of each iteration, 

along with the objective function, are available in the 

GitHub repository (link to repository) associated with 

this study.  

The final step is to train the test model using the 

training and validation sets, along with the best 

hyperparameters, and then to evaluate its performance 

using the test set. This evaluation allows for the 

computation of the test loss and the assessment of the 

generalization of the ML model. If an acceptable test loss 

is achieved, a final training can be performed using all 

data points from the database including the best 

hyperparameters after the optimization. 

  

 
Figure 3. Model training workflow 

3.3. Model selection 

ML performance relies highly on the quality and 

representativeness of the training dataset (Raschka 

2015). Training a ML model involves adjusting internal 

parameters to optimize its performance on unseen input 

data. However, achieving satisfactory performance on 

familiar data (training set) may merely indicate effective 

memorization of the dataset, without guaranteeing good 

performance on unseen data (test set) (Deisenroth et al. 

2021). Consequently, assessing the influence of data 

preprocessing on ML model performance is crucial.  

In the following, the impact of outlier removal on ML 

performance is investigated using the method presented 

by Chala and Ray (2023), where outliers are identified as 

data points lying beyond twice the interquartile range. 

The input database is adapted using the following data 

preprocessing approaches (DPA): 

 

• DPA 1: Raw data 

• DPA 2: Moving average 

• DPA 3: Removal of outliers (only for vs) 

• DPA 4: Moving average and removal of outliers 

(only for vs) 

• DPA 5: Removal of outliers (for qc, fs, Rf) 

• DPA 6: Removal of outliers (for qc, fs, Rf, vs). 

3.4. Evaluation of model performance 

The upcoming section discusses the performance of 

each ML model and the various data preprocessing 

approches. For the evaluation, the coefficient of 

determination R2 serves as the objective metric. The 

formula of R2 is typically expressed as: 

https://github.com/harifel/ISC7_DataDrivenSiteCharacterization/releases/tag/V.1.0


 

 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑓𝑖)2 

∑(𝑦𝑖 − �̅�)2   (1) 

where yi represents the true value, fi represents the 

predicted values and ȳ represents the mean of true values. 

R2 quantifies a model's predictive capacity, typically 

falling within the range of 0 to 1. A high R2 value 

indicates a strong alignment between the model 

prediction and the (raw) data, while a low R2 signifies a 

low alignment. Negative R2 values suggest that the mean 

of the (raw) data offers a more accurate representation of 

the outcomes than the model prediction. 

3.4.1. Performance with different data 
preprocessing approaches 

Tables 2 to 4 present the obtained R2 values (objective 

metric) on the test and training sets for all three 

investigated ML models and data preprocessing 

approaches. The R2 value quantifies the predictive 

capacity of the model compared to the raw data. For 

instance, a R2 value of 0.70 indicates that the model's 

outcome can predict 70 % of the variability in the 

compared variable, leaving 30 % unexplained. It is 

important to mention that the R2 obtained from the test set 

(test loss) holds more significance than the R2 value on 

the training set (training loss) in model evaluation, as the 

ML model should perform well on unseen data (test set), 

see Deisenroth et al. (2021).  

As shown in Table 2, XGBRegressor (XGB) shows a 

range of the objective metrics from the test set, ranging 

from 0.217 for DPA 5 (removal of outliers - for qc, fs, Rf) 

to 0.493 for DPA 2 (moving average); the corresponding 

R2 values from the training set range from 0.506 for  

DPA 5 to 0.757 for DPA 2, respectively. 

Table 2. Model performance of XGB for different data 

preprocessing approaches 

Investigation  
R2 value from  

test set (1) 

R2 value from 

training set (1) 

DPA 1 0.460 0.540 

DPA 2 0.493 0.757 

DPA 3 0.463 0.673 

DPA 4 0.481 0.781 

DPA 5 0.217 0.506 

DPA 6 0.471 0.636 

 

Tables 3 and 4 illustrate the R2 values associated with 

different data preprocessing approaches using 

HistGradientBoostingRegressor (HGBR) and 

RandomForestRegressor (RFR), respectively. The 

objective metrics for HGBR from the test set range from 

0.215 for DPA 5 (removal of outliers - qc, fs, Rf) to 0.472 

for DPA 3 (removal of outliers - vs); R2 values from the 

training set vary from 0.304 for DPA 5 to 0.726 for  

DPA 4 (moving average and removal of outliers - vs). 

RFR model obtains the best R2 value from the test set for 

DPA 3 with 0.468 and from the training set with 0.411. 

The worst values, with 0.238 and 0.186 from the test and 

training set, respectively, are obtained for DPA 5 using 

RFR.  

The R2 values indicate that the model's performance 

is highly influenced by the data preprocessing methods 

used in this paper. XGB shows slightly better 

performance than HGBR and RFR in terms of both R2 

values obtained from the test and training sets. The best 

objective metrics are obtained with DPA 2 (moving 

average) for XGB, and with HGBR and RFR for DPA 3 

(removal of outliers - vs). Due to the performance, only 

the XGB model with DPA 2 is used in further analysis. 

The final model is again trained on the total database with 

the already determined hyperparameters, see Fig. 3. This 

model is then applied to a sand site in Øysand, Norway 

in the next section to compare the model performance 

with in-situ measurements. 

Table 3. Model performance of HGBR for different data 

preprocessing approaches 

Investigation  
R2 value from  

test set (1) 

R2 value from 

training set (1) 

DPA 1 0.458 0.512 

DPA 2 0.468 0.650 

DPA 3 0.472 0.642 

DPA 4 0.459 0.726 

DPA 5 0.215 0.304 

DPA 6 0.456 0.578 

Table 4. Model performance of RFR for different data 

preprocessing approaches 

Investigation  
R2 value from  

test set (1) 

R2 value from 

training set (1) 

DPA 1 0.461 0.369 

DPA 2 0.461 0.351 

DPA 3 0.468 0.411 

DPA 4 0.364 0.393 

DPA 5 0.238 0.186 

DPA 6 0.383 0.388 

4. Application of the machine learning 
model 

In this section, the performance of the trained ML 

model is shown using real CPT data from a sand site in 

Øysand, Norway. At the beginning, the origin of the data 

is presented. Subsequenlty, the model’s performance on 

a sand test site is discussed. It has to be pointed out that 

the trained ML model is mainly based on silts, and sands 

(see Oberhollenzer et al. 2023)  

4.1. Datamap 

"Datamap" is an innovative web application designed 

to collect, categorize, and manage geotechnical data 

effectively. This application enables collaboration for 

researchers and practitioners to share knowledge. The 

web application can be accessed at 

www.geocalcs.com/datamap (Doherty et al. 2018). 

4.2. Norwegian GeoTest Sites (NGTS) 

The Norwegian Geotechnical Institute (NGI), in 

collaboration with various institutions including the 

Norwegian University of Science and Technology 

(NTNU), SINTEF Building and Infrastructure, the 

University Centre in Svalbard (UNIS), and the 

Norwegian Public Roads Administration (NPRA), has 

established five GeoTest Sites (NGTS) in Norway 

between 2016 and 2019 (L’Heureux and Lunne 2020). 

These sites represent different soil types, including clay, 

silt, quick clay, sand, and permafrost. For various 

geological conditions, in-situ measurements are 

provided. In this study the sand site is considered. 

http://www.geocalcs.com/datamap


 

 

 

 
Figure 4. Raw CPT site data of OYSC35 (in black, and red), with output of XGB (in blue), and  

correlations (in green, brown, and purple) 

4.3. Performance of machine learning model  

The performance of the ML model is assessed by 

comparing its predictions of shear wave velocity values 

to the in-situ measurements from the sand site in Øysand,  

Norway. To improve the validity of the model, three 

established correlations are used for comparison: 
 

𝑣𝑠 = 12.02 ∗ 𝑞𝑐
0.319 ∗ 𝑓𝑠

−0.0466  (2) 
 

𝑣𝑠 = 118.80 ∗ log(𝑓𝑠) + 18.50  (3) 
 

𝑣𝑠 = 11.711 ∗ 𝑞𝑐
0.3409   (4) 

 

Eq. (2) is more suitable for sands (Hegazy and Mayne 

1995), whereas Eq. (3) (Mayne 2006) and Eq. (4) 

(Hegazy and Mayne 2006) can be used for various soil 

types (Mayne 2006; Hegazy and Mayne 2006). 

Investigating the influence of different data 

preprocessing approaches on the sand site data in Øysand 

is beyond the scope of this paper, as it would require 

retraining the ML model with the sand data, obtaining 

optimal hyperparameters, and reevaluating its 

performance. Therefore, XGB model with DPA 2 is used 

in this study.  

Fig. 4 illustrates the raw CPT data from the sand site 

(CPT OYSC35 is chosen as an example), depicted by 

black for qc, fs, and Rf, and red solid lines for vs. The 

output generated by the XGB model is represented by the 

blue solid line. Additionally, the corresponding 

correlations are illustrated by green, brown, and purple 

solid lines. The ML predictions demonstrate an overall 

good fit to the in-situ vs-measurements of OYSC35 along 

depth and successfully capture the peak at approximately 

3.50 m depth. However, due to the utilization of all raw 

data points from OYSC35 as input into the ML model, 

the output exhibits a more zig-zag behavior along depth. 

If the input data points were smoothed, for instance, with 

a moving average, the ML predictions would also exhibit 

a smoother output. It is worth noting that there is a slight 

offset between the ML model output and the raw data, 

especially between depths of 10 and 20 m. Eq. (2) and 

Eq. (3) enclose the measurements and the ML prediction; 

Eq. (2) tends to underestimate vs compared to the 

measurements, while Eq. (3) overestimates vs. The gray 

hatch between the two correlations, representing Eq. (2) 

and Eq. (3), illustrates a kind of uncertainty gap, which 

represents the uncertainty in estimating the in-situ shear 

wave velocity from correlations when measurements are 

unavailable. It is important to highlight that Eq. (4) is in 

a good agreement with the raw data and ML prediction.  

Nevertheless, while the ML model (trained mainly 

with silt-sand soil types, see Oberhollenzer et al. 2021) 

shows good performance on the sand test site in Øysand, 

Norway, it is essential to acknowledge the need for more 

data of different soil types. Preliminary tests suggest (not 

shown in this paper) that the ML models indicate poor 

extrapolation ability when applied to a clay test site. 

5. Conclusion  

The primary objective of this contribution is to 

develop a predictive model for the stress-dependent 

small-strain stiffness G0. The findings underscore the 

potential of ML models for the prediction of shear wave 

velocity estimates, as shown in Entezari et al. (2022), and 

Entezari et al. (2023). These predictions can be employed 

to determine the small-strain modulus G0. Through the 

presented investigations, a dependency of the 

preprocessing is observed. This highlights the 

importance of careful data preprocessing and selection 

for achieving reliable model performance for each 

application. 

Additional studies (not presented in this paper) have 

indicated the limited extrapolation ability of the ML 

models when applied to clay test sites. This underlines 

the necessity of adding additional training data. Future 

research will focus on determining further soil 

parameters with ML models and addressing the 

limitations of ML predictions for soil parameters. Despite 

the promising results obtained from ML studies with  



 

 

in-situ tests, integrating ML with laboratory tests could 

further enhance predictive accuracy. 

While the study has provided valuable insights into 

data preprocessing, there are areas open for discussion 

and improvement. One such area is the handling of 

outliers, which significantly deviate from the rest of the 

data either in one variable (univariate) or across multiple 

variables (multivariate). Identifying outliers is crucial, as 

they can significantly impact model performance and 

accuracy. Another area for improvement lies in 

investigating bias(es) within raw data, such as the 

predominance of silts and sand in the database used in 

this study, which can influence the model performance of 

the ML algorithm. This aspect remains a subject of 

ongoing research. 

A link to the GitHub repository is provided 

containing the Python codes utilized in this study. This 

repository fosters transparency, reproducibility, and 

facilitates further collaboration within the geotechnical 

research community. 
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